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Abstract Based on the existing pivot rules, the simplex method for linear programming is not polynomial in

the worst case. Therefore, the optimal pivot of the simplex method is crucial. In this paper, we propose the

optimal rule to find all the shortest pivot paths of the simplex method for linear programming problems based

on Monte Carlo tree search. Specifically, we first propose the SimplexPseudoTree to transfer the simplex method

into tree search mode while avoiding repeated basis variables. Secondly, we propose four reinforcement learning

models with two actions and two rewards to make the Monte Carlo tree search suitable for the simplex method.

Thirdly, we set a new action selection criterion to ameliorate the inaccurate evaluation in the initial exploration.

It is proved that when the number of vertices in the feasible region is Cm
n , our method can generate all the

shortest pivot paths, which is the polynomial of the number of variables. In addition, we experimentally validate

that the proposed schedule can avoid unnecessary search and provide the optimal pivot path. Furthermore, this

method can provide the best pivot labels for all kinds of supervised learning methods to solve linear programming

problems.
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1 Introduction

The simplex method is a classical method for solving linear programming (LP) problems. Although it

is a nonpolynomial-time algorithm, its worst case rarely occurs and its average performance is better

than that of polynomial-time algorithms, such as the interior point method and the ellipsoid method,

especially for small-scale and medium-scale problems. Much research work has focused on making the

simplex method a polynomial-time algorithm, but it has not been successful. The existing pivot rules can

neither provide the optimal pivot paths for the simplex method nor make it a polynomial-time algorithm.

In addition, the traditional design idea only applies to designing the pivot rule suitable for certain types

of problems. There are no general ways to find the least number of pivot iterations for all types of linear

programming. Our research goal is to design a general optimal pivot rule based on the inherent features
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of linear programming extracted by reinforcement learning (RL) that can be solved in polynomial-time.

This study is the first step toward achieving this goal.

With the rise of machine learning (ML), ML-based technologies provide researchers with new ideas of

pivot rules. Based on the deep Q-network (DQN) [25, 26], DeepSimplex [35] provides a pivot rule that

can select the most suitable pivot rule for the current state between the Dantzig and steepest-edge rules.

While another study [1] provides an instance-based method, the most suitable pivot rule for the current

instance is learned among the five conventional pivot rules. The above two methods are based on several

given pivot rules, and then learn the pivot rule scheduling scheme depending on the solution state or

input instances. Therefore, the performance of these methods is heavily dependent on the supervised

pivot rules. Unfortunately, owing to the lack of optimal labels, we see that supervised pivot rules cannot

extract the optimal pivot paths for the simplex method.

In addition, the difficulty in determining the optimal pivot path lies in the information after several

pivot iterations in the future. The existing solution state is insufficient for optimal future decisions. The

most effective method is to appropriately assess the future situation before deciding to guide the best

pivot. Fortunately, this idea is consistent with the Monte Carlo tree search (MCTS). Specifically, MCTS

explores the trajectory in advance to evaluate and obtain future information to guide decision-making,

significantly reducing the invalid search space and effectively guiding the best decision-making. Thus,

the simplex method can effectively use future information to guide the current optimal pivot decision.

Motivated by these observations, we propose to analyze and improve the simplex method in pivoting

with the Monte Carlo tree search, further pushing forward the frontier of the simplex method for linear

programming in a general way. We focus on four core aspects: (1) transforming the simplex method

into a pseudo-tree structure, (2) constructing appropriate reinforcement learning models, (3) providing

the MCTS rule to find all shortest pivot paths, and (4) giving thorough theory for the optimality and

complexity of the MCTS rule, as shown in Figure 1.

First, transforming the simplex method into the tree search mode is the premise for applying the

Monte Carlo tree search method. Considering the connectivity and acyclicity characteristics, the

tree structure can effectively avoid the generation of cycles in exploration paths. In this way, it

ingeniously avoids repetition of the basis variables in exploration. To construct an imitative tree structure,
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Figure 1 (Color online) Overview of the methodological framework in this paper. Firstly, we create the

SimplexPseudoTree to transform the simplex method applicable to reinforcement methods in Section 3. Next, four RL

models are proposed in Subsection 4.1 based on the SimplexPseudoTree. Then we propose the MCTS rule to calculate

all the shortest pivot paths in Subsections 4.2 and 4.3. Finally, we give thorough theory analysis for the MCTS rule in

Section 5
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the SimplexPseudoTree, we propose to regard current states as nodes and the corresponding pivoting

process as edges. The original linear programming instance is taken as the root node, and optimal

solutions correspond to leaf nodes. Furthermore, we remove edges between nodes in the same layer and

pivot from the deep layer to the shallow layer. Under this construction, the problem of finding the shortest

path from the root node to the leaf node is equivalent to that of finding the optimal pivot rule.

Subsequently, we transform the problem of finding the optimal pivot path into four reinforcement-

learning models. In particular, the following two novel action spaces and two reward functions are

introduced:

• Action set: (1) non-basis variables whose reduced costs are less than zero, and (2) non-basis variables

whose reduced costs are not equal to zero.

• Reward functions: (1) opposite of pivot iterations, and (2) linear decay weight estimation of the

average variation in the objective value caused by a single pivot.

Based on the proposed actions and rewards, we design four models of different forms. Through a

comprehensive comparison, it is found that the model comprising action set (1) and reward functions (2)

achieves the highest efficiency with the least computational cost. Furthermore, we construct a novel action

selection criterion for the simplex method to ameliorate inaccurate evaluation in the initial exploration.

Subsequently, we present the MCTS rule based on the Monte Carlo tree search to determine the optimal

pivot for current states.

In addition, the optimal pivot that corresponds to the minimum pivot iterations is not necessarily

unique. However, current research has not provided a way to find multiple optimal pivot paths.

Unlike deterministic pivot rules, our MCTS rule exhibits certain randomness in the exploration stage.

Specifically, the proposed exploration criterion can introduce a controllable scale factor based on the

upper confidence bounds (UCB) method. Thus, additional randomness is added to the balance between

the estimated value and explorations brought by the UCB algorithm. Additionally, the randomness of

the MCTS rule can guide the selection of different actions to achieve the minimum pivot iterations under

the guidance of optimality.

Consequently, we prove the optimality and completeness of the MCTS rule. We also prove the

polynomial complexity of the optimal pivot iterations when the number of vertices in the feasible region

is Cm
n . Concretely, the MCTS rule can find all the shortest pivot paths according to the Wiener-Khinchin

law of large numbers. Firstly, the MCTS rule can find the optimal pivot path when explorations approach

infinity. Then the MCTS rule can find all the different pivot paths when executions approach infinity.

Additionally, from the perspective of combinatorial numbers, we prove that the minimum pivot iterations

is polynomial of variables when the number of vertices in the feasible region is Cm
n . We also verify the

polynomial iterations from the geometric perspective.

Given the above four aspects, we present a novel MCTS rule that provides all the shortest pivot paths.

Additionally, we can label massive instances with little cost for the supervised pivot rule based on the

proposed MCTS rule. Comprehensive experiments on the NETLIB benchmark and random instances

demonstrated the efficacy of the MCTS rule. It is worth noting that compared with the minimum pivot

iterations achieved by other popular pivot rules, our result is only 54.55% for random instances and

49.06% for NETLIB.

Our main contributions are as follows:

• Construct the SimplexPseudoTree to ensure that MCTS can be applied to the simplex method while

avoiding duplicate bases.

• Propose the MCTS rule to determine all the optimal pivot sequences.

• Provide a method to obtain the optimal pivoting labels for the supervised pivot rule within the

allowable range of the calculation cost.

• Give comprehensive theory for the optimality and complexity of the MCTS rule.

The rest of this paper is organized as follows. Section 2 introduces the background and related

works. Section 3 introduces the SimplexPseudoTree to translate the simplex method for applying RL

methods. Section 4 presents the optimal MCTS rule for the simplex method. We prove the optimality



1266 Li A Q et al. Sci China Math June 2024 Vol. 67 No. 6

and complexity of the proposed optimal pivot rule in Section 5. Section 6 presents experimental results.

The conclusions and further works are presented in Sections 7 and 8, respectively.

2 Background and related work

LP problem. Linear programming is a type of optimization problem, where the objective function

and constraints are linear. The standard form of the simplex method is as follows:

min cTx

s.t. Ax = b,

x > 0,

(2.1)

where c ∈ Rn is the objective function coefficient, A ∈ Rm×n is the constraint matrix, b ∈ Rm is the

right-hand side, and all the variables take continuous values in the feasible region. The purpose of linear

programming is to find a solution that minimizes the value of the objective function in the feasible region,

i.e., the so-called optimal solution, while the corresponding objective value is the optimal value.

Simplex method. The simplex method is clear and easy to understand. After providing an initial

feasible solution, we see that the pivoting process includes three parts: variable division, selection of the

entering basis variable, and derivation of the leaving basis variable [7]. The variable division step divides

the variable x ∈ Rn into x = [xT
B , x

T
N ]T. Correspondingly, divide A = [B,N ] and c = [cTB , c

T
N ]T, and each

column of the coefficient matrix B corresponding to xB is required to be linearly independent. At this

time, the constraint Ax = b can be written as

xB = B−1b−B−1NxN . (2.2)

We can obtain (2.3) by substituting the constraint into the objective function, i.e.,

cTx = cTBB
−1b+ (cTN − cTBB

−1N)xN . (2.3)

As the first term is a constant value, the objective function value is determined only by the second

term

c̄T = cTN − cTBB
−1N, (2.4)

which is called reduced costs. The components of xN corresponding to the part of (2.5) are non-basis

variables that can cause a decrease in the objective function, i.e.,

J = {j | c̄j < 0}. (2.5)

Therefore, the selection of the entering basis variable is the process of selecting a basis variable from

the non-basis variables mentioned above. Different pivot rules provide different methods for selecting

the entering basis variable. In other words, the essence of the pivot rule of the simplex method is to

convert a certain column between bases corresponding to feasible solutions. Accordingly, the feasible

region polyhedron starts from the initial solution vertex, and each pivot corresponds to a step transition

between adjacent vertices until it reaches the optimal solution vertex. When the basis variables are

determined, we can use (2.6) to derive the leaving basis variable, i.e.,

xB = B−1b−B−1NxN > 0. (2.6)

After the initial feasible solution is given, the pivot process is repeated until the basis corresponding to

the optimal solution is obtained, i.e., the end of the simplex method.

Classical pivot rules. The pivot rule provides the direction for the exchange of the basis variables

of the simplex method. The simplex method has several classical pivot rules. The Dantzig rule [7] is to
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select the component corresponding to the most negative reduced cost as the entering basis variable, i.e.,

choose

J̃ ∈ argmin{c̄j | c̄j < 0}. (2.7)

The Bland rule [2] is to select the component with the smallest index from the variables with reduced

costs less than zero, i.e., choose

J̃ ∈ argmin{j | c̄j < 0}. (2.8)

The steepest-edge rule [10, 13] uses the columns of the corresponding non-basis matrix and the basis

matrix to standardize the reduced costs and selects the column corresponding to the smallest component,

i.e., choose

J̃ ∈ argmin

{
c̄j

∥B−1Nj∥

∣∣∣∣ c̄j < 0

}
. (2.9)

The idea of the greatest improvement rule [21] is to take the product of the reduced costs and the maximum

increment of each non-basis variable as the evaluation standard and select the non-basis variable with

the minimum value as the entering basis variable. Finally, the devex rule [16, 28], an approximation of

the steepest-edge rule, uses an approximate weight to replace the norm in the evaluation criterion of the

steepest-edge rule. Considering the number of pivot iterations, we see that different pivot rules apply

to different problem types. However, there is no universal pivot rule that can determine minimum pivot

iterations for general linear programming instances. In addition, there is an LP instance so that the

corresponding simplex method is not a polynomial algorithm for any pivot rules given above.

Pivot rules based on machine learning. In recent years, the development of machine learning

has provided new ideas for combinatorial optimization. Specifically, Guo et al. [14, 15] gave overviews of

solving combinatorial optimization problems. ML-based methods gradually emerge to solve combinatorial

optimization problems, such as knapsack [8], the traveling salesman problem [37, 38] and the P-median

problem [36]. Simultaneously, there are many ML-based methods [9, 22–24] involving continuous

optimization problems. In terms of the linear programming problem, there are two methods for improving

the pivot rules of the simplex method based on the machine learning method. DeepSimplex [35] uses the

idea of Q-value iteration to learn the best scheduling scheme of the Dantzig rule and the steepest-edge

rule. Another study [1] used a boost tree and a neural network to learn an instance-based adaptive

pivot rule selection strategy based on five classical pivot rules. However, the performance of these two

supervised methods is severely limited by the provided pivot rules. In general, it is difficult to obtain the

minimum pivot iterations based on supervised learning without effective labels.

Combinatorial optimization methods based on MCTS. With the emergence of AlphaGo [32]

and AlphaGo Zero [33], reinforcement learning represented by MCTS has been widely used in many

classical problems [11, 17, 34]. Combinatorial optimization problems based on the MCTS can be solved

in two ways. A classical idea is to design an MCTS-based framework for various types of combinatorial

optimization problems [19, 30]. Another idea is to design an MCTS-based algorithm to solve a specific

combinatorial optimization problem, such as the traveling salesman problem [27,29,38,39] and the Boolean

satisfiability problem [5,12,18,31]. We adopt the latter idea to find multiple optimal pivot paths for the

simplex method based on MCTS.

3 Constructed SimplexPseudoTree model

Reinforcement learning involves making the agent interact with the environment in a trial-and-error

manner. The results of trial-and-error are fed back to the agent in the form of rewards to guide agent

behavior and achieve the goal of maximizing the rewards. However, the current and past solution states

are inadequate for determining the optimal pivot paths. Actually, the future information obtained by

executing the pivot makes the difference. In this case, Monte Carlo tree search is more effective in finding

the optimal pivot. Therefore, constructing an imitative tree-search model for the simplex method is our

primary goal.
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(a) (b) (c)

Figure 2 (Color online) Proposed SimplexPseudoTree for the simplex method. (a) shows the process of finding the

optimal solution according to the simplex method. (b) is the SimplexPseudoTree corresponding to the instance. (c) is the

optimal pivot path found based on the SimplexPseudoTree

Duplicate basic variables lead to an unnecessary increase in pivot iterations in the simplex method.

According to the reduced costs and pivot rules, the leaving basis variable cannot enter the basis into

the immediate next pivot. Therefore, if the current solution state is considered a node and the pivot

is considered an edge, the repetition of the basis implies that a circle appears in the exploration path,

as shown in Figure 2(a). Therefore, we must avoid base duplication in our pivot rule to minimize the

number of pivot iterations consistent with the connectivity and acyclic properties of tree structures.

Inspired by the tree structure, the SimplexPseudoTree is proposed to transform the simplex method

for utilizing MCTS while avoiding the cycle during pivoting. The SimplexPseudoTree is constructed by

considering the current states of the input instance as nodes and the feasible entering basis variables as

edges. The initial linear programming instance is the root node, and the optimal solutions correspond to

the leaf nodes. To minimize the number of pivot iterations, we only need to retain the pivot sequence for

each node that first accesses it. Therefore, we remove the edges of the same layers and pivots pointing to

shallow layer nodes from deeper layers, as shown by the dotted line in Figure 2. In Subsection 4.2, this idea

is implemented by imposing significant negative rewards. It is worth noting that the SimplexPseudoTree

differs from the tree structure. The SimplexPseudoTree allows multiple paths between two arbitrary nodes

of the SimplexPseudoTree because the pivot path is not unique. In general, the process of finding the

optimal pivot rule is to find the shortest path between the root and leaf nodes for the SimplexPseudoTree.

Using the idea of MCTS [3,6,33], we can evaluate the future situation for all candidate entering basis

variables. Based on the explored information, we can significantly reduce the search space formed by all

the possible entering basis variables to find the optimal pivot paths by minimizing the number of pivot

iterations.

4 Proposed RL algorithm

4.1 RL models of the MCTS rule

Before applying reinforcement learning, we see that this subsection presents the constructed state, action,

and reward functions suitable for the simplex method. We provide two action-space definitions and two

reward-function definitions. It is noteworthy that this is not a one-to-one correspondence. There are four

combinations of RL models, as listed in Table 1.

State. We choose the simplex tableaux as the state representation of the reinforcement learning model.

Simplex tableaux is the solution state representation of the simplex method on which traditional pivot

rules rely. The tableaux contains c, A, b, IB , cB and c̄, where IB ’s are the column indexes corresponding

to basis variables. The simplex tableaux completely represents the current solution state of the input

instance and there is no redundant information.

Two action sets. In the reinforcement learning model of the MCTS rule, actions correspond to

feasible entering basis variables. We have provided two definitions of action spaces. One action space
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Table 1 Four reinforcement learning models constructed for the simplex method

Model State Action Reward

Model 1 Simplex tableaux A1 = {i | c̄i < 0} R1 = −T

Model 2 Simplex tableaux A2 = {i | c̄i ̸= 0} R1 = −T

Model 3 Simplex tableaux A1 = {i | c̄i < 0} R2 =
∑N

i=1 wi(cxi−1−cxi)

T

Model 4 Simplex tableaux A2 = {i | c̄i ̸= 0} R2 =
∑N

i=1 wi(cxi−1−cxi)

T

contains variables with reduced costs of less than zero, i.e., non-basic variables whose objective value can

be reduced by a one-step pivot, as shown in (4.1), i.e.,

A1 = {i | c̄i < 0}. (4.1)

The other type of action space corresponds to variables whose reduced costs are not equal to zero.

Compared with the former, this definition adds non-basic variables corresponding to reduced costs greater

than zero (see (4.2)). Although on the surface a variable with a reduced cost greater than zero does not

make much sense. However, it represents the greedy idea of trying to find a path with fewer pivot

iterations at the expense of the objective benefit in one step, i.e.,

A2 = {i | c̄i ̸= 0}. (4.2)

Two reward functions. We also provide two definitions for the reward function. The first reward

function is defined as the opposite number of pivot iterations, which intuitively reflects the goal of

minimizing the number of iterations, as shown in (4.3). One advantage of this is that in addition to

having a minimum number of pivot iterations, the action selection guided by this reward is completely

random, resulting in more randomness to find multiple pivot paths, i.e.,

R1 = −T. (4.3)

The second reward function is defined by (4.4), where T represents the maximum number of pivot

iterations of the current episode, i represents the i-th pivot, xi is the locally feasible solution obtained

from the i-th pivot, and wi ∈ (0, 1] is the weight. It is noteworthy that the proposed linear weight factor

provides the weight of linear attenuation according to the depth from the root of the tree, i.e.,

R2 =

∑N
i=1 wi(cxi−1 − cxi)

T
, wi =

(T + 1)− i

T
. (4.4)

Formula (4.4) indicates a decrease in the linear weighted estimation of the objective value caused by a

single pivot. In terms of minimizing pivot iterations, the two reward definitions are equivalent. However,

as far as our problem is concerned, the second reward has the following two advantages: (1) Compared

with the first type of reward function, the dimensional feature of the change in the objective value is

introduced. (2) The second reward function is more likely to choose the case in which the objective

function changes significantly at the initial stage, and therefore, even under the influence of the MCTS

random exploration, this model can easily converge to the minimum pivot iterations.

4.2 MCTS rule

Inspired by the idea of Monte Carlo tree search, we propose the MCTS rule as shown in Algorithm 1,

which can find the optimal pivot iterations for general linear programming instances. The entire process

is divided into four stages: construction, expansion, exploration and exploitation (see Figure 3).

Construction stage. First, we need to transform the simplex method into a structure with the

reinforcement learning model representation and an imitative tree-search pattern. The construction of
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Algorithm 1 The MCTS rule

Input: maximum number of explorations Nexplore and instance Iinstance
Output: the optimal pivot path

1: create node N , corresponding state sN and action set A for Iinstance
2: N(sN ,aj)

= 0, S(sN ,aj)
= 0 for ai ∈ A

3: P = ∅
4: while N is not terminal do

5: I = ∅
6: while |{Mi, i ∈ I}| < |A| do
7: choose ai ∈ A, i /∈ I

8: generate node Mi by executing ai
9: I = I ∪ {i}
10: end while

11: j = 0

12: while j < Nexplore do

13: randomly select Mj from {j | Qj > Esoft}
14: randomly explore Mj to get reward G

15: N(sN ,aj)
= N(sN ,aj)

+ 1

16: S(sN ,aj)
= S(sN ,aj)

+G

17: j = j + 1

18: end while

19: choose â = argmaxa∈A Q(s, a) = argmaxa∈A S(s, a)/N(s, a)

20: P = P ∪ â

21: create node N̂ by executing â

22: N = N̂

23: construct state sN and action set A for node N

24: end while

explore

soft

arg max

NN

M

A M

Model

Figure 3 Algorithm flow diagram of the MCTS rule

the SimplexPseudoTree is based on the schema in Subsection 4.1, and the RL model is consistent with

the strategy described in Subsection 4.2. Specifically, the state of the present node represents the current

solution stage, and each edge corresponds to an action in the action space. When an edge is selected from

a node, the process enters the next solution stage via the corresponding pivot. Furthermore, a reward is

obtained to evaluate the advantages and disadvantages of the current path while exploring the leaf nodes.

Notably, we choose to enter the next stage unless the current node satisfies the optimality.

Expansion stage. In the expansion stage, we randomly select actions in the action set without

repetition to generate all the child nodes of the selected node. The extraction process is shown in (4.5),

where A is the action set, ai is an action in the action set, and I is the set of currently selected action

subscripts, i.e.,

randomly select from {ai ∈ A | i /∈ I}. (4.5)

Considering the goal of minimizing the number of pivot iterations, we see that the leaf node representing

the optimality contains the information we need. In terms of the optimal pivot path, the roles of the

other nodes in the path are equivalent to those of the leaf nodes. In addition, the strategy evaluation
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method uses the empirical mean of the reward as the expectation of the reward. The state-action value

function is defined as follows:

Gt = rT , (4.6)

Qπ(s, a) = Eπ[Gt | st = s, at = a], t ∈ {1, 2, . . . , T}, (4.7)

where {1, 2, . . . , T} denotes the set of visited subscripts in the current exploration path. After selecting

all actions {ai ∈ A} and generating all the possible child nodes M = {Mi, i ∈ I}, we see that the process

ends. For the convenience of writing, we define

Qπ(v) = Eπ[st = s, at = a, s.t. P (s, a) = v], t ∈ {1, 2, . . . , T}, (4.8)

Qπ(s, a) = Qπ(v), (4.9)

where v represents a node in the SimplexPseudoTree, and P (s, a) is the state transition function,

indicating that node v can be obtained by taking action a on the state s.

Exploration stage. The value function estimation is inaccurate when the number of explorations is

low. At this time, the action corresponding to the maximum value function is not necessarily the real

optimal choice, but slightly smaller values near it may do so. Therefore, we suggest relaxing the max

operator in the initial stage to improve accuracy. The definitions are shown in (4.10) and (4.11). The

process of node selection is shown in (4.12), where the definition of Qi is consistent with that in the upper

confidence bounds applied to the trees (UCT) algorithm [20], and v is the node explored currently. We

randomly select actions from {ai | Qi > Esoft}, and then all the actions in this episode are executed in a

completely random manner, i.e.,

Qi =
Q(v′′)

N(v′′)
+ C

√
2 lnN(v)

N(v′′)
, v′′ ∈ children of v, (4.10)

Esoft = min
ai∈A

Qi + α
(
max
ai∈A

Qi − min
ai∈A

Qi

)
, (4.11)

v′ = random select from {i | Qi > Esoft, ai ∈ A}. (4.12)

Considering that the number of pivot iterations required for subsequent duplicate nodes must be greater

than the first one, we see that this should be prohibited. Therefore, we only give real rewards to the

nodes we encounter for the first time and punish repeated nodes by giving them huge negative rewards.

During execution, when we encounter state s and execute action a for the first time in an episode, we

add one to its count and increase the cumulative reward at that time, as shown in (4.13) and (4.14), i.e.,

N(s, a)← N(s, a) + 1, (4.13)

S(s, a)← S(s, a) +Gt. (4.14)

The state-action value function of the final state s is in the form of (4.15). According to the law of large

numbers, when the number of estimates tends to infinity, the value function tends to be close to that of

the real strategy. When the number of iterations in this step reaches the preset threshold Nexplore, the

process terminates and enters the next stage, i.e.,

Q(s, a) = S(s, a)/N(s, a). (4.15)

Exploitation phase. In the exploitation phase, we complete Nexplore exploration and estimate a

reliable state-action value function. In this step, we select the action that maximizes the value function

to generate nodes, as follows:

a∗ = argmax
a∈A

Q(s, a), (4.16)

v∗ = argmax
v′′∈ children of v

Q(v′′)

N(v′′)
. (4.17)

Subsequently, we must check whether the generated node has reached optimality; when it is not the

optimal solution, we must return the node to the expansion stage and repeat the cycle.
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4.3 Extracting multiple shortest pivot paths

The optimal pivot paths correspond to different pivot sequences with minimum pivot iterations.

Therefore, such an optimal path is not unique, which is important for the simplex method, but previous

work is difficult to solve and ignores this point. Fortunately, the randomness of the MCTS rule is

highly effective for finding multiple optimal paths. This randomness originates in the exploration stage.

Specifically, the generation of the exploration trajectory depends on a random strategy. Thus, the

estimated value brought about by limited exploration will be affected by randomness to a certain extent.

Based on the randomness of the MCTS rule, our algorithm can select different actions that lead to optimal

pivot paths in different execution processes. Therefore, multiple pivot sequences can be used to achieve

optimization. Furthermore, we provide proof to ensure that each optimal pivot path can be found.

5 Theoretical analysis

In this section, we conduct a detailed theoretical analysis of the MCTS rule from three perspectives.

First, we prove that the MCTS rule can make the optimal pivot decision at each step, so as to find the

shortest pivot path. Then considering the completeness of the algorithm, we can find all the optimal

pivot paths when algorithm executions are sufficient. Finally, we prove that the pivot iterations under

the MCTS rule are a polynomial of n when the number of vertices in the feasible region is Cm
n .

5.1 Optimality of the MCTS rule

We prove that the MCTS rule converges to the optimal pivot path when explorations approach infinity.

Considering that the expectation of the reward function in Models 1 and 2 will be affected by other

episodes, we see that it is not sufficient to reflect the real optimal pivot. Therefore, we first introduce

the significance operator Sig based on the idea of pooling in convolution and then provide complete proof

details.

Definition 5.1 (Rank function). Given a sequence of random variables RS := {X1, X2, . . . , Xn} ⊂ X ,
it is sorted with an ascending order to get the order statistics sequence RSO := {X(1), X(2), . . . , X(n)},
where X(i) represents the i-th smallest random variable. Here, we define the function RankRS : X → [n],

where [n] := {1, 2, . . . , n}, and RankRS(Xi) is the index of Xi in RSO.

Definition 5.2 (Significance operator). Given K groups of random variables sequences {Xk
1 , X

k
2 ,

. . . , Xk
nk
}, k ∈ {1, 2, . . . ,K}, we define X̄k and Xk

(nk)
as the mean statistic and the maximum statistic of

k-th sequence {Xk
i }

nk
i=1, respectively, i.e.,

X̄k =
1

nk

nk∑
i=1

Xk
i , Xk

(nk)
= max{Xk

1 , X
k
2 , . . . , X

k
nk
}, k ∈ {1, 2, . . . ,K}.

For the mean statistics sequence ES := {X̄1, X̄2, . . . , X̄K} and the maximum statistics sequence MS :=

{X1
(n1)

, X2
(n2)

, . . . , XK
(nK)}, we define the significance operator Sig : X → X as

Sig(X̄k) =

{
X̄k, RankES(X̄

k) = RankMS(X
k
(nk)

),

Xk
(nk)

, RankES(X̄
k) ̸= RankMS(X

k
(nk)

).
(5.1)

Theorem 5.3. For Models 1 and 2, if we set α in (4.11) as zero, the MCTS rule with the significance

operator Sig will converge to the optimal pivot rule with probability at least 1− ϵ, as long as

Nexplore >
1

ln(1 + 1
d∗
A−1 )

ln

(
1

1− e
1

|P∗| ln(1−ϵ)

)
≈ O

(
ln

(
1

ϵ

))
, (5.2)

where P ∗ is the optimal pivot path, and |P ∗| is its length. d∗A := maxs∗∈P∗ |As∗ | represents the dimension

of the maximum action space along this path.
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Proof. For Models 1 and 2, the reward is defined as the opposite number of the pivot iterations.

Therefore, pivot iterations corresponding to the maximum reward are equivalent to the shortest pivot

path.

Without loss of generality, we consider the state node s, which represents a particular simplex tableau.

We denote the feasible action space in s by As := {a1, a2, . . . , a|As|}, where each action corresponds to a

feasible pivot. The child nodes of s are {s1, s2, . . . , s|As|} and the transition functions are

P(si | s, aj) = I{i=j}, ∀ i, j ∈ {1, 2, . . . , |As|},

where I is the indicator function.

We denote by Nexplore the number of explorations from s. The random variable Ni is the number of

explorations from s to si and
∑|As|

i=1 Ni = Nexplore.

If we set α in (4.11) as zero, the set of selected actions is

{i | Q(s, ai) > Esoft} =
{
i
∣∣∣ dQ(s, ai) > min

aj∈As

Q(s, aj)
}
= As, (5.3)

which indicates that all the feasible pivots can be selected, i.e., Eπ[Ni] > 0, ∀ i ∈ {1, 2, . . . , |As|}. In fact,

our algorithm takes the exploration action by uniform policy from the set {i | Q(s, ai) > Esoft}, and then

we have

Eπ[Ni] =

|As|∑
i=1

P(si | s, aj)π(aj | s)Nexplore

= π(ai | s)Nexplore

=
Nexplore

|{i | Q(s, ai) > Esoft}|

=
1

|As|
Nexplore > 0, ∀ i ∈ {1, 2, . . . , |As|}. (5.4)

We can conclude that as long as

Nexplore >
1

ln(1 + 1
|As|−1 )

ln

(
1

δ1

)
,

every child node can be accessed to with probability at least 1− δ1, i.e.,

P(state si visited) = P(Ni > 0)

= 1− P(Ni = 0)

= 1−
(
|As| − 1

|As|

)Nexplore

> 1− δ1. (5.5)

We denote by the random variable Rai
j the reward of taking action ai for the j-th time. Given |As|

groups of independent identically distributed random variables sequences {Rai
j }

Ni
j=1, i ∈ {1, 2, . . . , |As|},

we apply the significance operator Sig in Definition 5.2 and we have {Sig(R̄ai)}|As|
i=1 . Note that the

reward random variables {Rai
j }

Ni
j=1 are independent and identically distributed, and we can apply the

Wiener-Khinchin law of large numbers, i.e.,

lim
Nexplore→∞

R̄ai = lim
Ni→∞

R̄ai = lim
Ni→∞

1

Ni

Ni∑
j=1

Rai
j = E[Rai

j ], a.s. (5.6)

Note that Q(s, ai) is the same as R̄ai with respect to the definition of Q.
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For any pivot path P = {sP0 , sP1 , . . . , sP|P |−1}, we denote by dPA the dimension of the maximum action

space along this path, i.e., dPA := maxsP∈P |AsP |. By recursion, the MCTS rule can explore the pivot

path P with probability at least 1− δ2 when

Nexplore >
1

ln(1 + 1
dP
A−1

)
ln

(
1

1− e
1

|P | ln(1−δ2)

)
≈ O

(
1

ln(1 + 1
dP
A−1

)
ln

(
|P |
δ2

))
,

i.e.,

P(explore pivot path P ) = P
( ∩

sP∈P

{NsP > 0}
)

=
∏

sP∈P

P(NsP > 0)

=
∏

sP∈P

1−
(
|AsP | − 1

|AsP |

)Nexplore

>
(
1−

(
dPA − 1

dPA

)Nexplore
)|P |

> 1− δ2. (5.7)

We have shown that our algorithm can explore each path P when Nexplore is sufficiently large. As a

result, we have

lim
Nexplore→∞

Rai

(Ni)
= lim

Ni→∞
Rai

(Ni)
= lim

Ni→∞
max{Rai

1 , Rai
2 , . . . , Rai

Ni
} = Rai

∗ , a.s., (5.8)

where Rai
∗ is the maximum reward which can be attained by taking action ai. Define ES :=

{R̄a1 , R̄a2 , . . . , R̄a|A|} and the maximum statistics sequence MS := {Ra1

(N1)
, Ra2

(N2)
, . . . , R

a|A|
(N|A|)

}. Then

we have

lim
Nexplore→∞

Sig(R̄ai) =

{
E[Rai

j ], RankES(R̄
ai) = RankMS(R

ai

(Ni)
),

Rai
∗ , RankES(R̄

ai) ̸= RankMS(R
ai

(Ni)
), a.s.

(5.9)

We define the mapping Proj : ES ∪ MS → MS, where Proj(R̄ai) = Rai

(Ni)
, ∀ R̄ai ∈ ES and

Proj(Rai

(Ni)
) = Rai

(Ni)
, ∀Rai

(Ni)
∈ MS. Combining (5.9), we have

lim
Nexplore→∞

Proj ◦Sig(R̄ai) = Rai
∗ , a.s. ∀ i ∈ {1, 2, . . . , |As|}. (5.10)

We take action â ∈ argmaxai∈As Proj ◦Sig(R̄ai). According to the definition of Proj and Sig, we can

access the child node that attains the optimal reward to execute the next iteration. We have proven that

the MCTS rule can find the optimal action from a starting state s. In the following, we will analyze the

complexity to extract the whole optimal pivot path.

We assume that the optimal pivot path is P ∗ = {s∗0, s∗1, . . . , s∗|P∗|−1} and denote by d∗A the dimension

of the maximum action space along this path, i.e., d∗A := maxs∗∈P∗ |As∗ |.
By recursion, the MCTS rule will converge to the optimal pivot rule with probability at least 1 − ϵ

when

Nexplore >
1

ln(1 + 1
d∗
A−1 )

ln

(
1

1− e
1

|P∗| ln(1−ϵ)

)
≈ O

(
1

ln(1 + 1
d∗
A−1 )

ln

(
|P ∗|
ϵ

))
,

i.e.,

P(find optimal pivot path P ∗) = P
( ∩

s∗∈P∗

{Ns∗ > 0}
)

=
∏

s∗∈P∗

P(Ns∗ > 0)

=
∏

s∗∈P∗

1−
(
|As| − 1

|As|

)Nexplore

>
(
1−

(
dA − 1

dA

)Nexplore
)|P∗|
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> 1− ϵ. (5.11)

Note that dA does not exceed the number of feasible entering basis variables, i.e., dA 6 n −m and we

also prove that |P ∗| is at most min(m,n−m) in Theorem 5.5, which indicates that dA and |P ∗| are both
linear according to the dimension of input. Therefore, we have

Nexplore ≈ O

(
1

ln(1 + 1
dA−1 )

ln

(
|P ∗|
ϵ

))
≈ O

(
ln

(
1

ϵ

))
.

In summary, the MCTS rule will converge to the optimal pivot rule with the highest reward in the

models 1 and 2 when Nexplore is sufficiently large.

The above theorem concludes that the MCTS rule with the significance operator converges to optimality

under the condition of α = 0. Additionally, the proof of convergence to the optimal strategy is given in

the literature [20] for the case of α = 1. It is also feasible to substitute them into the framework of our

proof based on the upper and lower bounds of explorations of each action given in the literature [20]. For

other α values, we conducted an ablation study in the experimental section for verification.

5.2 Completeness of multiple pivot paths

The proposed MCTS rule is a random algorithm. Multiple executions may find different optimal pivot

paths. Theorem 5.4 gives a theoretical guarantee based on the Wiener-Khinchin law of large numbers.

It is proved that the MCTS rule can find all the optimal pivot paths when executions are sufficient.

Theorem 5.4. For Models 1 and 2, if we set α in (4.11) as zero, the MCTS rule with significance

operator Sig can find all the optimal pivot paths provided that algorithm execution times Nexe are

sufficiently large.

Proof. We use the same notations as the ones in the proof of Theorem 5.3. Set all the optimal actions

of the current pivot as A∗ = {a∗1, a∗2, . . . , a∗|A∗|}. When |A∗| = 1, this theorem holds by Theorem 5.3. We

consider |A∗| > 2 in the following proof. According to (5.4),

lim
Nexplore→∞

Na∗ = lim
Nexplore→∞

1

|A|
Nexplore =∞, ∀ a∗ ∈ A∗, (5.12)

where A represents the total action space, and Na∗ represents the number of explorations of the optimal

action a∗.

According to (5.10), we have

lim
Nexplore→∞

Proj ◦ Sig(R̄a∗
) = Ra∗

∗ = max
i,j

Rai
j a.s. ∀ a∗ ∈ A∗. (5.13)

Therefore, we select action from A∗ by uniform policy, i.e., P(a∗i ) = 1
|A∗| . Then we have that when

Nexe >
1

ln( |A∗|
|A∗|−1 )

ln

(
|A∗|
ϵ

)
,

the MCTS rule can find all a∗ ∈ A∗, i.e.,

P(find all a∗ ∈ A∗) = 1− P
( |A∗|∪

i=1

{not find a∗i }
)

> 1−
|A∗|∑
i=1

P(not find a∗i )

= 1− |A∗|
(
|A∗| − 1

|A∗|

)Nexe

> 1− ϵ. (5.14)
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It indicates that when the number of algorithm executions Nexe approaches infinity, each a∗ ∈ A∗ can

be found. Then repeating the above process, we see that the MCTS rule can find all the optimal pivot

paths.

5.3 Complexity of the optimal pivot

Theorem 5.5 proves that the MCTS rule can find polynomial pivot iterations when the number of vertices

in the feasible region is Cm
n .

Theorem 5.5. For the standard form of the simplex method for linear programming as (2.1),

P = {x ∈ Rn | Ax = b, x > 0}

represents the feasible region, where A ∈ Rm×n and rank(A) = m. Suppose that the number of feasible

vertices of P is Cm
n . Then the shortest distance (the minimum hops) between any two feasible vertices of

P is min(m,n−m).

Proof. For the convenience of proving, we first convert the simplex of the feasible region into the

SimplexPseudoTree structure proposed in Section 3. In this way, each vertex only appears once in

different layers, so the number of vertices in each layer adds up to the total number of vertices N .

Compared with the root of the SimplexPseudoTree, the nodes of layer i are obtained from the root

through the i pivot iterations, i.e., Ci
mCi

n−m. We have

T∑
i=0

Ci
mCi

n−m = N = Cm
n , (5.15)

where T is the layers of the SimplexPseudoTree and also the longest distance to the root. We discuss it

in two cases, based on the Vandermonde’s identity of the combination number

l∑
i=0

Ci
aC

l−i
b = Cl

a+b. (5.16)

When n−m 6 m, we have
k∑

i=0

Ci
mCk−i

n−m = Ck
n. (5.17)

Let k = n−m. Then
n−m∑
i=0

Ci
mCn−m−i

n−m =
n−m∑
i=0

Ci
mCi

n−m = Cn−m
n = Cm

n , (5.18)

i.e., T = n−m. When m < n−m, we have

k∑
i=0

Ck−i
m Ci

n−m = Ck
n. (5.19)

Let k = m. Then
m∑
i=0

Cm−i
m Ci

n−m =
m∑
i=0

Ci
mCi

n−m = Cm
n , (5.20)

i.e., T = m. In this way, T = min(m,n−m), which is a polynomial of n. Additionally, T can represent

the maximum hops of all the shortest paths between any two vertices in the feasible region. Therefore,

the shortest pivot iterations starting from any initial point in the feasible region is the polynomial of the

number of variables when the number of vertices in the feasible region is Cm
n .
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From the perspective of the combination number, Theorem 5.5 proves that the shortest distance

between any two vertices of the feasible region is min(m,n − m) when the number of vertices in the

feasible region is Cm
n . This conclusion is also meaningful from the geometric perspective of the simplex

method. Specifically, the number of vertices in the feasible region is Cm
n means that any m columns of

the constraint matrix corresponds to a basis matrix of the simplex method. Therefore, for any two basis

matrices B1 and B2, there can be at most min(m,n −m) different columns. We only need to exchange

different columns, respectively. In this way, the initial vertex B1 is converted to B2 through min(m,n−m)

pivot iterations. In other words, the optimal pivot iterations needed for any linear objective function are

min(m,n−m) at most under the conditions of the above theorems.

We reveal that the optimal pivot of the simplex method is polynomial when the number of vertices

in the feasible region is Cm
n from the perspective of theory and geometry, respectively. Furthermore, the

proposed MCTS rule can find the polynomial pivot iterations when the number of vertices in the feasible

region is Cm
n .

Corollary 5.6. When the number of vertices in the feasible region is Cm
n , the MCTS rule ensures that

the number of pivot iterations becomes the polynomial of the number of variables.

6 Experiment

6.1 Datasets and experiment setting

Datasets. We conduct experiments using the NETLIB1) benchmark [4] and random instances. The

method for generating random instances is as follows. First, we write the equivalent form of (2.1), i.e.,

min cTx+ 0Tx0

s.t. Ax+ Ix0 = b,

x > 0, x0 > 0,

(6.1)

where x0 ∈ Rm, 0 ∈ Rm is a zero vector, and I ∈ Rm×m is an identity matrix. Thus, we provide a setting

for the initial feasible basis B0 = I, where n basis variables correspond to n columns of the constraint

matrix A at the right end. Each component of A, b and c is a random number of uniform distributions

of [0, 1000). For the constraint matrices of non-square matrices, the rows and columns are obtained from

a uniform distribution of [0, 800).

Implementation details. In the experiment comparing the performance of the four models, we set

the explorations from one to ten times the columns of the constraint matrix. Subsequently, we set the

explorations to one and six times of columns because six times can provide stable exploration results,

with number one having the shortest exploration time. We then solve each problem five times and obtain

the optimal pivot iterations. In addition, we set C = 1/
√
2 in (4.10) and dynamically adjust α according

to the solution state for (4.11). In particular, we set α = 0.3 for Nexplore < 0.1× ColNum and α = 1 for

other cases, where ColNum represents the number of columns of the constraint matrix. In addition, we

use the first stage of the two-stage algorithm of the simplex method to find the initial feasible basis for

the NETLIB instances.

6.2 Estimation of four RL models

In this subsection, we compare the quality of the four RL models proposed in Subsection 4.2 for the

simplex method. We conduct thorough experiments on five representative instances, as illustrated in

Figure 4. Each point represents the average pivot iterations obtained by solving the problem five times

under the current conditions. This step reduces the influence of randomness. In addition, we set the

upper limit of pivot iterations as 10 to reduce unnecessary time without affecting the experimental results.

1) http://www.netlib.org/lp/data/index.html
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(c) rand 232 × 504
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(d) rand 332 × 187
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(e) SC50A

Figure 4 (Color online) Model comparison figure on five representative instances: rand 50 × 50, rand 232 × 504, rand

332 × 187 and SC50A. The X-axis represents the explorations, which are multiples of columns of the constraint matrix A.

The Y -axis of the left figure represents the average pivot iterations. The Y -axis of the right figure represents the average

solution time
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The left part of Figure 4 shows the relationship between pivot iterations and explorations. We found

that the number of pivot iterations obtained by A1 + R2 is the best compared with the other three models.

The right part of Figure 4 shows the variation in the average solution time with the explorations. It can

be seen that with the increase in explorations, the average solution time of each model also increases,

which is caused by the exploration cost of the larger number of explorations. We also conclude that the

time performance of A1 + R1 and A1 + R2 is better than those of A2 + R1 and A2 + R2. Consequently,

combined with the performance of the number of pivot iterations, A1 + R2 has certain advantages over

all the other models.

6.3 Comparison with the solver and classical pivot rules

In this subsection, we compare the MCTS rule with Python’s linprog function and the other classic pivot

rules. Table 2 lists the results for the randomly generated square constraint matrices, Table 3 presents the

results for the general constraint matrices, and Table 4 shows the experimental results for the NETLIB.

6.3.1 Comparison results on random instances

The instances in Table 2 are random square matrices. However, Table 3 presents a comparison of

the random rows and columns of the constraint matrices. Red indicates the best results, and blue

indicates suboptimal results. The first two columns represent rows and columns of the constraint matrix.

Table 2 (Color online) Comparison between classical pivot rules and the MCTS rule on random square constraint matrices.

Red indicates the best results, and blue indicates suboptimal results

row col Linprog Dantzig [7] Bland [2] Steepest [10] Greatest [21] Devex [28] MCTS MTime(s)

300 300

341 18 63 14 10 21 7 425

361 14 56 14 13 22 7 409

331 14 49 12 8 14 6 274

373 12 56 10 8 16 6 287

318 16 28 13 7 15 6 258

321 10 14 8 4 14 4 128

324 17 67 14 7 17 5 211

324 10 40 7 6 14 5 130

329 10 55 13 5 18 5 238

400 400

492 21 37 12 12 29 7 356

475 22 113 12 9 28 9 685

541 21 116 19 15 32 11 793

449 19 73 15 8 23 6 355

450 19 74 15 11 30 7 510

473 16 70 13 11 15 6 317

438 15 55 9 6 24 6 275

480 15 73 12 9 24 8 686

542 25 87 17 10 32 8 553

500 500

612 21 79 14 10 32 10 833

739 30 205 20 20 38 15 2633

688 22 93 18 12 52 11 1064

559 23 74 13 12 24 8 678

606 26 117 13 12 28 8 664

528 22 44 11 10 24 6 506

610 22 121 15 10 27 9 966

598 21 58 18 10 25 10 1395

607 26 187 17 14 36 11 1383
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Table 3 (Color online) Comparison between classical pivot rules and the MCTS rule on the general constraint matrices.

Red indicates the best results, and blue indicates suboptimal results

row col Linprog Dantzig [7] Bland [2] Steepest [10] Greatest [21] Devex [28] MCTS MTime(s)

117 123 187 8 30 7 5 8 4 35

139 199 191 9 24 7 5 10 5 59

399 324 571 25 1,000+ 14 17 44 9 1,107

243 245 267 10 30 8 5 16 5 168

471 311 529 8 46 7 5 9 4 191

209 318 324 9 64 9 9 9 7 288

374 293 478 11 22 8 7 16 6 351

470 766 765 485 64 10 8 21 6 1,133

49 647 105 1,000+ 1,000+ 7 4 21 4 427

207 327 259 6 34 6 4 11 4 145

151 419 260 1,000+ 36 13 11 22 7 735

782 436 871 11 43 12 5 25 5 917

363 699 418 8 41 7 5 23 4 555

587 382 635 8 33 12 4 9 4 416

565 761 594 6 10 5 2 8 2 214

232 504 263 6 110 6 4 7 4 152

215 202 358 18 58 13 8 22 7 250

278 525 373 8 52 7 10 14 5 648

143 58 184 6 15 6 4 6 3 26

323 286 378 5 17 5 4 8 4 191

133 242 192 18 1,000+ 9 7 21 5 282

96 482 179 9 46 8 5 11 5 397

203 200 223 8 12 6 3 7 3 84

678 154 757 10 14 7 3 8 3 267

739 142 866 7 18 7 8 11 5 520

739 730 841 11 33 10 4 7 4 888

240 234 268 7 20 7 5 10 4 103

767 158 885 9 1,000+ 7 7 19 5 623

730 467 773 6 21 7 5 6 3 584

434 258 498 7 30 7 5 23 4 231

625 521 739 9 26 10 9 19 5 732

332 187 352 9 24 9 4 13 4 102

561 628 585 7 13 9 4 16 4 471

587 774 610 5 17 5 4 13 3 302

84 108 113 15 12 7 5 14 4 35

Table 4 (Color online) Comparison between classical pivot rules and the MCTS rule on NETLIB. Red indicates the best

results, and blue indicates suboptimal results

Problem Linprog Dantzig [7] Bland [2] Steepest [10] Greatest [21] MCTS MTime(s)

AFIRO 27 0 0 0 0 0 0

ADLITTLE 152 1,000+ 223 60 53 26 836

BLEND 178 29 88 35 21 15 118

SC50A 56 5 8 5 4 3 4

SC50B 59 6 9 7 6 6 7

SC105 135 14 26 10 16 7 69

SCAGR7 228 57 101 43 54 40 1,488

SHARE2B 260 47 172 38 29 19 612
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The third column to the ninth column respectively represent the minimum number of pivot iterations of

Python’s linprog function, the Dantzig rule [7], the Bland rule [2], the steepest-edge rule [10], the greatest

improvement rule [21], the devex rule [28] and our MCTS rule. The initial feasible basis of Python’s

linprog function is determined by its own setting, while others are based on the method proposed in

Subsection 5.1. The last column is execution time of the MCTS rule.

Tables 2 and 3 show that the number of pivot iterations obtained by the MCTS rule is superior to that

obtained by the classical pivot rules in all the general instances. In terms of square instances, the pivot

iterations found by the MCTS rule were only 54.55% of the minimum iterations of other popular pivot

rules. In addition, for other random dimension instances, our result was only 55.56% of the others’ best

results.

We conclude that the results of the MCTS rule are not limited to input instances. It performed best

on all the randomly generated problems because the MCTS rule selects the entering basis variable by

exploring and evaluating the entire feasible action space rather than providing a fixed rule based on

certain specific features. However, the number of pivot iterations obtained by other classical methods

cannot exceed the result of the MCTS rule. We first proposed an efficient and generalized method for

determining the minimum number of pivot iterations of the simplex method. Furthermore, for the first

time, this method provides the best label design for pivot rules based on supervised learning.

6.3.2 Comparison results on NETLIB

Table 4 presents the comparison results of the MCTS rule with other classical pivot rules on NETLIB.

Red indicates the best results and blue indicates suboptimal results. The first column represents the

name of instances. The second to seventh columns are respectively the minimum pivot iterations of

Python’s linprog function, the Dantzig rule [7], the Bland rule [2], the steepest-edge rule [10], the greatest

improvement rule [21] and our MCTS rule. The initial feasible basis of Python’s linprog function is

determined by its own setting, while others are based on the method proposed in Subsection 5.1. The

last column is execution time of the MCTS rule.

It is easy to conclude that the MCTS rule yields the least number of pivot iterations far less than

others on all the instances listed, especially for the problem ADLITTLE. The greatest improvement rule

has the least number of pivot iterations among the classical rules. In contrast, our method achieves only

49.06% of its pivot iterations. Moreover, compared with the Dantzig rule, the MCTS rule gets less than

2.6% of its pivot iterations.

Although the solution time of the MCTS rule is longer than other algorithms, this is still consistent

with our contribution. We aim to determine the optimal pivot iterations and all the corresponding pivot

paths for the input instance. Furthermore, we provide the best supervision labels for the simplex method.

Additionally, in Section 7, we present two methods from the perspective of CPU and GPU to improve

the efficiency of collecting supervision labels. Thus, this method is more applicable to super large-scale

problems.

6.4 Comparisons with all the current pivot rules based on ML

In this subsection, we compare our method with two recently proposed machine-learning methods. It is

found that the minimum pivot iteration MCTS rule is much better than the other two methods.

In the first method [35], the supervised learning method DeepSimplex [35] performs better than the

unsupervised learning method. Therefore, we only compare DeepSimplex [35], which gets the best

performance of the Dantzig rule and the steepest-edge rule as the supervised signal. Thus, the results do

not exceed those of these two methods. As Tables 2 and 3 show, the worst number of pivot iterations of

the MCTS rule in all the instances is 80% of Dantzig’s. In the best case, the number of pivot iterations

is less than 0.4% of Dantzig’s. Compared with the steepest-edge rule, the worst pivot iterations of the

MCTS rule in all the instances is only 77.78%. Moreover, in the best case, the pivot iteration is only

27.27% of the steepest-edge rule. Additionally, Table 4 shows that the MCTS rule is significantly better

than the Dantzig and steepest-edge rules on NETLIB. Therefore, we conclude that the MCTS rule can

obtain better pivot iterations than DeepSimplex [35].
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The second method [1] is learned in a supervised manner with the best label of Dantzig’s rule, the

hybrid (DOcplex’s default) rule, the greatest improvement rule, the steepest-edge rule and the devex

rule. Especially, it is remarkable that the MCTS rule provided more effective labels with minimum

pivot iterations. From the experimental results of their article [1], we know that the best result of the

average number of pivot iterations is 99.54% of the number of the steepest-edge rule. In contrast, the

performance of the MCTS rule on the worst instance is 77.78% of the steepest-edge rule, as shown in

Tables 2 and 3. Moreover, the best result obtained by the MCTS rule is only 33.33% of the pivot iterations

of the steepest-edge rule. Furthermore, in NETLIB, the pivot iterations yielded by the MCTS rule can

even reach 43.33% of the steepest-edge rule, which is far less than 99.54%.

6.5 Findings of multiple pivot paths

Providing multiple pivot paths for the simplex method is the result of taking advantage of the randomness

of the MCTS rule. Table 5 shows multiple optimal pivoting paths found for five representative problems,

which cannot be yielded by previous methods. Different pivoting paths are the optimal pivoting sequences

with minimum pivot iterations. Additionally, Figure 5 shows the relationship between the number of

different pivot paths found and the algorithm executions on several representative instances mentioned

above. We use highlighted points to mark the executions of a newly found pivot path. It can be concluded

that under the initial executions, the proposed MCTS rule can find some paths. Furthermore, with the

increase of algorithm executions, the number of found paths also increases.

6.6 Ablation study

We compare the influence of different C and α values on the average pivot iterations for several

representative instances. Each point is the average result of executing the algorithm five times.

Table 5 Pivoting paths with the minimum number of pivot iterations on five representative instances. The pivoting path

is an ordered sequence of entering basis variables

Problem Index Pivot paths Pivot iterations Objective value

SC50B

1 [1, 24, 36, 12, 23, 35] 6 70.000

2 [1, 35, 12, 24, 36, 23] 6 70.000

3 [1, 35, 23, 36, 12, 24] 6 70.000

4 [1, 35, 24, 12, 36, 23] 6 70.000

5 [12, 35, 1, 24, 36, 23] 6 70.000

6 [23, 35, 1, 36, 12, 24] 6 70.000

rand 232× 504
1 [52, 55, 358, 220] 4 22.287

2 [55, 52, 358, 220] 4 22.287

rand 434× 258

1 [14, 155, 223, 150] 4 5.509

2 [14, 155, 150, 223] 4 5.509

3 [150, 155, 223, 14] 4 5.509

4 [155, 150, 223, 14] 4 5.509

5 [155, 223, 150, 14] 4 5.509

rand 50× 50

1 [1, 48, 28, 19, 21] 5 3.482

2 [28, 48, 1, 19, 21] 5 3.482

3 [48, 28, 1, 19, 21] 5 3.482

rand 300× 300

1 [26, 294, 42, 143, 56, 116, 263] 7 5.915

2 [26, 294, 42, 116, 56, 143, 263] 7 5.915

3 [56, 26, 42, 294, 263, 116, 143] 7 5.915

4 [143, 26, 42, 294, 116, 56, 263] 7 5.915

5 [143, 26, 56, 294, 42, 116, 263] 7 5.915

6 [294, 26, 42, 143, 56, 116, 263] 7 5.915
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Figure 5 (Color online) Multiple paths found vary with the number of algorithm executions. The X-axis represents the

number of algorithm executions, and the Y -axis represents the different pivot paths currently found

C

(a) GlobalFigure

C

(b) LocalFigure

Figure 6 (Color online) Relationship between average pivot iterations and parameter C. The X-axis represents the value

of parameter C, and the Y -axis represents the average pivot iterations found. (a) is the overall effect of several representative

instances. (b) is an enlarged representation of the bottom four lines in (a). The SC50A multi represents an increase in the

executions of SC50A by five times than before to calculate the average value

As the GlobalFigure in Figure 6 indicates, the empirical value of C can lead to the least pivot iterations,

except for SC50A. However, we conduct in-depth experiments and find that SC50A can provide fewer

pivot iterations when the total number of executions increases. Therefore, we believe that the empirical

value of C is reasonable for the MCTS rule in terms of overall performance.

Figure 7 shows the relationship between α and the pivot iterations for different initial explorations.

Formula (4.12) aims to relax the max operator owing to the imprecisely estimated value in the early

stage of exploration. Therefore, we conduct sufficient experiments on explorations of the 1-, 0.5-, 0.4-,

0.3-, 0.2- and 0.1-times columns of the constraint matrix of the instances to be solved. Formula (4.12) is

effective when explorations are less than or equal to 0.1 times columns. Furthermore, when the number

of explorations is 0.1 times columns, α achieves a consistently good effect with a value of 0.3. Therefore,

we set dynamically adjusted α for the MCTS rule. When the number of explorations is less than or equal

to 0.1 times columns, α is set to 0.3. For the other cases, α was set to 1.
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(a) ExploreNum = 1 × ColNum (b)  ExploreNum = 0.5 × ColNum 

(c)  ExploreNum = 0.4 × ColNum (d)  ExploreNum = 0.3 × ColNum

(e)  ExploreNum = 0.2 × ColNum (f)  ExploreNum = 0.1 × ColNum 

Figure 7 (Color online) Relationship between the average number of pivot iterations and α under different initial

explorations. The X-axis represents different problems, and the Y -axis represents the average pivot iterations

7 Conclusion

Based on the proposed SimplexPseudoTree structure and the reinforcement learning model, the MCTS

rule can determine all the shortest pivot paths of the simplex method. In addition, our method provides

the best supervised label-setting method for the simplex method based on supervised learning. The

MCTS rule can evaluate the pros and cons of entering basis variables individually, significantly reducing

the exploration space for combinatorial optimization problems. Therefore, the proposed method can find

the minimum pivot iterations and provide a method to find multiple shortest pivot paths. This idea can

also be used to find multiple optimal solutions for other combinatorial optimization problems that can

be modeled as imitative tree structures. Furthermore, we prove that the MCTS rule can find polynomial

pivot iterations when the number of vertices in the feasible region is Cm
n . The complete theory and

comprehensive experiments demonstrate that the MCTS rule can find multiple optimal pivot rules.
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8 Further work

The multiple pivot paths determined by the MCTS rule can be used to construct flexible labels for the

simplex method. Therefore, we can design the supervised learning method of the optimal pivot rule for

the simplex method of linear programming. Furthermore, deep learning can be used to construct more

efficient and time-effective pivot rules. In this manner, we can improve the redundancy of the traditional

pivot rule and the low time efficiency of the MCTS rule.

Additionally, we introduce two implementation techniques to improve the time efficiency of the

proposed method. These techniques are introduced from the perspectives of the CPU and GPU. Both

methods are designed to solve the time-consuming process of sequential execution in the exploration

stage. First, rewriting CUDA allows several explorations to be performed simultaneously. Thus, the

time efficiency is reduced by dozens or even hundreds of times. In addition to using GPU computing by

rewriting CUDA, the implementation of multithreading provides a method to improve the time efficiency

of CPU devices. Nexplore explorations can be divided into Nexplore/Nthreads groups by grouping, where

Nexplore represents the number of explorations, and Nthreads represents the number of threads of the

computer. In each group, all the threads simultaneously perform exploration at the same time. The

number of explorations is a multiple of computer threads; however, the time is the same as that of a

single exploration. The reduction in time efficiency is directly proportional to the number of threads in

the computer.
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