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ABSTRACT

Based on the theory of reconstructing state space, a technique for spatiotemporal series prediction is
presented. By means of this technique and NCEP/NCAR data of the monthly mean geopotential height
anomaly of the 500-hPa isobaric surface in the Northern Hemisphere, a regional prediction experiment is
also carried out. If using the correlation coefficient R between the observed field and the prediction field
to measure the prediction accuracy, the averaged R given by 48 prediction samples reaches 21%, which
corresponds to the current prediction level for the short range climate process.
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1. Introduction

In the last ten years, it has been a very active
research field to use a chaotic time series for build-
ing a nonlinear prediction model. In numerous re-
search works, two ways of building the model are
usually used: the artificial neural network technique
(Cybenko, 1989; Hsieh, 2001) and the state space re-
construction technique (Farmer and Sidorowich, 1987;
Casdagli, 1989; Sugihara and May, 1990 ; and Sivaku-
mar et al., 2001). Casdagli (1989) systematically re-
viewed the latter, and compared three different model
building techniques: the global approximation, the lo-
cal approximation, and the radiation function base ap-
proximation. Farmer and Sidorowich (1987) showed
that, in the case of a not too high embedding dimen-
sion, the first-order local approximation can give bet-
ter results for those classical chaotic systems.

However, most time series from the real world, es-
pecially those representing climate processes, are too
short to satisfy the length requirement (Theiler et al.,
1992). Too short a history cannot give a full descrip-
tion for the state distribution of the dynamics system.
In other words, it cannot be expected to predict an
event that occurs in one hundred years by using the
data accumulated in a period of 50 years. This dif-
ficulty is usually referred to as the “data bottleneck”
problem for short time series analysis.

In order to solve the above problem, some atmo-
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sphere scientists have suggested the reconstruction of
the dynamic system with observation data from differ-
ent spatial positions. They have once applied this idea
to estimate the dimension of climate attractors and
achieved some successes (Essex and Lookman, 1987;
Keppenne and Nicolis, 1989; Yang et al., 1994). So,
people may ask the question: could this idea be used to
predict the spatiotemporal series? The answer is pos-
itive. In fact, Yang et al. (2000) have used the spa-
tiotemporal neural network technique to predict the
distribution of the monthly mean value of the column
ozone over China, and obtained a prediction accuracy
of over 0.43, which represents the correlation coeffi-
cient between the observed field and the prediction
field. Their results show that the spatiotemporal se-
ries can effectively improve the ergodicity of the single-
variable time series.

Based on the above idea, this paper carries out an
experiment to predict the monthly mean geopotential
height anomaly field of the 500-hPa isobaric surface
(MMGHAF500) by using the state space reconstruc-
tion technique and NCEP/NCAR data. The organiza-
tion of the paper is as follows. In the next section, the
basic idea behind the technique used and the proce-
dure for building the prediction model are described.
Then, in section 3, to test the model ability, a pre-
diction experiment for the geopotential height field of
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500 hPa is given. Finally, in the last section, a brief
summary is presented.

2. Basic idea

In this section, we will take the local approxima-
tion technique (Casdigli, 1989) as the pattern to in-
troduce the basic idea and the key procedure to build
the spatiotemporal series prediction model. In general,
as an extension of the prediction theory of the single-
variable time series, which has had more than 10 years
of history, the technique for building the spatiotempo-
ral series prediction model is still based on the recon-
struction of state space, except the space distribution
of the variable in the predicted region should be taken
into account. Thus, in the description of the procedure
for building the model, we will focus on the treatment
of the space construction of the spatiotemporal series.

For simplicity, we suppose that the analyzed spa-
tiotemporal series has a one-dimensional space distri-
bution, i.e., it consists of K subsequences from K dif-
ferent observation stations. If all these subsequence
sizes are equal to N, this dataset can be indicated as

(i, j) = {2(si 15)}

221527aK7 ]:17277N (1>

where s; and t; represent the i-th observation station
and the j-th observation time, respectively.

We also suppose that the spatiotemporal series is
controlled by the same physical law, or that the sub-
sequences observed at the different positions describe
an identical dynamical system. Such an assumption
means that all reconstructed sub-trajectories given by
the subsequences should twine on an identical attrac-
tor. So, if we apply the same reconstruction parame-
ters to all subsequences, then we can obtain a recon-
structed sub-trajectory family:

ym(Z7]) :{m(shtj)v x(siutj+T)7"' )
zlsi, tj + (m— D7)} =12, N
i=1,2,- K (2)

where m and 7 stand for the embedding dimension-
ality and the delay time, respectively, and t; =ty —
(m — 1)7. Obviously, this sub-trajectory family de-
scribes the dynamics of the spatiotemporal series on
the reconstructed attractor, and gives a much larger
phase point set than that reconstructed only by one
subsequence.
The prediction of the spatiotemporal series is car-
ried out station by station in the given region (i=1, 2,
.., K). For the i-th observation station, if the current
time and the corresponding current state are denoted

WANG ET AL. 297

as N and y (¢, N), respectively, then the nearest neigh-
bor of y (i, N), y (¢*, j*), should satisfy:

ly (i, N) =y (¢, 59|l =
{lyG,N)=y(q,5) Il } (3)

min
q:1’27... 7I(
j=1,2,- \N—1
where || e || stands for the Euclidean distance between
two phase points on the embedded attractor. Expres-
sion (3) means that the nearest neighbor of y (i, N)
is not only with respect to those phase points lying
in the i-th sub-trajectory, but also to the whole at-
tractor. Obviously, doing so is helpful to improve the
limitation due to the short subsequence.
According to Expression (3), we can find p nearest
neighbors one by one, and denote them as

le{y(iaNL)}7 L:L"'vp' (4)

At the same time, we can also find out their mappings
on the reconstructed attractor and denoted them as

Qo ={y (1, N + 1)}, L=1,---,p. (5
Then, according to the local approximation technique

(Casdigli, 1989), we can build a prediction model by
means of Q7 and Q5.

3. Prediction experiments

In this section, we will focus our attention on re-
gional short-term climate prediction, which is one of
the hot spots in the study of climate prediction theory.
We believe that it should be such a field in which the
spatiotemporal series prediction theory could play an
important role.

The data used in our prediction experiments are
the MMGHAF500 in the Northern Hemisphere, which
are provided by NCEP/NCAR. Using such data is con-
venient for comparing with prediction results given by
other techniques. The data used cover 480 months
from January 1958 to December 1997; those of the first
432 months (from January 1958 to December 1993) are
used to build up the prediction model, and those of the
last 48 months (from January 1994 to December 1997)
are used to test the prediction skill.

In terms of the Auto-Correlation Function Model
(Abarbanel et al., 1993) and the False Neighbor
Method (Fraser, 1986), we obtain the reconstruction
parameters, the lagged time Tand the embedded di-
mensionality m, which are 3 and 5, respectively. The
capacity of the nearest neighboring set is taken as 200.
The order of the prediction model is assumed to be de-
pendent on the season, which are given as 0, 1, and 2
for the winter period (from December to February), for
the spring period and autumn period (from March to
May; and from September to November) and for the
summer period (from June to August), respectively.
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Fig. 1. Situations of the prediction field (a) and the observed field (b) for the 500 hPa monthly mean geopotential
height anomaly in the Northern Hemisphere for April 1994.
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Fig. 2.

Figures 1 and 2 give two prediction cases, the bet-
ter one and the worse one. If using the correlation coef-
ficient between the observed field and prediction field
to measure the prediction accuracy, the mean value
given by the 48 predicting cases (from January 1994
to December 1997) reaches 0.21, which corresponds
to the prediction level of GCM models (Wang, 1996).
This shows that, in regional short-term climate pre-
diction, the spatiotemporal series prediction technique
based on the theory of state space reconstruction has
a credible prediction skill.

4. Summary

The theory and method for spatiotemporal series
prediction are discussed in this paper by means of
state space reconstruction theory. Essentially, the idea
is a natural promotion of the prediction theory for a
single-variable time series (Packard et al., 1980; Tak-
ens, 1981, Farmer and Sidorowich, 1987; and Cas-
digli, 1989). The basic assumption of this technique
is that all the observed subsequences in the predicted
region are under the control of the same dynamical
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The same as Fig. 1 except in July 1997.

law. This assumption ensures that those reconstructed
sub-trajectories should twine on an identical attrac-
tor. Through studying this sub-trajectory family, we
can get the statistical behaviors of the attractor, and
predict the dynamics of the spatiotemporal series.

When using the local approximation technique
(Casdigli, 1989) to build the spatiotemporal series pre-
diction model, an important improvement consists in
that, compared with the single-variable time series,
the selection range of the nearest neighbor set is not
only limited in the sub-trajectory in which the current
point lies, but is also extended on the whole attractor.
Obviously, this technique may be used to improve the
ergodicity of the single-variable time series, and this
then raises the prediction skill.

The prediction experiment for MMGHAF500 given
in this paper presents a prediction accuracy corre-
sponding to GCM (about 20%-30%). This result
shows a valuable prospect in applying this technique
to regional climate prediction, even though the exper-
iment is preliminary.

The spatiotemporal series prediction technique
seems to be more appropriate for predicting a field
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change process without a clear physical mechanism.
As it appears, compared with the numerical methods
such as GCM, it does not require building up the com-
plete mathematical-physical model. This is because, in
its view, all information describing the physical back-
ground has been included in the observed history data.
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