SCIENCE CHINA @ CrossMark
Mathematics ¢

AT Methods for Optimization Problems June 2024 Vol.67 No.6: 1263-1286
« ARTICLES - https://doi.org/10.1007/s11425-022-2259-1

Optimal pivot path of the simplex method for linear
programming based on reinforcement learning

Angi Li, Tiande Guo, Congying Han*, Bonan Li & Haoran Li

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Email: liangi20 @mails.ucas.ac.cn, tdguoQucas.ac.cn, hancy@ucas.ac.cn,
ltbonan@ucas.ac.cn, lihaoran2l @mails.ucas.ac.cn

Received November 27, 2022; accepted January 23, 2024; published online February 29, 2024

Abstract Based on the existing pivot rules, the simplex method for linear programming is not polynomial in
the worst case. Therefore, the optimal pivot of the simplex method is crucial. In this paper, we propose the
optimal rule to find all the shortest pivot paths of the simplex method for linear programming problems based
on Monte Carlo tree search. Specifically, we first propose the SimplexPseudoTree to transfer the simplex method
into tree search mode while avoiding repeated basis variables. Secondly, we propose four reinforcement learning
models with two actions and two rewards to make the Monte Carlo tree search suitable for the simplex method.
Thirdly, we set a new action selection criterion to ameliorate the inaccurate evaluation in the initial exploration.
It is proved that when the number of vertices in the feasible region is C7*, our method can generate all the
shortest pivot paths, which is the polynomial of the number of variables. In addition, we experimentally validate
that the proposed schedule can avoid unnecessary search and provide the optimal pivot path. Furthermore, this
method can provide the best pivot labels for all kinds of supervised learning methods to solve linear programming

problems.
Keywords simplex method, linear programming, pivot rules, reinforcement learning

MSC(2020) 90C27

Citation: Li A Q, Guo T D, Han C Y, et al. Optimal pivot path of the simplex method for linear programming
based on reinforcement learning. Sci China Math, 2024, 67: 1263-1286, https://doi.org/10.1007/s11425-
022-2259-1

1 Introduction

The simplex method is a classical method for solving linear programming (LP) problems. Although it
is a nonpolynomial-time algorithm, its worst case rarely occurs and its average performance is better
than that of polynomial-time algorithms, such as the interior point method and the ellipsoid method,
especially for small-scale and medium-scale problems. Much research work has focused on making the
simplex method a polynomial-time algorithm, but it has not been successful. The existing pivot rules can
neither provide the optimal pivot paths for the simplex method nor make it a polynomial-time algorithm.
In addition, the traditional design idea only applies to designing the pivot rule suitable for certain types
of problems. There are no general ways to find the least number of pivot iterations for all types of linear
programming. Our research goal is to design a general optimal pivot rule based on the inherent features

* Corresponding author

© Science China Press 2024 math.scichina.com  link.springer.com


http://crossmark.crossref.org/dialog/?doi=10.1007/s11425-022-2259-1&domain=pdf
https://doi.org/10.1007/s11425-022-2259-1
math.scichina.com
link.springer.com
https://doi.org/10.1007/s11425-022-2259-1
https://doi.org/10.1007/s11425-022-2259-1

1264 Li A Q et al. Sci China Math  June 2024 Vol. 67 No.6

of linear programming extracted by reinforcement learning (RL) that can be solved in polynomial-time.
This study is the first step toward achieving this goal.

With the rise of machine learning (ML), ML-based technologies provide researchers with new ideas of
pivot rules. Based on the deep Q-network (DQN) [25,26], DeepSimplex [35] provides a pivot rule that
can select the most suitable pivot rule for the current state between the Dantzig and steepest-edge rules.
While another study [1] provides an instance-based method, the most suitable pivot rule for the current
instance is learned among the five conventional pivot rules. The above two methods are based on several
given pivot rules, and then learn the pivot rule scheduling scheme depending on the solution state or
input instances. Therefore, the performance of these methods is heavily dependent on the supervised
pivot rules. Unfortunately, owing to the lack of optimal labels, we see that supervised pivot rules cannot
extract the optimal pivot paths for the simplex method.

In addition, the difficulty in determining the optimal pivot path lies in the information after several
pivot iterations in the future. The existing solution state is insufficient for optimal future decisions. The
most effective method is to appropriately assess the future situation before deciding to guide the best
pivot. Fortunately, this idea is consistent with the Monte Carlo tree search (MCTS). Specifically, MCTS
explores the trajectory in advance to evaluate and obtain future information to guide decision-making,
significantly reducing the invalid search space and effectively guiding the best decision-making. Thus,
the simplex method can effectively use future information to guide the current optimal pivot decision.

Motivated by these observations, we propose to analyze and improve the simplex method in pivoting
with the Monte Carlo tree search, further pushing forward the frontier of the simplex method for linear
programming in a general way. We focus on four core aspects: (1) transforming the simplex method
into a pseudo-tree structure, (2) constructing appropriate reinforcement learning models, (3) providing
the MCTS rule to find all shortest pivot paths, and (4) giving thorough theory for the optimality and
complexity of the MCTS rule, as shown in Figure 1.

First, transforming the simplex method into the tree search mode is the premise for applying the
Monte Carlo tree search method. Considering the connectivity and acyclicity characteristics, the
tree structure can effectively avoid the generation of cycles in exploration paths. In this way, it
ingeniously avoids repetition of the basis variables in exploration. To construct an imitative tree structure,

MCTS rule

Figure 1 (Color online) Overview of the methodological framework in this paper. Firstly, we create the
SimplexPseudoTree to transform the simplex method applicable to reinforcement methods in Section 3. Next, four RL
models are proposed in Subsection 4.1 based on the SimplexPseudoTree. Then we propose the MCTS rule to calculate
all the shortest pivot paths in Subsections 4.2 and 4.3. Finally, we give thorough theory analysis for the MCTS rule in
Section 5



Li AQ etal. Sci China Math  June 2024 Vol. 67 No.6 1265

the SimplexPseudoTree, we propose to regard current states as nodes and the corresponding pivoting
process as edges. The original linear programming instance is taken as the root node, and optimal
solutions correspond to leaf nodes. Furthermore, we remove edges between nodes in the same layer and
pivot from the deep layer to the shallow layer. Under this construction, the problem of finding the shortest
path from the root node to the leaf node is equivalent to that of finding the optimal pivot rule.

Subsequently, we transform the problem of finding the optimal pivot path into four reinforcement-
learning models. In particular, the following two novel action spaces and two reward functions are
introduced:

e Action set: (1) non-basis variables whose reduced costs are less than zero, and (2) non-basis variables
whose reduced costs are not equal to zero.

e Reward functions: (1) opposite of pivot iterations, and (2) linear decay weight estimation of the

average variation in the objective value caused by a single pivot.
Based on the proposed actions and rewards, we design four models of different forms. Through a
comprehensive comparison, it is found that the model comprising action set (1) and reward functions (2)
achieves the highest efficiency with the least computational cost. Furthermore, we construct a novel action
selection criterion for the simplex method to ameliorate inaccurate evaluation in the initial exploration.
Subsequently, we present the MCTS rule based on the Monte Carlo tree search to determine the optimal
pivot for current states.

In addition, the optimal pivot that corresponds to the minimum pivot iterations is not necessarily
unique. However, current research has not provided a way to find multiple optimal pivot paths.
Unlike deterministic pivot rules, our MCTS rule exhibits certain randomness in the exploration stage.
Specifically, the proposed exploration criterion can introduce a controllable scale factor based on the
upper confidence bounds (UCB) method. Thus, additional randomness is added to the balance between
the estimated value and explorations brought by the UCB algorithm. Additionally, the randomness of
the MCTS rule can guide the selection of different actions to achieve the minimum pivot iterations under
the guidance of optimality.

Consequently, we prove the optimality and completeness of the MCTS rule. We also prove the
polynomial complexity of the optimal pivot iterations when the number of vertices in the feasible region
is C7*. Concretely, the MCTS rule can find all the shortest pivot paths according to the Wiener-Khinchin
law of large numbers. Firstly, the MCTS rule can find the optimal pivot path when explorations approach
infinity. Then the MCTS rule can find all the different pivot paths when executions approach infinity.
Additionally, from the perspective of combinatorial numbers, we prove that the minimum pivot iterations
is polynomial of variables when the number of vertices in the feasible region is C]*. We also verify the
polynomial iterations from the geometric perspective.

Given the above four aspects, we present a novel MCTS rule that provides all the shortest pivot paths.
Additionally, we can label massive instances with little cost for the supervised pivot rule based on the
proposed MCTS rule. Comprehensive experiments on the NETLIB benchmark and random instances
demonstrated the efficacy of the MCTS rule. It is worth noting that compared with the minimum pivot
iterations achieved by other popular pivot rules, our result is only 54.55% for random instances and
49.06% for NETLIB.

Our main contributions are as follows:

e Construct the SimplexPseudoTree to ensure that MCTS can be applied to the simplex method while
avoiding duplicate bases.

e Propose the MCTS rule to determine all the optimal pivot sequences.

e Provide a method to obtain the optimal pivoting labels for the supervised pivot rule within the
allowable range of the calculation cost.

e Give comprehensive theory for the optimality and complexity of the MCTS rule.

The rest of this paper is organized as follows. Section 2 introduces the background and related
works. Section 3 introduces the SimplexPseudoTree to translate the simplex method for applying RL
methods. Section 4 presents the optimal MCTS rule for the simplex method. We prove the optimality



1266 Li A Q et al. Sci China Math  June 2024 Vol. 67 No.6

and complexity of the proposed optimal pivot rule in Section 5. Section 6 presents experimental results.
The conclusions and further works are presented in Sections 7 and 8, respectively.

2 Background and related work

LP problem. Linear programming is a type of optimization problem, where the objective function
and constraints are linear. The standard form of the simplex method is as follows:

min etz

s.t. Ax = b, (2.1)
x>0,

where ¢ € R" is the objective function coefficient, A € R™*" is the constraint matrix, b € R™ is the
right-hand side, and all the variables take continuous values in the feasible region. The purpose of linear
programming is to find a solution that minimizes the value of the objective function in the feasible region,
i.e., the so-called optimal solution, while the corresponding objective value is the optimal value.

Simplex method. The simplex method is clear and easy to understand. After providing an initial
feasible solution, we see that the pivoting process includes three parts: variable division, selection of the
entering basis variable, and derivation of the leaving basis variable [7]. The variable division step divides
the variable x € R" into = = [25,2%]T. Correspondingly, divide A = [B, N] and ¢ = [c}, c5]T, and each
column of the coefficient matrix B corresponding to xpg is required to be linearly independent. At this
time, the constraint Az = b can be written as

rp=B"'b— B 'Nay. (2.2)
We can obtain (2.3) by substituting the constraint into the objective function, i.e.,
'z =cEB b+ (cy — cE B 'N)ay. (2.3)

As the first term is a constant value, the objective function value is determined only by the second
term
¢l =ch —cEBTIN, (2.4)

which is called reduced costs. The components of zy corresponding to the part of (2.5) are non-basis
variables that can cause a decrease in the objective function, i.e.,

J={j|e <0} (2.5)

Therefore, the selection of the entering basis variable is the process of selecting a basis variable from
the non-basis variables mentioned above. Different pivot rules provide different methods for selecting
the entering basis variable. In other words, the essence of the pivot rule of the simplex method is to
convert a certain column between bases corresponding to feasible solutions. Accordingly, the feasible
region polyhedron starts from the initial solution vertex, and each pivot corresponds to a step transition
between adjacent vertices until it reaches the optimal solution vertex. When the basis variables are
determined, we can use (2.6) to derive the leaving basis variable, i.e.,

zp =B 'b— B 'Nzy >0. (2.6)

After the initial feasible solution is given, the pivot process is repeated until the basis corresponding to
the optimal solution is obtained, i.e., the end of the simplex method.

Classical pivot rules. The pivot rule provides the direction for the exchange of the basis variables
of the simplex method. The simplex method has several classical pivot rules. The Dantzig rule [7] is to



Li AQ etal. Sci China Math  June 2024 Vol. 67 No.6 1267

select the component corresponding to the most negative reduced cost as the entering basis variable, i.e.,
choose

J € argmin{¢; | ¢ < 0}. (2.7)
The Bland rule [2] is to select the component with the smallest index from the variables with reduced
costs less than zero, i.e., choose

J € argmin{j | ¢; < 0}. (2.8)
The steepest-edge rule [10, 13] uses the columns of the corresponding non-basis matrix and the basis

matrix to standardize the reduced costs and selects the column corresponding to the smallest component,
i.e., choose

Je argmin{

c

FM c; < 0} (29)
The idea of the greatest improvement rule [21] is to take the product of the reduced costs and the maximum
increment of each non-basis variable as the evaluation standard and select the non-basis variable with
the minimum value as the entering basis variable. Finally, the devex rule [16, 28], an approximation of
the steepest-edge rule, uses an approximate weight to replace the norm in the evaluation criterion of the
steepest-edge rule. Considering the number of pivot iterations, we see that different pivot rules apply
to different problem types. However, there is no universal pivot rule that can determine minimum pivot
iterations for general linear programming instances. In addition, there is an LP instance so that the
corresponding simplex method is not a polynomial algorithm for any pivot rules given above.

Pivot rules based on machine learning. In recent years, the development of machine learning
has provided new ideas for combinatorial optimization. Specifically, Guo et al. [14,15] gave overviews of
solving combinatorial optimization problems. ML-based methods gradually emerge to solve combinatorial
optimization problems, such as knapsack [8], the traveling salesman problem [37,38] and the P-median
problem [36]. Simultaneously, there are many MIL-based methods [9, 22-24] involving continuous
optimization problems. In terms of the linear programming problem, there are two methods for improving
the pivot rules of the simplex method based on the machine learning method. DeepSimplex [35] uses the
idea of Q-value iteration to learn the best scheduling scheme of the Dantzig rule and the steepest-edge
rule. Another study [1] used a boost tree and a neural network to learn an instance-based adaptive
pivot rule selection strategy based on five classical pivot rules. However, the performance of these two
supervised methods is severely limited by the provided pivot rules. In general, it is difficult to obtain the
minimum pivot iterations based on supervised learning without effective labels.

Combinatorial optimization methods based on MCTS. With the emergence of AlphaGo [32]
and AlphaGo Zero [33], reinforcement learning represented by MCTS has been widely used in many
classical problems [11,17,34]. Combinatorial optimization problems based on the MCTS can be solved
in two ways. A classical idea is to design an MCTS-based framework for various types of combinatorial
optimization problems [19,30]. Another idea is to design an MCTS-based algorithm to solve a specific
combinatorial optimization problem, such as the traveling salesman problem [27,29,38,39] and the Boolean
satisfiability problem [5,12,18,31]. We adopt the latter idea to find multiple optimal pivot paths for the
simplex method based on MCTS.

3 Constructed SimplexPseudoTree model

Reinforcement learning involves making the agent interact with the environment in a trial-and-error
manner. The results of trial-and-error are fed back to the agent in the form of rewards to guide agent
behavior and achieve the goal of maximizing the rewards. However, the current and past solution states
are inadequate for determining the optimal pivot paths. Actually, the future information obtained by
executing the pivot makes the difference. In this case, Monte Carlo tree search is more effective in finding
the optimal pivot. Therefore, constructing an imitative tree-search model for the simplex method is our
primary goal.



1268 Li A Q et al. Sci China Math  June 2024 Vol. 67 No.6

Simplex method SimplexPseudoTree Optimal pivot
(a) (b) ()

Figure 2 (Color online) Proposed SimplexPseudoTree for the simplex method. (a) shows the process of finding the
optimal solution according to the simplex method. (b) is the SimplexPseudoTree corresponding to the instance. (c) is the
optimal pivot path found based on the SimplexPseudoTree

Duplicate basic variables lead to an unnecessary increase in pivot iterations in the simplex method.
According to the reduced costs and pivot rules, the leaving basis variable cannot enter the basis into
the immediate next pivot. Therefore, if the current solution state is considered a node and the pivot
is considered an edge, the repetition of the basis implies that a circle appears in the exploration path,
as shown in Figure 2(a). Therefore, we must avoid base duplication in our pivot rule to minimize the
number of pivot iterations consistent with the connectivity and acyclic properties of tree structures.

Inspired by the tree structure, the SimplexPseudoTree is proposed to transform the simplex method
for utilizing MCTS while avoiding the cycle during pivoting. The SimplexPseudoTree is constructed by
considering the current states of the input instance as nodes and the feasible entering basis variables as
edges. The initial linear programming instance is the root node, and the optimal solutions correspond to
the leaf nodes. To minimize the number of pivot iterations, we only need to retain the pivot sequence for
each node that first accesses it. Therefore, we remove the edges of the same layers and pivots pointing to
shallow layer nodes from deeper layers, as shown by the dotted line in Figure 2. In Subsection 4.2, this idea
is implemented by imposing significant negative rewards. It is worth noting that the SimplexPseudoTree
differs from the tree structure. The SimplexPseudoTree allows multiple paths between two arbitrary nodes
of the SimplexPseudoTree because the pivot path is not unique. In general, the process of finding the
optimal pivot rule is to find the shortest path between the root and leaf nodes for the SimplexPseudoTree.

Using the idea of MCTS [3,6,33], we can evaluate the future situation for all candidate entering basis
variables. Based on the explored information, we can significantly reduce the search space formed by all
the possible entering basis variables to find the optimal pivot paths by minimizing the number of pivot
iterations.

4 Proposed RL algorithm
4.1 RL models of the MCTS rule

Before applying reinforcement learning, we see that this subsection presents the constructed state, action,
and reward functions suitable for the simplex method. We provide two action-space definitions and two
reward-function definitions. It is noteworthy that this is not a one-to-one correspondence. There are four
combinations of RL models, as listed in Table 1.

State. We choose the simplex tableaux as the state representation of the reinforcement learning model.
Simplex tableaux is the solution state representation of the simplex method on which traditional pivot
rules rely. The tableaux contains ¢, A, b, Iz, cg and ¢, where Ig’s are the column indexes corresponding
to basis variables. The simplex tableaux completely represents the current solution state of the input
instance and there is no redundant information.

Two action sets. In the reinforcement learning model of the MCTS rule, actions correspond to
feasible entering basis variables. We have provided two definitions of action spaces. One action space



Li AQ etal. Sci China Math  June 2024 Vol. 67 No.6 1269

Table 1 Four reinforcement learning models constructed for the simplex method

Model State Action Reward
Model 1 Simplex tableaux A ={i|e <0} Ry =-T
Model 2 Simplex tableaux Ax ={i| e #0} Ry =-T
Model 3 Simplex tableaux A ={i|e <0} Ry = M
Model 4 Simplex tableaux Ax ={i| e #0} Ry = M

contains variables with reduced costs of less than zero, i.e., non-basic variables whose objective value can
be reduced by a one-step pivot, as shown in (4.1), i.e.,

A= {i|& < 0}. (4.1)

The other type of action space corresponds to variables whose reduced costs are not equal to zero.
Compared with the former, this definition adds non-basic variables corresponding to reduced costs greater
than zero (see (4.2)). Although on the surface a variable with a reduced cost greater than zero does not
make much sense. However, it represents the greedy idea of trying to find a path with fewer pivot
iterations at the expense of the objective benefit in one step, i.e.,

Ay ={i| & #0}. (4.2)

Two reward functions. = We also provide two definitions for the reward function. The first reward
function is defined as the opposite number of pivot iterations, which intuitively reflects the goal of
minimizing the number of iterations, as shown in (4.3). One advantage of this is that in addition to
having a minimum number of pivot iterations, the action selection guided by this reward is completely
random, resulting in more randomness to find multiple pivot paths, i.e.,

Ry =-T. (4.3)

The second reward function is defined by (4.4), where T represents the maximum number of pivot
iterations of the current episode, ¢ represents the i-th pivot, x; is the locally feasible solution obtained
from the i-th pivot, and w; € (0,1] is the weight. It is noteworthy that the proposed linear weight factor
provides the weight of linear attenuation according to the depth from the root of the tree, i.e.,

Eity wilewio — ex) (T4

RQZ T ) Wy = T

(4.4)
Formula (4.4) indicates a decrease in the linear weighted estimation of the objective value caused by a
single pivot. In terms of minimizing pivot iterations, the two reward definitions are equivalent. However,
as far as our problem is concerned, the second reward has the following two advantages: (1) Compared
with the first type of reward function, the dimensional feature of the change in the objective value is
introduced. (2) The second reward function is more likely to choose the case in which the objective
function changes significantly at the initial stage, and therefore, even under the influence of the MCTS
random exploration, this model can easily converge to the minimum pivot iterations.

4.2 MCTS rule

Inspired by the idea of Monte Carlo tree search, we propose the MCTS rule as shown in Algorithm 1,
which can find the optimal pivot iterations for general linear programming instances. The entire process
is divided into four stages: construction, expansion, exploration and exploitation (see Figure 3).

Construction stage. First, we need to transform the simplex method into a structure with the
reinforcement learning model representation and an imitative tree-search pattern. The construction of



1270 Li A Q et al. Sci China Math  June 2024 Vol. 67 No.6

Algorithm 1 The MCTS rule

Input: maximum number of explorations Nexplore and instance Iinstance
Output: the optimal pivot path

1: create node N, corresponding state sy and action set A for Iinstance
2: N(sN,aJ) =0, S(SN»aj) =0fora; € A
3: P=0
4: while N is not terminal do
5: I=0
6: while [{M;,: € I}| < |A| do
7 choose a; € A, i ¢ 1
8: generate node M; by executing a;
9: I=T1u{i}
10: end while
11: 7=0
12: while j < Nexplore do
13: randomly select M; from {j | Q; > Esoft }
14: randomly explore M, to get reward G
15: Nsniag) = Nswiag) T1
16: S(sn.az) = S(sna) TG
17: j=3+1
18: end while
19:  choose & = argmax,¢ 4 Q(s,a) = argmax,c 4 S(s,a)/N(s,a)
20: P=PUa
21: create node N by executing a
22 N=N
23: construct state sy and action set A for node N

24: end while

Randomly select
Choose

~ >
Model; -3 ; | M; from
P mEeA el L 010> Ewn)
! ! i : v
| \% !
: ' Randomly explore Create
Cirzatiz —> Terminal? - No —> | | Generate node M;and | —> | | v —_—> ey
node N | | explore, I =1U {i} ‘
/I‘ Yes : i i Eackn 1\
N ' \ ! \
Input e (M i€ D <|A| b J < Nexplore Select M; :
instance Get optimal e a = arg max Q(s,a)
|<— Construction—>| Expansion | Exploration ———> | <—— Exploitation ——> |

Figure 3 Algorithm flow diagram of the MCTS rule

the SimplexPseudoTree is based on the schema in Subsection 4.1, and the RL model is consistent with
the strategy described in Subsection 4.2. Specifically, the state of the present node represents the current
solution stage, and each edge corresponds to an action in the action space. When an edge is selected from
a node, the process enters the next solution stage via the corresponding pivot. Furthermore, a reward is
obtained to evaluate the advantages and disadvantages of the current path while exploring the leaf nodes.
Notably, we choose to enter the next stage unless the current node satisfies the optimality.

Expansion stage. In the expansion stage, we randomly select actions in the action set without
repetition to generate all the child nodes of the selected node. The extraction process is shown in (4.5),
where A is the action set, a; is an action in the action set, and [ is the set of currently selected action
subscripts, i.e.,

randomly select from {a; € A|i ¢ I}. (4.5)

Considering the goal of minimizing the number of pivot iterations, we see that the leaf node representing
the optimality contains the information we need. In terms of the optimal pivot path, the roles of the
other nodes in the path are equivalent to those of the leaf nodes. In addition, the strategy evaluation



Li AQ etal. Sci China Math  June 2024 Vol. 67 No.6 1271

method uses the empirical mean of the reward as the expectation of the reward. The state-action value
function is defined as follows:

Gy =rr, (4.6)
Qr(s,a) =E;[Gt | st = s,a. =a], t€{1,2,...,T}, (4.7)
where {1,2,...,T} denotes the set of visited subscripts in the current exploration path. After selecting

all actions {a; € A} and generating all the possible child nodes M = {M;,i € I}, we see that the process
ends. For the convenience of writing, we define

Qr(v) =E,[st = s,a; = a, s.t. P(s,a) =v], te{l,2,...,T}, (4.8)
Qr(s,a) = Qr(v), (4.9)

where v represents a node in the SimplexPseudoTree, and P(s,a) is the state transition function,
indicating that node v can be obtained by taking action a on the state s.

Exploration stage. The value function estimation is inaccurate when the number of explorations is
low. At this time, the action corresponding to the maximum value function is not necessarily the real
optimal choice, but slightly smaller values near it may do so. Therefore, we suggest relaxing the max
operator in the initial stage to improve accuracy. The definitions are shown in (4.10) and (4.11). The
process of node selection is shown in (4.12), where the definition of Q; is consistent with that in the upper
confidence bounds applied to the trees (UCT) algorithm [20], and v is the node explored currently. We
randomly select actions from {a; | Q; > Esoft }, and then all the actions in this episode are executed in a
completely random manner, i.e.,

Qv") o 2In N (v)

Qi = N (o) + COR v"" € children of v, (4.10)
FEgoty = (glengi +a<g}€a§Qi - glengi), (4.11)
v" = random select from {i | Q; > Esop,a; € A}. (4.12)

Considering that the number of pivot iterations required for subsequent duplicate nodes must be greater
than the first one, we see that this should be prohibited. Therefore, we only give real rewards to the
nodes we encounter for the first time and punish repeated nodes by giving them huge negative rewards.
During execution, when we encounter state s and execute action a for the first time in an episode, we
add one to its count and increase the cumulative reward at that time, as shown in (4.13) and (4.14), i.e.,

N(s,a) = N(s,a) +1, (4.13)
S(s,a) « S(s,a) + G;. (4.14)
The state-action value function of the final state s is in the form of (4.15). According to the law of large
numbers, when the number of estimates tends to infinity, the value function tends to be close to that of

the real strategy. When the number of iterations in this step reaches the preset threshold Nexpiore, the
process terminates and enters the next stage, i.e.,

Q(s,a) = S(s,a)/N(s,a). (4.15)

Exploitation phase. In the exploitation phase, we complete Neyplore exploration and estimate a
reliable state-action value function. In this step, we select the action that maximizes the value function
to generate nodes, as follows:

a® = argmax Q(s, a), (4.16)
a€A
11
v* = argmax Q") (4.17)

v’’ € children of v N(UH)

Subsequently, we must check whether the generated node has reached optimality; when it is not the
optimal solution, we must return the node to the expansion stage and repeat the cycle.



1272 Li A Q et al. Sci China Math  June 2024 Vol. 67 No.6

4.3 Extracting multiple shortest pivot paths

The optimal pivot paths correspond to different pivot sequences with minimum pivot iterations.
Therefore, such an optimal path is not unique, which is important for the simplex method, but previous
work is difficult to solve and ignores this point. Fortunately, the randomness of the MCTS rule is
highly effective for finding multiple optimal paths. This randomness originates in the exploration stage.
Specifically, the generation of the exploration trajectory depends on a random strategy. Thus, the
estimated value brought about by limited exploration will be affected by randomness to a certain extent.
Based on the randomness of the MCTS rule, our algorithm can select different actions that lead to optimal
pivot paths in different execution processes. Therefore, multiple pivot sequences can be used to achieve
optimization. Furthermore, we provide proof to ensure that each optimal pivot path can be found.

5 Theoretical analysis

In this section, we conduct a detailed theoretical analysis of the MCTS rule from three perspectives.
First, we prove that the MCTS rule can make the optimal pivot decision at each step, so as to find the
shortest pivot path. Then considering the completeness of the algorithm, we can find all the optimal
pivot paths when algorithm executions are sufficient. Finally, we prove that the pivot iterations under
the MCTS rule are a polynomial of n when the number of vertices in the feasible region is C}".

5.1 Optimality of the MCTS rule

We prove that the MCTS rule converges to the optimal pivot path when explorations approach infinity.
Considering that the expectation of the reward function in Models 1 and 2 will be affected by other
episodes, we see that it is not sufficient to reflect the real optimal pivot. Therefore, we first introduce
the significance operator Sig based on the idea of pooling in convolution and then provide complete proof
details.

Definition 5.1 (Rank function).  Given a sequence of random variables RS := {X;, Xo,..., X,,} C X,
it is sorted with an ascending order to get the order statistics sequence RSo := {X 1), X(2),..., X},
where X ;) represents the i-th smallest random variable. Here, we define the function Rankgrs : & — [n],
where [n] :={1,2,...,n}, and Rankgg(X;) is the index of X; in RSo.

Definition 5.2 (Significance operator). Given K groups of random variables sequences {XF, X%
. 7Xffk}7 ke{1,2,...,K}, we define X* and X(knk) as the mean statistic and the maximum statistic of
k-th sequence {XF}I"* | respectively, i.e.,

=1

_ 1 &
Xb=—N"XxF xk = Xk xk o XF ke{1,2,...,K}.
nk; i (nk) maX{ 12432 ’ nk}7 {7’ ) }

For the mean statistics sequence ES := {X*!, X2 ... XX} and the maximum statistics sequence MS :=
{X(lnl), X2 . ,X{fm)}, we define the significance operator Sig : X — X as

(n2)> -

Xk Rankgg(X*) = RankMs(Xécnk)),
XFk Rankps (X") # Ranks(X(,,))-

(nk)?

Sig(X*) = { (5.1)

Theorem 5.3.  For Models 1 and 2, if we set « in (4.11) as zero, the MCTS rule with the significance
operator Sig will converge to the optimal pivot rule with probability at least 1 — €, as long as

1 1 1
N > 1 ~O0(Iln(=)), 5.2
explore ln(l—&-%) n(l—ePl*ln(lﬁ)) <n<6)> >

where P* is the optimal pivot path, and |P*| is its length. d’ := max-cp~ |Ag-
of the mazimum action space along this path.

represents the dimension



Li AQ etal. Sci China Math  June 2024 Vol. 67 No.6 1273

Proof. For Models 1 and 2, the reward is defined as the opposite number of the pivot iterations.
Therefore, pivot iterations corresponding to the maximum reward are equivalent to the shortest pivot
path.

Without loss of generality, we consider the state node s, which represents a particular simplex tableau.
We denote the feasible action space in s by A, := {a1,az,...,a4,}, where each action corresponds to a
feasible pivot. The child nodes of s are {s1, s2,...,5/4,|} and the transition functions are

]P)(Si ‘Svaj):I[{i:j}v vzaj€{15273|"49‘}5

where I is the indicator function.

We denote by Nexplore the number of explorations from s. The random variable N; is the number of
explorations from s to s; and ZlA ol N;i = Nexplore-

If we set « in (4.11) as zero, the set of selected actions is

(i1 Qs,0:) > Eeort} = {i]dQ(s,0:) > min Q(s,a;)} = Ay, (5.3)
aj; €A,
which indicates that all the feasible pivots can be selected, i.e., E;[N;] > 0, Vi € {1,2,...,]|As|}. In fact,

our algorithm takes the exploration action by uniform policy from the set {i | Q(s,a;) = Fsoft }, and then
we have

|As |

Ex[Ni] = ZP(Sz | 5,a;)m(a; | $)Nexplore
i=1
m(a;

7 | S explore

_ chplorc
|{Z | Q Svai) = Esoft}'
explore >0 Vie {1727~-~7|As|}- (54)

IAI

We can conclude that as long as

1 1
Nex lore 2 In ( >
p ln(l + IAsl\—l) 01

every child node can be accessed to with probability at least 1 — 4§y, i.e.,

P(state s; visited) = P(N; > 0)

=1-P(N; =0)
Nexplore
=1- (|A5|1>
| As|
>1- 6. (5.5)

We denote by the random variable R}’ the reward of taking action a; for the j-th time. Given |Ay|
groups of independent identically distributed random variables sequences {R;’}jvzl, i€ {1,2,...,|Al},
we apply the significance operator Sig in Definition 5.2 and we have {Sig(R“i)}lAS‘. Note that the

reward random variables {R‘“} ', are independent and identically distributed, and we can apply the
Wiener-Khinchin law of large numbers, i.e.,

lim R% = lim R% = lim N ZR‘“— E[R}], as. (5.6)

Nexplore =00 N;— o0 N;— o0

Note that Q(s,a;) is the same as R* with respect to the definition of Q.



1274 Li A Q et al. Sci China Math  June 2024 Vol. 67 No.6

For any pivot path P = {sf’,s¥’ ..., sﬁ,l_l}, we denote by df\ the dimension of the maximum action
space along this path, i.e., di := max,rep |Asp|. By recursion, the MCTS rule can explore the pivot
path P with probability at least 1 — d2 when

1 1 1 |P|
Nexplore = 1 ~O| ——In|— ),
explore ln(1+dP171) n(l eTP7 (1= 62)) <1n(1+dP 1) n<52 ))
A

ie.,

P(explore pivot path P) ( ﬂ {N,p > O}) = H P(N,» > 0)

sPepP sPep
_ Nexplore P _ Nexplore |P‘
- | AP df
sPepP
>1— 6. (5.7)

We have shown that our algorithm can explore each path P when Nexpiore is sufficiently large. As a
result, we have

lim R%

Nexplore—00 i) ™

lim R%

N; —o0

(N = hmoo max{R{*, Ry’,..., Ry } = RY*,  as., (5.8)

where R is the maximum reward which can be attained by taking action a;. Define ES :=
{R* R ... R¥4} and the maximum statistics sequence MS : {R N (N2) aj‘\“,“" ) }. Then
we have

E[R(Jll], Rankgg (Rai) = Rankys (R((lll\fi))’

_ 5.9
R%, RankEs(Rai)#RankMs(R‘(’j\m), a.s. (5:9)

Nexplore — 00

lim  Sig(R") = {
We define the mapping Proj : ES UMS — MS, where Proj(R%) = Ry VR* € ES and
Proj(R(y,)) = R(y,), V R(y,) € MS. Combining (5.9), we have

lim  ProjoSig(R%) =R, as.Vie{l,2,...,|A}. (5.10)
Nexplore—+00

We take action @ € argmax,,c4, Projo Sig(R%). According to the definition of Proj and Sig, we can
access the child node that attains the optimal reward to execute the next iteration. We have proven that
the MCTS rule can find the optimal action from a starting state s. In the following, we will analyze the

complexity to extract the whole optimal pivot path.
We assume that the optimal pivot path is P* = {s§, s7,..., SI*P*I*I} and denote by d% the dimension
of the maximum action space along this path, i.e., d% := max,-cp-
By recursion, the MCTS rule will converge to the optimal pivot rule with probability at least 1 — €

when ) . . P
Nexplore = In ~ 0 In ,
PO 0 (1 + d;‘lfl’) (1 P In(1- €)> (ln(l + dj:q) ( € ))

P(find optimal pivot path P*) = IP’( ﬂ {Ng+ > 0})
s*epP*

= [[ P& >0

s*eP*

Nexplore
- 11 1_<|As|—1>
[ As|

s*eP*

(a1 Nexptore, |P7|
da

s* |-

ie.,

\%



Li AQ etal. Sci China Math  June 2024 Vol. 67 No.6 1275

>1—e (5.11)

Note that d 4 does not exceed the number of feasible entering basis variables, i.e., d4 < n —m and we
also prove that |P*| is at most min(m,n —m) in Theorem 5.5, which indicates that d4 and |P*| are both
linear according to the dimension of input. Therefore, we have

Nexplorez()( L ln<|P|>>xO(ln(l>).
ln(l—&—dAil) € €

In summary, the MCTS rule will converge to the optimal pivot rule with the highest reward in the
models 1 and 2 when Negplore is sufficiently large. O

The above theorem concludes that the MCTS rule with the significance operator converges to optimality
under the condition of @ = 0. Additionally, the proof of convergence to the optimal strategy is given in
the literature [20] for the case of o = 1. It is also feasible to substitute them into the framework of our
proof based on the upper and lower bounds of explorations of each action given in the literature [20]. For
other a values, we conducted an ablation study in the experimental section for verification.

5.2 Completeness of multiple pivot paths

The proposed MCTS rule is a random algorithm. Multiple executions may find different optimal pivot
paths. Theorem 5.4 gives a theoretical guarantee based on the Wiener-Khinchin law of large numbers.
It is proved that the MCTS rule can find all the optimal pivot paths when executions are sufficient.
Theorem 5.4.  For Models 1 and 2, if we set « in (4.11) as zero, the MCTS rule with significance
operator Sig can find all the optimal pivot paths provided that algorithm execution times Nexe are
sufficiently large.

Proof. ~ We use the same notations as the ones in the proof of Theorem 5.3. Set all the optimal actions
of the current pivot as A* = {af, a3, ...,a/ . }. When [A*| =1, this theorem holds by Theorem 5.3. We
consider |A*| > 2 in the following proof. According to (5.4),

1
lim Ny = lim T
JVexplore_>OO ]Vexplore_>DO |A|

Nexplore ) Ya* € A*, (512)

where A represents the total action space, and N, represents the number of explorations of the optimal
action a*.
According to (5.10), we have

lim  ProjoSig(R*) = RY = max R} as. Va'e A" (5.13)

Nexplore—>00 1,J

Therefore, we select action from .A* by uniform policy, i.e., P(a}) = I fi*l' Then we have that when

1 *
Nexe> |A*| 1n<|A |>’
IH(W) €

the MCTS rule can find all a* € A*, i.e.,

A"
P(find all a* € A*) =1 — IP’( U {not find af})
i=1
|A"|
>1- Z]P’(not find a})
i=1
|A*| — 1>Nexe
=1—|A" <
| A*|
>1-e (5.14)



1276 Li A Q et al. Sci China Math  June 2024 Vol. 67 No.6

It indicates that when the number of algorithm executions Ney. approaches infinity, each a* € A* can
be found. Then repeating the above process, we see that the MCTS rule can find all the optimal pivot
paths. O

5.3 Complexity of the optimal pivot

Theorem 5.5 proves that the MCTS rule can find polynomial pivot iterations when the number of vertices
in the feasible region is C}".

Theorem 5.5.  For the standard form of the simplex method for linear programming as (2.1),
P={zxeR"| Az =b,x > 0}

represents the feasible region, where A € R™*™ and rank(A) = m. Suppose that the number of feasible
vertices of P is C]7'. Then the shortest distance (the minimum hops) between any two feasible vertices of
P is min(m,n —m).

Proof.  For the convenience of proving, we first convert the simplex of the feasible region into the
SimplexPseudoTree structure proposed in Section 3. In this way, each vertex only appears once in
different layers, so the number of vertices in each layer adds up to the total number of vertices IV.
Compared with the root of the SimplexPseudoTree, the nodes of layer ¢ are obtained from the root
through the 4 pivot iterations, i.e., C¢,C%_ . We have

T
» cici,=N=cp, (5.15)
=0

where T is the layers of the SimplexPseudoTree and also the longest distance to the root. We discuss it
in two cases, based on the Vandermonde’s identity of the combination number

l
Yo cicy =Cly, (5.16)
i=0
When n — m < m, we have
k
>y cichm =ck (5.17)
i=0
Let kK =n —m. Then
S CLCimTi =Y GG, ==, (5.18)
i=0 i=0

ie., T =n—m. When m < n —m, we have

k
y chkricn,, =Cf. (5.19)
=0
Let kK =m. Then
m ) ) m ) )
> CmiC =Y CiCiy = O, (5.20)
=0 1=0

i.e., T = m. In this way, T = min(m,n — m), which is a polynomial of n. Additionally, T' can represent
the maximum hops of all the shortest paths between any two vertices in the feasible region. Therefore,
the shortest pivot iterations starting from any initial point in the feasible region is the polynomial of the
number of variables when the number of vertices in the feasible region is C)". O



Li AQ etal. Sci China Math  June 2024 Vol. 67 No.6 1277

From the perspective of the combination number, Theorem 5.5 proves that the shortest distance
between any two vertices of the feasible region is min(m,n — m) when the number of vertices in the
feasible region is C;". This conclusion is also meaningful from the geometric perspective of the simplex
method. Specifically, the number of vertices in the feasible region is C]" means that any m columns of
the constraint matrix corresponds to a basis matrix of the simplex method. Therefore, for any two basis
matrices By and Bz, there can be at most min(m,n — m) different columns. We only need to exchange
different columns, respectively. In this way, the initial vertex By is converted to By through min(m,n—m)
pivot iterations. In other words, the optimal pivot iterations needed for any linear objective function are
min(m,n —m) at most under the conditions of the above theorems.

We reveal that the optimal pivot of the simplex method is polynomial when the number of vertices
in the feasible region is C)"* from the perspective of theory and geometry, respectively. Furthermore, the
proposed MCTS rule can find the polynomial pivot iterations when the number of vertices in the feasible
region is C)".

Corollary 5.6.  When the number of vertices in the feasible region is C]", the MCTS rule ensures that

n ’
the number of pivot iterations becomes the polynomial of the number of variables.

6 Experiment

6.1 Datasets and experiment setting

Datasets. We conduct experiments using the NETLIBY benchmark [4] and random instances. The
method for generating random instances is as follows. First, we write the equivalent form of (2.1), i.e.,

minctz 4+ OTJUO
s.t. Az + Izg = b, (6.1)
T2z 03 xo 2 Ov

where 2o € R™, 0 € R™ is a zero vector, and I € R"*™ is an identity matrix. Thus, we provide a setting
for the initial feasible basis By = I, where n basis variables correspond to n columns of the constraint
matrix A at the right end. Each component of A, b and c¢ is a random number of uniform distributions
of [0,1000). For the constraint matrices of non-square matrices, the rows and columns are obtained from
a uniform distribution of [0, 800).

Implementation details. In the experiment comparing the performance of the four models, we set
the explorations from one to ten times the columns of the constraint matrix. Subsequently, we set the
explorations to one and six times of columns because six times can provide stable exploration results,
with number one having the shortest exploration time. We then solve each problem five times and obtain
the optimal pivot iterations. In addition, we set C' = 1/4/2 in (4.10) and dynamically adjust « according
to the solution state for (4.11). In particular, we set a = 0.3 for Nexpiore < 0.1 X ColNum and o = 1 for
other cases, where ColNum represents the number of columns of the constraint matrix. In addition, we
use the first stage of the two-stage algorithm of the simplex method to find the initial feasible basis for
the NETLIB instances.

6.2 Estimation of four RL models

In this subsection, we compare the quality of the four RL models proposed in Subsection 4.2 for the
simplex method. We conduct thorough experiments on five representative instances, as illustrated in
Figure 4. Each point represents the average pivot iterations obtained by solving the problem five times
under the current conditions. This step reduces the influence of randomness. In addition, we set the
upper limit of pivot iterations as 10 to reduce unnecessary time without affecting the experimental results.

1 http://www.netlib.org/lp/data/index.html



1278 Li A Q et al. Sci China Math  June 2024 Vol. 67 No.6

averTime

1004

2 4 6 8 10
numExploration

(a) rand 50 X 50

averTime

2 4 6 8 10
numExploration

(b) rand 300 x 300

averTime

2500
—8— Al4RI
—B— A24RI
—¥— Al+R2
2000 —A— A2+R2

1500

1000
500
2 4 6 8 10

numExploration

(¢) rand 232 X 504

70
65
:
&
260
55
50
2 4 6 8 10
numExploration
35
30
2
]
520
15
10
2 4 6 8 10
numExploration
104
—o— Al+RI
94 B ARI
¥ Al+R2
—h— A2R2
84
g \
g 74
64
54
4
2 4 6 8 10
numExploration
10 o _\./_
9
8
. —o— ALRI
z —8— A2RI
£ 7
H —¥— AlR2
s —h— A2R2
6
5
i \,\'/'\‘_'_'/v\‘_'

averTime

—o— AL+RI
= A2RI
—¥— ALR2
14009 —a— A2iR2

1600

1200

1000

2 4 6 8 10
numExploration

800
600
400
200
2 4 6 8 10

numExploration

(d) rand 332 x 187

340 —e— AL+RI
B A2+R1

335 —¥— Al+R2
—h— A2R2

330

325

averPivot

averTime

&~ Al+RI
B A2RI
—¥— AI+R2
—h— A2IR2

2

2 4 6 8 10
numExploration

40
2
2 4 6 8 10

numExploration

(e) SC50A

Figure 4 (Color online) Model comparison figure on five representative instances: rand 50 x 50, rand 232 x 504, rand
332 x 187 and SC50A. The X-axis represents the explorations, which are multiples of columns of the constraint matrix A.
The Y-axis of the left figure represents the average pivot iterations. The Y-axis of the right figure represents the average

solution time




Li AQ etal. Sci China Math  June 2024 Vol. 67 No.6 1279

The left part of Figure 4 shows the relationship between pivot iterations and explorations. We found
that the number of pivot iterations obtained by A1 + R2 is the best compared with the other three models.
The right part of Figure 4 shows the variation in the average solution time with the explorations. It can
be seen that with the increase in explorations, the average solution time of each model also increases,
which is caused by the exploration cost of the larger number of explorations. We also conclude that the
time performance of A1 + R1 and A1 + R2 is better than those of A2 + R1 and A2 + R2. Consequently,
combined with the performance of the number of pivot iterations, A1 + R2 has certain advantages over
all the other models.

6.3 Comparison with the solver and classical pivot rules

In this subsection, we compare the MCTS rule with Python’s linprog function and the other classic pivot
rules. Table 2 lists the results for the randomly generated square constraint matrices, Table 3 presents the
results for the general constraint matrices, and Table 4 shows the experimental results for the NETLIB.

6.3.1 Comparison results on random instances

The instances in Table 2 are random square matrices. However, Table 3 presents a comparison of
the random rows and columns of the constraint matrices. Red indicates the best results, and blue
indicates suboptimal results. The first two columns represent rows and columns of the constraint matrix.

Table 2 (Color online) Comparison between classical pivot rules and the MCTS rule on random square constraint matrices.
Red indicates the best results, and blue indicates suboptimal results

row col Linprog Dantzig [7] Bland [2] Steepest [10] Greatest [21] Devex [28] MCTS MTime(s)

341 18 63 14 10 21 7 425
361 14 56 14 13 22 7 409
331 14 49 12 8 14 6 274
373 12 56 10 8 16 6 287
300 300 318 16 28 13 7 15 6 258
321 10 14 8 4 14 4 128
324 17 67 14 7 17 5 211
324 10 40 7 6 14 5 130
329 10 55 13 5 18 5 238
492 21 37 12 12 29 7 356
475 22 113 12 9 28 9 685
541 21 116 19 15 32 11 793
449 19 73 15 8 23 6 355
400 400 450 19 74 15 11 30 7 510
473 16 70 13 11 15 6 317
438 15 55 9 6 24 6 275
480 15 73 12 9 24 8 686
542 25 87 17 10 32 8 553
612 21 79 14 10 32 10 833
739 30 205 20 20 38 15 2633
688 22 93 18 12 52 11 1064
559 23 74 13 12 24 8 678
500 500 606 26 117 13 12 28 8 664
528 22 44 11 10 24 6 506
610 22 121 15 10 27 9 966
598 21 58 18 10 25 10 1395

607 26 187 17 14 36 11 1383




1280 Li A Q et al. Sci China Math  June 2024 Vol. 67 No.6

Table 3 (Color online) Comparison between classical pivot rules and the MCTS rule on the general constraint matrices.
Red indicates the best results, and blue indicates suboptimal results

row col Linprog Dantzig [7] Bland [2] Steepest [10] Greatest [21] Devex [28] MCTS MTime(s)

117 123 187 8 30 7 5 8 4 35
139 199 191 9 24 7 5 10 5 59
399 324 571 25 1,000+ 14 17 44 9 1,107
243 245 267 10 30 5 16 5 168
471 311 529 8 46 5 4 191
209 318 324 9 64 9 7 288
374 293 478 11 22 8 7 16 6 351
470 766 765 485 64 10 8 21 6 1,133
49 647 105 1,000+ 1,000+ 7 4 21 4 427
207 327 259 6 34 4 11 4 145
151 419 260 1,000+ 36 13 11 22 7 735
782 436 871 11 43 12 5 25 5 917
363 699 418 8 41 7 5 23 4 555
587 382 635 8 33 12 4 9 4 416
565 761 594 6 10 5 2 8 2 214
232 504 263 6 110 6 4 4 152
215 202 358 18 58 13 8 22 7 250
278 525 373 8 52 7 10 14 5 648
143 58 184 6 15 6 4 3 26
323 286 378 5 17 5 4 4 191
133 242 192 18 1,000+ 9 7 21 5 282
96 482 179 9 46 8 5 11 5 397
203 200 223 8 12 6 3 7 3 84
678 154 757 10 14 7 3 8 3 267
739 142 866 7 18 7 8 11 5 520
739 730 841 11 33 10 4 7 4 888
240 234 268 7 20 7 5 10 4 103
767 158 885 9 1,000+ 7 7 19 5 623
730 467 773 6 21 7 5 6 3 584
434 258 498 7 30 7 5 23 4 231
625 521 739 9 26 10 9 19 5 732
332 187 352 9 24 9 4 13 4 102
561 628 585 7 13 9 4 16 4 471
587 774 610 5 17 5 4 13 3 302
84 108 113 15 12 7 5 14 4 35

Table 4 (Color online) Comparison between classical pivot rules and the MCTS rule on NETLIB. Red indicates the best
results, and blue indicates suboptimal results

Problem Linprog  Dantzig [7] Bland [2]  Steepest [10] Greatest [21] MCTS  MTime(s)

AFIRO 27 0 0 0 0 0 0
ADLITTLE 152 1,000+ 223 60 53 26 836
BLEND 178 29 88 35 21 15 118
SC50A 56 5 8 5 4 3 4
SC50B 59 6 9 7 6 6 7
SC105 135 14 26 10 16 7 69
SCAGR7 228 57 101 43 54 40 1,488

SHARE2B 260 47 172 38 29 19 612




Li AQ etal. Sci China Math  June 2024 Vol. 67 No.6 1281

The third column to the ninth column respectively represent the minimum number of pivot iterations of
Python’s linprog function, the Dantzig rule [7], the Bland rule [2], the steepest-edge rule [10], the greatest
improvement rule [21], the devex rule [28] and our MCTS rule. The initial feasible basis of Python’s
linprog function is determined by its own setting, while others are based on the method proposed in
Subsection 5.1. The last column is execution time of the MCTS rule.

Tables 2 and 3 show that the number of pivot iterations obtained by the MCTS rule is superior to that
obtained by the classical pivot rules in all the general instances. In terms of square instances, the pivot
iterations found by the MCTS rule were only 54.55% of the minimum iterations of other popular pivot
rules. In addition, for other random dimension instances, our result was only 55.56% of the others’ best
results.

We conclude that the results of the MCTS rule are not limited to input instances. It performed best
on all the randomly generated problems because the MCTS rule selects the entering basis variable by
exploring and evaluating the entire feasible action space rather than providing a fixed rule based on
certain specific features. However, the number of pivot iterations obtained by other classical methods
cannot exceed the result of the MCTS rule. We first proposed an efficient and generalized method for
determining the minimum number of pivot iterations of the simplex method. Furthermore, for the first
time, this method provides the best label design for pivot rules based on supervised learning.

6.3.2 Comparison results on NETLIB

Table 4 presents the comparison results of the MCTS rule with other classical pivot rules on NETLIB.
Red indicates the best results and blue indicates suboptimal results. The first column represents the
name of instances. The second to seventh columns are respectively the minimum pivot iterations of
Python’s linprog function, the Dantzig rule [7], the Bland rule [2], the steepest-edge rule [10], the greatest
improvement rule [21] and our MCTS rule. The initial feasible basis of Python’s linprog function is
determined by its own setting, while others are based on the method proposed in Subsection 5.1. The
last column is execution time of the MCTS rule.

It is easy to conclude that the MCTS rule yields the least number of pivot iterations far less than
others on all the instances listed, especially for the problem ADLITTLE. The greatest improvement rule
has the least number of pivot iterations among the classical rules. In contrast, our method achieves only
49.06% of its pivot iterations. Moreover, compared with the Dantzig rule, the MCTS rule gets less than
2.6% of its pivot iterations.

Although the solution time of the MCTS rule is longer than other algorithms, this is still consistent
with our contribution. We aim to determine the optimal pivot iterations and all the corresponding pivot
paths for the input instance. Furthermore, we provide the best supervision labels for the simplex method.
Additionally, in Section 7, we present two methods from the perspective of CPU and GPU to improve
the efficiency of collecting supervision labels. Thus, this method is more applicable to super large-scale
problems.

6.4 Comparisons with all the current pivot rules based on ML

In this subsection, we compare our method with two recently proposed machine-learning methods. It is
found that the minimum pivot iteration MCTS rule is much better than the other two methods.

In the first method [35], the supervised learning method DeepSimplex [35] performs better than the
unsupervised learning method. Therefore, we only compare DeepSimplex [35], which gets the best
performance of the Dantzig rule and the steepest-edge rule as the supervised signal. Thus, the results do
not exceed those of these two methods. As Tables 2 and 3 show, the worst number of pivot iterations of
the MCTS rule in all the instances is 80% of Dantzig’s. In the best case, the number of pivot iterations
is less than 0.4% of Dantzig’s. Compared with the steepest-edge rule, the worst pivot iterations of the
MCTS rule in all the instances is only 77.78%. Moreover, in the best case, the pivot iteration is only
27.27% of the steepest-edge rule. Additionally, Table 4 shows that the MCTS rule is significantly better
than the Dantzig and steepest-edge rules on NETLIB. Therefore, we conclude that the MCTS rule can
obtain better pivot iterations than DeepSimplex [35].



1282 Li A Q et al. Sci China Math  June 2024 Vol. 67 No.6

The second method [1] is learned in a supervised manner with the best label of Dantzig’s rule, the
hybrid (DOcplex’s default) rule, the greatest improvement rule, the steepest-edge rule and the devex
rule. Especially, it is remarkable that the MCTS rule provided more effective labels with minimum
pivot iterations. From the experimental results of their article [1], we know that the best result of the
average number of pivot iterations is 99.54% of the number of the steepest-edge rule. In contrast, the
performance of the MCTS rule on the worst instance is 77.78% of the steepest-edge rule, as shown in
Tables 2 and 3. Moreover, the best result obtained by the MCTS rule is only 33.33% of the pivot iterations
of the steepest-edge rule. Furthermore, in NETLIB, the pivot iterations yielded by the MCTS rule can
even reach 43.33% of the steepest-edge rule, which is far less than 99.54%.

6.5 Findings of multiple pivot paths

Providing multiple pivot paths for the simplex method is the result of taking advantage of the randomness
of the MCTS rule. Table 5 shows multiple optimal pivoting paths found for five representative problems,
which cannot be yielded by previous methods. Different pivoting paths are the optimal pivoting sequences
with minimum pivot iterations. Additionally, Figure 5 shows the relationship between the number of
different pivot paths found and the algorithm executions on several representative instances mentioned
above. We use highlighted points to mark the executions of a newly found pivot path. It can be concluded
that under the initial executions, the proposed MCTS rule can find some paths. Furthermore, with the
increase of algorithm executions, the number of found paths also increases.

6.6 Ablation study
We compare the influence of different C' and a values on the average pivot iterations for several

representative instances. Each point is the average result of executing the algorithm five times.

Table 5 Pivoting paths with the minimum number of pivot iterations on five representative instances. The pivoting path
is an ordered sequence of entering basis variables

Problem Index Pivot paths Pivot iterations Objective value
1 [1,24,36,12,23, 35] 6 70.000
2 [1,35,12,24, 36, 23] 6 70.000
SC50B 3 [1,35,23,36,12,24] 6 70.000
4 [1,35,24,12, 36, 23] 6 70.000
5 [12,35,1, 24, 36, 23] 6 70.000
6 [23,35,1, 36,12, 24] 6 70.000
rand 232 x 504 1 (52,55, 358, 220] 4 22.287
2 (55,52, 358, 220] 4 22.287
1 [14,155, 223, 150] 4 5.509
2 [14,155,150, 223] 4 5.509
rand 434 x 258 3 [150, 155, 223, 14] 4 5.509
4 [155, 150, 223, 14] 4 5.509
5 [155, 223,150, 14] 4 5.509
1 [1,48,28,19,21] 5 3.482
rand 50 x 50 2 [28,48,1,19,21] 5 3.482
3 [48,28,1,19,21] 5 3.482
1 (26,294, 42,143, 56, 116, 263] 7 5.915
2 (26,294, 42,116, 56, 143, 263] 7 5.915
rand 300 x 300 3 [56,26,42,294, 263,116, 143] 7 5.915
4 (143,26, 42,294,116, 56, 263] 7 5.915
5 (143,26, 56,294, 42, 116, 263] 7 5.915
6 (294, 26,42, 143,56, 116, 263] 7 5.915




Li AQ etal. Sci China Math  June 2024 Vol. 67 No.6 1283

=== rand 50*50
=== rand 300*300
=== rand 232*504
—-= rand 332*187
..... SCSOA

=== rand 434*258
—== SC50B

-

————————

Paths

ExecutionTimes

Figure 5 (Color online) Multiple paths found vary with the number of algorithm executions. The X-axis represents the
number of algorithm executions, and the Y-axis represents the different pivot paths currently found

b
\/ 554 .-\_._/‘
175 —®— rand 50%50 —®— rand 50%50
—#+— rand 300300 —¥— rand 232*504
150 —¥— rand 232#504 504 —A— rand 332*187
—— rand 332%187 —+— SC50A_multi

—— SCS0A_multi
125 5C105
—<— BLEND

=+= SCS0A

averPivot
averPivot

7.5 40

T T T T T
0.5 0.6 0.7 0.8 0.9
c . X A c

(a) GlobalFigure (b) LocalFigure

— + —
T
1.0

Figure 6 (Color online) Relationship between average pivot iterations and parameter C. The X-axis represents the value
of parameter C, and the Y-axis represents the average pivot iterations found. (a) is the overall effect of several representative
instances. (b) is an enlarged representation of the bottom four lines in (a). The SC50A _multi represents an increase in the
executions of SC50A by five times than before to calculate the average value

As the GlobalFigure in Figure 6 indicates, the empirical value of C can lead to the least pivot iterations,
except for SC50A. However, we conduct in-depth experiments and find that SC50A can provide fewer
pivot iterations when the total number of executions increases. Therefore, we believe that the empirical
value of C' is reasonable for the MCTS rule in terms of overall performance.

Figure 7 shows the relationship between « and the pivot iterations for different initial explorations.
Formula (4.12) aims to relax the max operator owing to the imprecisely estimated value in the early
stage of exploration. Therefore, we conduct sufficient experiments on explorations of the 1-, 0.5-, 0.4-,
0.3-, 0.2- and 0.1-times columns of the constraint matrix of the instances to be solved. Formula (4.12) is
effective when explorations are less than or equal to 0.1 times columns. Furthermore, when the number
of explorations is 0.1 times columns, « achieves a consistently good effect with a value of 0.3. Therefore,
we set dynamically adjusted « for the MCTS rule. When the number of explorations is less than or equal
to 0.1 times columns, « is set to 0.3. For the other cases, o was set to 1.



1284 Li A Q et al. Sci China Math  June 2024 Vol. 67 No.6

16
B alpah=0 B alpah=0
1] alpah=0.1 1] alpah=0.1
B alpah=0.2 B alpah=0.2
= alpah=0.3 = alpah=0.3
12 4 e alpah=0.4 121 e alpah=0.4
alpah=0.5 alpah=0.5
104 - alpah=0.6 104 - alpah=0.6
- B alpah=0.7 . EE alpah=0.7
£ 4l B alpah=0.8 Z 4] B alpah=0.8
5 = alpah=0.9 5 = alpah=0.9
® BN alpah=1.0 ® B alpah=1.0
6
44
2
1 o0
rand 50*50  rand 300%300  rand 332187  rand 232%504 SC50A rand 50*50  rand 300%300  rand 332*187  rand 232%504 SC50A
(@) ExploreNum = 1 x ColNum (b) ExploreNum = 0.5 x ColNum
= alpah=0 161 = alpah=0
144 alpah=0.1 alpah=0.1
B alpah=0.2 144 B alpah=0.2
= alpah=0.3 - alpah=0.3
12 - alpah=0.4 121 - alpah=0.4
alpah=0.5 alpah=0.5
104 L alpah=0.6 104 B alpah=0.6
" B alpah=0.7 " B alpah=0.7
2 4] m alpah=0.8 z B alpah=0.8
5 e alpah=0.9 5 81 W alpah=0.9
s . alpah=1.0 N . alpah=1.0
6 6
44 44
24 5

0 04
rand 50*50  rand 300*300  rand 332*187  rand 232%504 SC50A rand 50*50  rand 300%300  rand 332#187  rand 232%504 SC50A
(¢) ExploreNum = 0.4 x ColNum (d) ExploreNum = 0.3 x ColNum

17.5 4

B alpah-0 17.5 4 B alpah=0
alpah=0.1
- B alpah=0.2
15.0 04
- 150 - alpah=03
- - alpah=0.4
125 4 12.5 4 alpah=0.5
- - alpah=0.6
~ - - B alpah=0.7
2 1004 f— 2 1004 . alnahe0.§
2 z alpah=0.
5 - 5 = alpah=0.9
® 75 - S 754 . alpah=1.0
5.0 5.0
254 25
.0 - 00 -
rand 50*50  rand 300%300  rand 332187  rand 232%504 SCS0A rand 50*50  rand 300%300  rand 332*187  rand 232%504 SC50A

(¢) ExploreNum = 0.2 x ColNum () ExploreNum = 0.1 x ColNum

Figure 7 (Color online) Relationship between the average number of pivot iterations and « under different initial
explorations. The X-axis represents different problems, and the Y-axis represents the average pivot iterations

7 Conclusion

Based on the proposed SimplexPseudoTree structure and the reinforcement learning model, the MCTS
rule can determine all the shortest pivot paths of the simplex method. In addition, our method provides
the best supervised label-setting method for the simplex method based on supervised learning. The
MCTS rule can evaluate the pros and cons of entering basis variables individually, significantly reducing
the exploration space for combinatorial optimization problems. Therefore, the proposed method can find
the minimum pivot iterations and provide a method to find multiple shortest pivot paths. This idea can
also be used to find multiple optimal solutions for other combinatorial optimization problems that can
be modeled as imitative tree structures. Furthermore, we prove that the MCTS rule can find polynomial
pivot iterations when the number of vertices in the feasible region is C)*. The complete theory and
comprehensive experiments demonstrate that the MCTS rule can find multiple optimal pivot rules.



Li AQ etal. Sci China Math  June 2024 Vol. 67 No.6 1285

8 Further work

The multiple pivot paths determined by the MCTS rule can be used to construct flexible labels for the
simplex method. Therefore, we can design the supervised learning method of the optimal pivot rule for
the simplex method of linear programming. Furthermore, deep learning can be used to construct more
efficient and time-effective pivot rules. In this manner, we can improve the redundancy of the traditional
pivot rule and the low time efficiency of the MCTS rule.

Additionally, we introduce two implementation techniques to improve the time efficiency of the
proposed method. These techniques are introduced from the perspectives of the CPU and GPU. Both
methods are designed to solve the time-consuming process of sequential execution in the exploration
stage. First, rewriting CUDA allows several explorations to be performed simultaneously. Thus, the
time efficiency is reduced by dozens or even hundreds of times. In addition to using GPU computing by
rewriting CUDA, the implementation of multithreading provides a method to improve the time efficiency
of CPU devices. Nexplore €xplorations can be divided into Nexpiore/Nthreads groups by grouping, where
Nexplore Tepresents the number of explorations, and Ninreads Tepresents the number of threads of the
computer. In each group, all the threads simultaneously perform exploration at the same time. The
number of explorations is a multiple of computer threads; however, the time is the same as that of a
single exploration. The reduction in time efficiency is directly proportional to the number of threads in
the computer.

Acknowledgements This work was supported by National Key R&D Program of China (Grant No.
2021YFA1000403), National Natural Science Foundation of China (Grant No. 11991022), the Strategic Priority
Research Program of Chinese Academy of Sciences (Grant No. XDA27000000) and the Fundamental Research

Funds for the Central Universities.

References

1 Adham I, De Loera J, Zhang Z. (Machine) Learning to improve the empirical performance of discrete algorithms.
arXiv:2109.14271, 2021

2 Bland R G. New finite pivoting rules for the simplex method. Math Oper Res, 1977, 2: 103-107
Browne C B, Powley E, Whitehouse D, et al. A survey of Monte Carlo tree search methods. IEEE Trans Comput
Intell AT Games, 2012, 4: 1-43

4 Browne S, Dongarra J, Grosse E, et al. The Netlib mathematical software repository. D-lib Magazine, http://www.dlib.
org/dlib/september95/netlib/09browne.html, 1995

5 ChenY Q, Chen Y, Lee C K, et al. Optimizing quantum annealing schedules with Monte Carlo tree search enhanced
with neural networks. Nature Mach Intell, 2022, 4: 269-278

6 Coulom R. Efficient selectivity and backup operators in Monte-Carlo tree search. In: International Conference on
Computers and Games. Berlin-Heidelberg: Springer, 2006, 72—-83

7 Dantzig G. Linear Programming and Extensions. Princeton: Princeton University Press, 1963

8 Ding M, Han C, Guo T. High generalization performance structured self-attention model for knapsack problem.
Discrete Math Algorithms Appl, 2021, 13: 2150076

9 Fischetti M, Fraccaro M. Machine learning meets mathematical optimization to predict the optimal production of
offshore wind parks. Comput Oper Res, 2019, 106: 289-297

10 Forrest J J, Goldfarb D. Steepest-edge simplex algorithms for linear programming. Math Program, 1992, 57: 341-374

11 Gama R, Fernandes H L. A reinforcement learning approach to the orienteering problem with time windows. Comput
Oper Res, 2021, 133: 105357

12 Goffinet J, Ramanujan R. Monte-Carlo tree search for the maximum satisfiability problem. In: Principles and Practice
of Constraint Programming. Lecture Notes in Computer Science, vol. 9892. Berlin: Springer, 2016, 251-267

13 Goldfarb D, Reid J K. A practicable steepest-edge simplex algorithm. Math Program, 1977, 12: 361-371

14 Guo T, Han C, Tang S. Machine Learning Methods for Combinatorial Optimization (in Chinese). Beijing: Kexue
Chubanshe (Science Press), 2019

15 Guo T, Han C, Tang S, et al. Solving combinatorial problems with machine learning methods. In: Nonlinear
Combinatorial Optimization. Springer Optimization and Its Applications, vol. 147. Cham: Springer, 2019, 207—
229

16 Harris P M J. Pivot selection methods of the Devex LP code. Math Program, 1973, 5: 1-28



1286

17

18

19

20

21

22

23

24

25
26

27

28

29

30

31

32

33

34

35

36

37

38

39

Li A Q et al. Sci China Math  June 2024 Vol. 67 No.6

Hildebrandt F D, Thomas B W, Ulmer M W. Opportunities for reinforcement learning in stochastic dynamic vehicle
routing. Comput Oper Res, 2023, 150: 106071

Keszocze O, Schmitz K, Schloeter J, et al. Improving sat solving using Monte Carlo tree search-based clause learning.
In: Advanced Boolean Techniques. Cham: Springer, 2020, 107-133

Kiarostami M S, Daneshvaramoli M, Khalaj Monfared S, et al. On using Monte-Carlo tree search to solve puzzles. In:
Proceedings of the 2021 7th International Conference on Computer Technology Applications. New York: ACM, 2021,
18-26

Kocsis L, Szepesvari C. Bandit based monte-carlo planning. In: European Conference on Machine Learning. Berlin-
Heidelberg: Springer, 2006, 282—-293

Li C. Study on using the greatest improvement pivot rule of simplex method to the Klee and Minty example.
In: International Conference on High Performance Networking, Computing and Communication Systems. Berlin-
Heidelberg: Springer, 2011, 431-438

Liang X, Guo Z-C, Wang L, et al. Nearly optimal stochastic approximation for online principal subspace estimation.
Sci China Math, 2023, 66: 1087-1122

Louati H, Bechikh S, Louati A, et al. Deep convolutional neural network architecture design as a bi-level optimization
problem. Neurocomputing, 2021, 439: 4462

Mihaljevi¢ B, Bielza C, Larranaga P. Bayesian networks for interpretable machine learning and optimization.
Neurocomputing, 2021, 456: 648-665

Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning. arXiv:1312.5602, 2013
Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature, 2015, 518:
529-533

Nguyen M A, Sano K, Tran V T. A Monte Carlo tree search for traveling salesman problem with drone. Asian Trans
Stud, 2020, 6: 100028

Pan P Q. A largest-distance pivot rule for the simplex algorithm. European J Oper Res, 2008, 187: 393—-402

Perez D, Rohlfshagen P, Lucas S M. Monte-Carlo tree search for the physical travelling salesman problem. In:
Applications of Evolutionary Computation. EvoApplications 2012. Lecture Notes in Computer Science, vol. 7248.
Berlin-Heidelberg: Springer, 2012, 255-264

Sabar N R, Kendall G. Population based Monte Carlo tree search hyper-heuristic for combinatorial optimization
problems. Inform Sci, 2015, 314: 225-239

Schloeter J. A Monte Carlo tree search based conflict-driven clause learning SAT solver. In: Lecture Notes in
Informatics (LNI). Bonn: Gesellschaft fiir Informatik, 2017, 2549-2560

Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search. Nature,
2016, 529: 484-489

Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of Go without human knowledge. Nature, 2017, 550:
354-359

Sun Z, Benlic U, Li M, et al. Reinforcement learning based tabu search for the minimum load coloring problem.
Comput Oper Res, 2022, 143: 105745

Suriyanarayana V, Tavaslioglu O, Patel A B, et al. DeepSimplex: Reinforcement learning of pivot rules
improves the efficiency of simplex algorithm in solving linear programming problems. Https://openreview.net/
forum?id=SkgvvCVtDS, 2019

Wang C, Han C, Guo T, et al. Solving uncapacitated P-Median problem with reinforcement learning assisted by graph
attention networks. Appl Intell, 2023, 53: 2010-2025

Wang C, Yang Y, Slumbers O, et al. A game-theoretic approach for improving generalization ability of TSP solvers.
arXiv:2110.15105, 2021

Wang Q, Hao Y, Cao J. Learning to traverse over graphs with a Monte Carlo tree search-based self-play framework.
Engrg Appl Artificial Intell, 2021, 105: 104422

Xing Z, Tu S. A graph neural network assisted Monte Carlo tree search approach to traveling salesman problem. IEEE
Access, 2020, 8: 108418-108428



	Introduction
	Background and related work
	Constructed SimplexPseudoTree model
	Proposed RL algorithm
	RL models of the MCTS rule
	MCTS rule
	Extracting multiple shortest pivot paths

	Theoretical analysis
	Optimality of the MCTS rule
	Completeness of multiple pivot paths
	Complexity of the optimal pivot

	Experiment
	Datasets and experiment setting
	Estimation of four RL models
	Comparison with the solver and classical pivot rules
	Comparison results on random instances
	Comparison results on NETLIB

	Comparisons with all the current pivot rules based on ML
	Findings of multiple pivot paths
	Ablation study

	Conclusion
	Further work

