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Abstract This paper aims at introducing Hs and H robustness into the well-known characteristic model-
based golden-section adaptive control law, and applying the robust adaptive control scheme to the attitude
control of hypersonic cruise vehicles that are subject to external disturbances and aerodynamic coefficients un-
certainties. When maneuvering at ultra high speeds, the attitude system of the hypersonic cruise vehicle is
extremely sensitive to external disturbances and aerodynamic coefficients variations, and therefore the adap-
tiveness and the robustness of the attitude system are crucial during the controller design. To enhance the
robustness of the existing golden-section adaptive control law, a golden-section robust adaptive control law is
proposed. Compared to the existing control law where the design of the parameter A\ depends on experience and
is carried out offline, linear matrix inequality-based synthesis of A is proposed such that the closed-loop system is
stable with guaranteed Hz and H performance. It is suitable for online computing and provides a time-varying
A(k) that is adjusted towards the optimal Ho and Heo performance. When being applied to the attitude control
of hypersonic vehicles during re-entry, the adaptive nature of the proposed control law provides the attitude
system the capability to accommodate large flight conditions, and its Hy and Hoo robustness brought by A(k)
guarantees satisfying tracking performance in the presence of disturbances including both external disturbance

and absolute aerodynamic coefficients errors.
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1 Introduction

Research on hypersonic cruise vehicles could be dated back to 1963 characterized by the first successful
flight of X-15 hypersonic vehicle at Mach 6.7 and an altitude of 12 km. Over the last decades, numerous
scientists and engineers have contributed themselves into this challenging field. The successful flight
experiments of the scramjet-powered hypersonic cruise vehicle X-43A in 2004 at Mach 7 and Mach 10 are
an inspiring step into the future [1]. Prominent features of hypersonic cruise vehicles include (1) short
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developing cycle, (2) global reach within 2 hours, and (3) affordable and reliable access to space, all
of which have both commercial and military implications. However, these features are accompanied by
tremendous challenges where one of the most critical issues is the attitude control [2,3].

The attitude dynamics of hypersonic cruise vehicles are generally depicted by a 6-DOF nonlinear
model with strong couplings between variables. A significant amount of literatures has been devoted
to the attitude control of hypersonic vehicles from various perspectives. When treating the nonlinear
model directly, the adaptive control [4,5], the robust control [6,7], and the sliding mode control [8] are
some of the most popular methods. The dynamic inversion control, which provides an effective way
to overcome the nonlinearity of the system, has also been investigated in quite a few literatures [9-11].
Because of the slowly varying nature during the gliding phase, linearization is carried out at several trim
conditions. To improve the dynamic performance, the switching among different controllers is based on
the gain-scheduling technique [12]. Other methods such as the tangent linearization control [13] over
the flight envelope, and very recently, the support vector regression-based method [14], have also showed
their potentials. Combinations of several methodologies provide satisfying performance as well [15].

As can be seen, research on hypersonic cruise vehicles has experienced blooming development over the
past few years. However, the well-known hypersonic cruise vehicle HTV-2 (belongs to the DARPA /Air
Force Falcon Technology Programme) underwent two subsequent failures in 2010 and 2011. Flying at a
velocity of up to Mach 20, this program propels the exploration of hypersonic vehicles into the next era,
and however again, reminds us of the rough road to go.

Compared to aircrafts operating within the conventional speed range, hypersonic cruise vehicles flying
at a speed above Mach 5, or even cruising at Mach 20, will experience ultra high dynamic pressure,
which, together with its intrinsic configuration, will further result in an extremely vulnerable or sensitive
system in the presence of aerodynamic coefficients uncertainties and external disturbances. Because of the
limited flight experiments and inadequate ground test facilities, aerodynamic coefficients uncertainties
also show serious deviations in both an absolute manner and a relative manner, which brought huge
challenges in controller design. Most literatures concerning parameter uncertainties are restricted to
relative errors, as, for example, in [6,16]. In [16], aerodynamic uncertainties were overcome by adding an
adaptive component to the baseline controller. Similar to many other literatures, the controller design
is based on the linearized model that is obtained at several trim conditions. However, in the presence
of absolute errors, there may exist an excursion on the trim condition that affects the corresponding
linearized model, and consequently the stability of the closed-loop system. Only a limited number of
literatures has included both the two types of uncertainties, as in [14]. According to our previous work,
aerodynamic coefficients uncertainties, the absolute offsets in particular, are fatal to the stability of the
attitude system. This phenomenon becomes more prominent when vehicle maneuvers at high Mach
numbers and in relatively dense atmosphere. This observation motivates the present study.

On the other hand, the well-known characteristic model, which was proposed in the 1990s by Wu,
has been developed for more than 20 years and accommodated by the golden-section adaptive control
law [17,18]. The essence of the characteristic model is to use a low-order discrete time-varying system
to approach a high-order nonlinear or linear system based on the characteristics of the plant and control
performance requirements. Rather than dropping information as in reduced-order modeling, it compress-
es/integrates all the information of the high-order model into several characteristic parameters. Based on
this characteristic model, golden-section adaptive control law was further proposed with the prominent
features including both easy implementation and guaranteed stability during the parameter convergence,
as compared with other adaptive control laws. The characteristic model theory has bred a few inspiring
methodologies. In [19,20], fuzzy model and the characteristic model were combined into the fuzzy dy-
namic characteristic model, which inherits the advantages of online adaption and easy implementation
that are brought by characteristic model, and more precise modeling that is brought by the fuzzy model.
The characteristic model was also introduced into the model predictive control so as to avoid model
mismatching [21]. This control scheme has already been applied to more than 400 systems belonging
to 10 kinds of engineering plants in the fields of astronautics (such as in the rendezvous and docking
of Shenzhou-8 spacecraft [22]) and industry [17,23]. In recent years, its potential in hypersonic vehicle
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control was explored during both cruising phase [20,24] and climbing phase [25].

To this end, towards the nonlinearity of the attitude dynamics during the re-entry phase, this paper in-
troduces the characteristic model to provide a control-oriented model where the characteristic parameters
are identified online so as to suit the changing environment and flight status. Golden-section adaptive
control law is designed for stable tracking of the commanded angles. The absolute parameter uncertain-
ties are treated as an external disturbance to the system, and thus Hs/H, robustness is incorporated
into the existing golden-section adaptive control law through its parameter A(k) at each sampling time.
Because of the non-uniqueness of A(k), LMI-based criterions are proposed that provide an effective way
to adjust the parameter A rather than tuning it according to the designer’s experience. When applying
the robust adaptive control scheme to hypersonic cruise vehicles during re-entry, in the large time scale,
it depends on the adaption of the characteristic parameters to restrain the states near the commanded
value, and during each sampling interval, it relies on A(k), in particular, to compensate the influences
brought by absolute parameter uncertainties and external disturbances. This control scheme integrates
the adaptive control and the robust control in a cooperative way.

The rest of the paper is organized as follows. Section 2 introduces the backgrounds on the characteristic
model, and builds the characteristic model of the hypersonic cruise vehicle. Section 3 discusses the
existence of the coefficient A in the golden-section adaptive control law, and further explores the synthesis
of A(k) that improves the Hy/H robustness based on the state feedback control and the output feedback
control, respectively. Section 4 demonstrates the effectiveness and the prominent features of the proposed
control scheme through the hypersonic attitude control. Conclusion is provided in Section 5.

2 Characteristic modeling of hypersonic cruise vehicles

2.1 The characteristic model and the golden-section adaptive control law

Let R be the set of real numbers. The Ly norm and the L, norm of a signal (k) € R", k =0,1,2,... are
la(k)l2 = (S50 l2(0]2) " and (k)] = supyso [2(R)] respectively, where [[a(k)| = /7T (E&)a(k)
is the Euclidian norm of the vector.

In the following context, the characteristic model and the golden-section adaptive control law are
introduced. The related existing results inherited from [17,18,24,26,27] are presented in the lemmas and
remarks.

The general transformation function for a single-input-single-output (SISO) linear time invariant sys-

tem is
b S™ + by18™ L+ - 4 bys + by

S+ ap_18" " 4+ ais+ag

where m < n are positive integers and a;, b; € R, b,,, # 0.

G(s) = (1)

If G(s) in (1) has v zero eigenvalues, v2 non-zero real eigenvalues \;, i = 1,...,72, and 3 pairs of
complex eigenvalues a; +15;, i = 1,..., 73, its decomposed form is then
71 vi r Y3 v DiiS + 4
Gl =3 % +ZZ PR WD DD DY ree - aweors
=1 ’Lljl 11]1 S—Oé +61)

For the discretization of continuous system G(s), the following assumption on the sampling time A; is
made:

Assumption 1.
Ay < min{[Al,|A], max (r/Fi, e/M)},

where e is sufficiently small, M is the upper bound of |y(t)|7 y = G(s)u, and

2
A()\):min(max){)\l,... )\W,Oq—i-ﬁ oy Oy F V3}.
a;
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Figure 1 The three variables lie in a prism.

The characteristic model for the linear system G(s) is then

Lemma 1 ([18]). Consider a linear time invariant system G(s) under Assumption 1, if G(s) has no
eigenvalues on the imaginary axis, and when the control requirement is position keeping or tracking, its
characteristic model has the following second-order difference form:

y(k+1) = fik)y(k) + fa(k)y(k — 1) + go(k)u(k), (2)
where go(k) = O(A;) and
2,24 240, X>A>0, [—(1+2A),-1], X>A>0,
2+ 2A¢[\, ], Otherwise, —1— 244\, )], Otherwise.
Remark 1.  To improve the transient performance of the closed-loop system, there is sometimes an

additional factor g1 (k)u(k—1) being added to y(k+1). In engineering applications, when treating a mini-
mal phase system or a weakly non-minimal phase system, this factor is always omitted for simplicity [27].
Thus, the characteristic model (2) is more commonly used rather than the one discussed in [18].

The parameters f; and g; in the characteristic model are identified online based on the least square
method or the gradient method [28]. Let fl and §; be the estimations of f; and g;, respectively. The
triplets I = [f1, f2,90] and T' = [f1, fa, §o] belong to a prism whose eight vertexes are denoted by
T = [f1i, f2i, Goi], i =1,2,...,8. The prism is determined according to the sampling time and the layouts
of the open-loop eigenvalues, that is, A;, A, and A. When A, is relatively large, the bound is comparatively
loose. For a second-order system when A;/Ty = 1/3 with T, being the minimal equivalent time constant,
the transverse section of the prism is a diamond, as for example shown in Figure 1. According to the
layouts of the pair of eigenvalues in the continuous domain, the loose bounds, or the convex sets where
the characteristic parameters belong to have three different cases (please refer to Chapter 5 in [27] for
details).

When the estimations fl and gg are confined within the given convex hull, the corresponding estimated
output g(k) is such that

Remark 2.  The transient estimation error dy(k) = (k) — y(k) is O(A:), and the steady modeling
error is zero.

Lemma 2. The system (2) in Lemma 1 is stable under the golden-section adaptive control law

— [l fi(R)y(k) + I fo(k)y(k — 1)]
A+ go(k) ’

u(k) =

where [; = 0.382, I = 0.618 and A\ € R.
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2.2 Characteristic modeling of the longitudinal dynamics

In addition to the high-order LTI system, it has further been proved that with an appropriate sampling
time, the characteristic model (2) and the control law (3) also apply to the linear time-varying system
and nonlinear system [27], including the attitude dynamics of hypersonic vehicles [24,25].

We consider hypersonic vehicles that maneuver with the engine off during the re-entry, and focus on
the gliding and the terminal area energy management (TAEM) phase. In such a case, the hypersonic
vehicle is subject to only aerodynamic force and gravity. Thus, its dynamics equation in the longitudinal
plane proposed by Bolender et al. [29] has the simple form of

Vz—%D—gsin’y, 7 =Vsiny, 4= mLVL_ (% - %) cosy, a=q—7, = %T, (4)
where V, 7, v, o, q, m, My, I,, D, L, g, and . are the vehicle velocity, the radial distance from the
Earth’s center, the flight path angle, the angle of attack (AOA), the pitch rate, the vehicle mass, the
pitching moment, vehicle y-axis inertia per unit width, the drag, the lift, the gravity acceleration, and
the pitching control surface deflection, respectively. Note that the thrust 7' is omitted as the hypersonic
vehicle we considered here is a glider that depends on the high lift-to-drag ratio for long-range gliding
rather than a scram-jet powered engine.

When concentrating on the attitude dynamics, variables V' and r are generally considered as slow
modes, compared to fast modes o and J., and thus are treated as constant values. Meanwhile, the lift
force and the drag force are calculated according to L = gSC, and D = gSCp, where g = 1/2pV? is the
dynamic pressure and p is the air density. The lift and drag coefficients Cr, and Cp are approximated by
fitting the experimental data with second-order polynomials, such as the one in [30], where C, and Cp
are not sensitive to AOA or My. In other words, when concentrating on the dynamics of «, the lift L
and drag D could be taken constant as well.

The dynamics of the AOA has a relative degree of 2 [24]. Thus its second-order differential equation
derived from (4) is

. 1/2queflremey(a; 66) _ qgr — V2

v = ~ 1/26‘S’reflrefcmy(06,(se) N
A 1y Vr =

")/Sin’yw I f(aa(se)a (5)
Y

where Syer and l.of are the reference area and reference length, respectively, and the aerodynamic co-
efficients Cy,y in the longitudinal plane is obtained by the linear interpolation method. Note that for

vehicles flying at Mach 5 and above, the first item in (5) is generally greater than 0.1, while the second
_Vv2

gTVT

simplicity.

The nonlinear function f(«, d.) is such that

() [F(alt + At),b.(t + AD)| — [F(alt), 5. (2)] < MAL, M > 0;
(ii) the partial differentials of f(«a,d.) on « and 4. are bounded;
(iii) £(0,0) = 0.

According to the characteristic model in Section 2, with an appropriate sampling time A; and when

item 4/siny belongs to 10~4. Thus, the second item could be omitted during the abbreviation for

the control requirement is angle keeping or tracking, the characteristic model for the angle of attack « in
(5) is
a(k+1) = fi(k)a(k) + fa(k)a(k — 1) + go(k)de (k). (6)
Similar analysis and the second-order characteristic model apply to the roll angle and the sideslip angle
as well.

3 Golden-section robust adaptive control law

During the re-entry of the hypersonic vehicle, its ultra high speed and its intrinsic configuration produce
an extremely sensitive attitude system. Measurements on the aerodynamic coefficients become inadequate
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and are beyond the capability of ground wind tunnels test. Small aerodynamic coefficients uncertainties,
the absolute uncertainties in particular, may drag the trim conditions away from the designed ones such
that controllers that are designed for the linearized models are no longer reliable, and hence jeopardize
the stability. Although the attitude system is stable, its transient performance may not be maintained
in a satisfying level.

Although both the absolute offset and the relative offset are caused by disturbances to the aerodynamic
coeflicients, the relative error only affects the nonzero coefficients, while the absolute error further affects
the zero coefficients. For example, in the nominal case when the elevon deflection is zero, that is, 6. = 0,
the corresponding pitching moment coefficient Cyo = 0, which means it has no control effort on the angle
of attack. When absolute error AC,, # 0, the new pitching moment coefficient is Crny = Cnyo+ACmy #
0, that is, elevon on its zero position will now produce a pitching moment that affects the angle of attack.
In the presence of absolute error, this phenomenon becomes more prominent on the sideslip channel
where the rudder may expect a nonzero deflection so as to overcome the unexpected yaw moment at zero
sideslip angle.

Although the absolute offset could not be explicitly depicted by the standard characteristic model (6),
it is in the essence a norm-bounded external disturbance that could be merged into the characteristic
model (6) in the form of

a(k+1) = fr(k)a(k) + f2(k)alk — 1) + go(k)de (k) + Bi(k)w(k), (7)

where the absolute offset d455 of the aerodynamic coefficients is incorporated into w(k) and its relative
offset d,.¢; is accommodated by purely the adaption of the characteristic parameters.

By treating the absolute errors as external disturbances, the robustness of the system in the presence of
exogenous disturbances should be strengthened during controller design so as to cope with the excursion of
the trim conditions. In the presence of various uncertainties and disturbances, Hy and H,, performances
are two of the most important robustness criterions that are used to evaluate the ability to resist exogenous
disturbances.

The mixed Hs/Hs robust control problem has been discussed in numerous literatures concerning
either the topic of cost-guaranteed filtering problem with state-error variance constraints [31], or the
topic of robust controller design [32] even in a decentralized scheme [33]. When dealing with time-
varying systems, gain-scheduled Hs/H, control has been proved efficient to engineering problems [34].
However, the design of the conventional Hs and/or H, controllers relies strongly on the system model,
which itself is a crucial issue to the research of hypersonic vehicles. A common way is to use the linear
model obtained at the trim condition. Because of the severe parametric uncertainties and aerodynamic
changes [35,36], a large amount of trim conditions are expected so as to deal with the wide range of
flight conditions during the re-entry phase, especially at low altitudes. In comparison with the constant
controller, adaptive control that adjusts its parameters online is a more rational way for the attitude
control during the entire re-entry phase. Thus, to fit the large flight conditions and to improve the
transient performance in the presence of uncertainties and disturbances, the combined scheme of mixed
H,/H, robustness and the golden-section adaptive control for hypersonic vehicles has a strong demand
in practical applications.

Based on the conventional golden-section control law (3), a more intelligent golden-section adaptive
control law is proposed with a time-varying A\(k):

[ f1(k)y(k) + o fa(k)y(k — 1)] (8)
A(k) + go(k)

In the rest of the paper, the main focus is on seeking an effective and efficient way to determine A(k)

online, as compared with choosing a constant A\ offline according to experience.

u(k) = —

Problem 1. Find A(k) such that system (2) under controller (8) is stable and, for all admissible exogenous
disturbance w(k), criterions (¢) and (i¢) are satisfied:
(i) the Hy gain of the transfer function T,__,, from w(k) to the corresponding outputs z.. (k) satisfies

Joo = I Tzcwll oo <3 9)
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(ii) the Hy gain of the transfer function T,,, from w(k) to the corresponding outputs zo(k) is guaran-
teed by
JQ = HTzszQ < j7 j S RJF) (10)

where J is the upper bound of the Hy gain in the worst case.

The golden-section adaptive control law (8) with A(k) satisfying the above criterions is then called a
golden-section robust adaptive control law.

3.1 The existence of \(k)

It has been proved in [26] that for a second-order time-invariant system whose characteristic model is a
minimum phase one, the parameter X in (3) equals zero, and when it is a non-minimum phase system but
is stable in the open loop, there always exists A > 0 such that w(k) in (3) is a stable robust controller.
Recently, it has further been proved through the root locus analysis that when the sampling time is small
enough, there always exist A, not necessarily being positive, such that the closed-loop system is stable [37].
These results were concluded according to the classical root locus analysis, and thus are limited to low-
order systems. In this section, we further prove the existence of A from the matrix perturbation theory
perspective, which is ready to be extended to characteristic model of high orders.
At time instance k, the closed-loop system matrix of model (2) with controller (3) is

B 0 1 1
bt fo fr - 225 fu) )
2 A 2 J1 lgo_;’_)\ 1

go

which is further decomposed into

0 1 0 0 .
A, = . |+ R | £ Ag+ A, (12)
kili fa kalafa fo—fohh—hH
where 1 1
9o
b= — =90 kS0, k=l + Lk 13
e A N W o =ls + 11k (13)

Note that the simple relationship between k; and ks is because of the unique property of the golden-section
parameters [; and lp that [; = 3.

Theorem 1. Given a time instance k, there exists A € R such that when I'e Dy, /10 is stable in the
discrete domain.

Proof. See Appendix A.

The system matrices Ay and A, are full rank matrices that are diagonalized by A = X14,X and
A= X"1A.X, respectively, where

R 1 1 - 1 1
X = lkzl2f1+\/M kzzafl—\/M] or X = lk2l2f1+iVM kzlzfl—in]
2 2 2 2

is the eigenvector matrix with its inverse

_ k2l2f17m _ _ kzlgflfim _
o 1 [ RlehovM AP [ -1 VAT
|M| _k2lzf12+m 1 - _k2l2f12+im 1

/]

It has been well-established that the sensitivity of the eigenvalues subject to perturbations is determined
by the condition number of the eigenvectors [38]. That is,

I6A] = 1A — All < [ XHIXT6A] = w(X)[16A], (14)

where #(X) is the condition number of X.
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Theorem 2. Consider the characteristic model (2) whose characteristic parameters are estimated
within the convex set Dg. For a triplet I' and given a time instance k, the closed-loop system A. in (12)
is stable if there exists A such that Ag in (12) is stable.

Proof. When Ay is stable in the discrete domain, |X(2,1)| < 1 and |X(2,2)] < 1. Let || - || be the L
norm, then according to the well-known inequality

max |ag;| < [|Afl2 < Vmnmax|agl, A= [ay] € R™T,
the condition number #(X) in (14) is bounded by

w(X) < S
VIRBB I + 4k fy — 412

= 4/V/IM]. (15)

When A is perturbed by JA, the corresponding variation on its spectral radius is bounded by (14).
According to the upper bound of the condition number shown in (15), it further yields

4 4 .
0A| € ——=2max]|f; — fil-
A < 2

To guarantee pa, <1, it is equivalent that pa, —p; <1—p4 , whose sufficient condition is

I6A]l <

4 o
WQH%,%XM —fil <1=pg4,;
or equivalently,
64max|f, — P < [M|(1—py )7 (16)

When ko belongs to (A8), (A9), or (A10), |M] is bounded and P4, is also upper bounded by € < 1.
Recall that the characteristic parameters f; and fl belong to the set D, whose bound is determined by
the open-loop characteristics and the sampling time. Thus, as long as the sampling time is small enough
so as to restrain the estimation errors within a reasonable bound, there always exists an appropriate ko
that provides adequate stability margin such that inequality (16) is satisfied. The parameter A, which is
uniquely determined by ki or ks, go and gg, is further calculated to guarantee the asymptotic stability
of the closed-loop system under the golden-section adaptive control law (3).

Remark 3. Theorem 2 proves the stability of A. at each time instance k. The stability of the closed-
loop system over the entire time span can be proved based on the stability criterion of slowly time-varying
system, as in [39,40].

When the dimension of A, increases, Theorem 2 applies consistently, as compared to root locus-based
analysis [37] that is restricted to low-order system.

Notice that u(k) in (3) is a time-varying controller whose coefficients are identified online. Thus it
is significant to find an efficient way to solve A online during each time interval as in (8), rather than
choosing an identical A offline.

However, there lacks an analytical method to determine the exact value of A(k) during controller design.
Although Theorems 1 and 2 give the feasible region for A(k), it is not suitable for online computing as
the design of ko and sampling time A; is a recursive process. In particular, finding an appropriate A;
to guarantee condition (16) is blind. At the current stage, it consumes a large amount of time to guess
an appropriate A(k) in practice. Meanwhile, although A(k) is not unique, at the current stage, picking
up A is a random process as the relationship between A and the performance of the closed-loop system
is unknown. Thus, it is demanding to find an effective and reliable way to compute A(k) such that the
closed-loop system is stable and the Hs and H,, performances are guaranteed. This problem is explored
in the next two sections from the state feedback control perspective and the output feedback control
perspective, respectively.
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3.2 State feedback-based parametrization

In the attitude control of hypersonic cruise vehicles, the attitude angles are measurable. Without loss of
generality, choose the measured output matrix Co = [0 1], and the golden-section adaptive control law
is then treated as a state feedback control law where the LMI-based criterions are well-developed. In the
following context it will be shown that the golden-section control law is a structured state feedback law
where challenges arise during the synthesis of A(k).

Setting the states x1(k) = y(k — 1), x2(k) = y(k), system (2) under control law (8) is then

k+1 ~ k
nilk+1)) A (k) nk)) Byw(k), (17)
Ig(k’ + 1) Ig(k'
and the controlled output is
z(k+1) = Cix(k), (18)

where
0 1

[fQ(k) go(igfx(k)ﬁ( ) fi(k )*ll gO(k) fl( )]

By =[0 1]%, and C; = [0 1]. When w(k) € Lo, the output z corresponds to the Hy, performance, and
when w(k) € Lo, it corresponds to the Hy performance.

Matrix fic(k) is a time-varying system matrix because of the time varying nature of f;, g; and the
updates of fl and g;. Parameter A(k) is also calculated at each sampling time simultaneously. In the
remaining context, (k) is usually omitted for simplicity.

During each sampling interval, A, is decomposed into

Ac(k) =

~ 01 0 0 01 0
A, = + w w [1 u} m2 Ay + BoUm, (19)
f2 i —lags S *hﬁfl f2 1 90
where m = — +)\f2 and pu = ﬂl
2
Matrix Ag belongs to a diamond determined by four vertexes Ag;, ¢ = 1,...,4, as in Figure 1. The

control input matrix By belongs to a convex domain determined by two vertexes Bgl and Bay. Thus, /IC
belongs to a convex domain determined by eight extreme matrices

8 8
Qa(Acy) = {A(e) t Ale) = ZéiAch Z O,ZQ = 1} ) (20)

where Ac; = Ag; + Bo;Um. Those extreme matrices are highly related to the plant and the sampling
time A;.

Lemma 3. The closed-loop system (17) with output (18) is exponentially stable with J., < 1 and

Jo < /72 if there exist symmetric matrices H and N;, ¢ = 1,...,8, and a matrix () of appropriate
dimensions such that
N; AciQ  B1 0
TAT_ T Ni 0 TcT
QAL Q+Q QTC 0, (21)
BT 0 I 0
0 ClQ 0 ')’1]
H; C
’ 1Q >0, (22)
Q0T Q+QT —
Tr(H;) < 72, (23)

where A¢i, i =1,...,8 are the eight extreme matrices in 4.
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This sufficient condition integrates the Hs and Ho, performances, as compared to its origin in [41]
where the sufficient conditions for Hy performance and H., performance are provided in a respective
way.

Remark 4. Lemma 3 is only a sufficient condition. Thus, if there is no solution to inequalities
(21)—(23), it is not contradictory to the existence of A concluded in [26].

Recalling (19), the extreme matrix A¢; is an affine function on m. Thus, inequality (21) is a bilin-
ear matrix inequality. A similar problem emerges in our previous work [40] where the bilinear matrix
inequality on the scalar m is transformed into a linear matrix inequality form by introducing a certain
degree of conservativeness. In this paper, to find a feasible way to determine m rather than solving the
NP-hard BMI problem in Lemma 3, the following theory provides an effective way.

Theorem 3. The closed-loop system consisting of (17) and (18) is exponentially stable with Joo < 71
and Jo < /72, if there exist symmetric matrices H and N;, ¢« = 1,...,8, and a matrix ) such that
Egs. (24a) (or (24b)), (25), and (26) are satisfied.

min 7+ 2

s.t.
[ N; (Aogi + B2iU)Q By 0
T(Ap; + B, U)T T_N, 0 TcT 1
i< T @ (Aoi + Bail)" @+Q @G ,m<l, 7= ——, (24a)
Bt 0 I 0 L—m
| 0 c1Q 0 ml |
[ N; (Agi + B2;U)Q By 0
T(Ay; + Bo;UNT T_N, 0 Q*CT 1
Y <7 @ (Ao + Bul)" Q+Q @G ,m>1, r=——, (24b)
BT 0 I 0 m—1
i 0 C1Q 0 ml |
H; C
1Q >0, (25)
QTCl Q+QT - N;
Tr(H;) <72, Vi=1,...,8, (26)
where
0 BoiUQ 0 0
o _ Q"B 0 00
' 0 0 00
0 0 00
Proof. Substituting A¢; into (21) yields
N; (Aoi + B2U)Q By 0
T(Ap; + B, U)T T_N, 0 ToT
Q ( 01 + 21 ) Q + Q Q 1 > (1 _ m)zz (27)
Bif 0 I 0
0 c1Q 0 Ml

Condition (21) in Lemma 3 is equivalent to inequality (27), which, when m < 1, is equivalent to (24a),
and when m > 1, is equivalent to (24b). Conditions (24a) (or (24b)), (25), and (26) is then a generalized
eigenvalue problem.
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When m < 1,
N; (Aoi + B2,U)Q By )
Y <7 | |QT (Ao + B2, U)T Q+QT—N; 0| — ,Y—QTCHTClQ
1
Bf 0 I

Recalling that C; = [0 1], it is easy to conclude that QTCTC1Q is positive semidefinite. Thus, m is
proportional to v. By minimizing 7 = ﬁ, the minimum of m corresponds to the minimum of ~;.
When m > 1, the maximum of m corresponds to the minimum of ;. Thus, the generalized eigenvalue
problem results in the optimal ; + 2, which corresponds to the optimal Hs and H, performances.
By introducing weighting coeflicients to 7 and 2, more flexible design objectives could be covered so

as to suit different control requirements.

Remark 5. This generalized eigenvalue optimization problem can be solved using “gevp” in LMI-
toolbox.

Remark 6. The situation when m = 1 is not included in the theorem. According to (27), when m =1,
it is a positive definite problem.

Based on Lemma 3, Theorem 3 further provides a feasible way to determine m such that the Hs and
H, performances are optimized. In other words, the dynamic performance of the system with w(k) is
optimized when A(k) is parameterized according to Theorem 3.

3.3 Static output feedback-based parametrization

In this section, parameter A(k) is further explored under the static output feedback control scheme.
Although the golden-section adaptive control law is an output feedback control law, the feedback gain
is a 1 x 2 matrix with a particular structure, that is, the two entries are a convex combination of two
extreme values determined by the characteristic model of the plant. According to the analysis in the
previous section, when determining the parameter A(k) or m in (19), the structural restriction on the
feedback control gain is not guaranteed by the conventional feedback controller synthesis. Compared
to the state feedback-based parametrization method, in this section the design of parameter A(k) is
investigated through the output feedback perspective.

To ensure that the control input preserves the specific structure of the golden-section adaptive control
law, the output matrix in the state-space equation of the characteristic model-based system (17) is
rewritten into the following form

$1(k‘ 1 B $1(k’) w u

ch(k—i-l) = Ao (k) (k) + Biw(k) + Ba(k)u(k),
4@01“$)+Dumm+Dumm, (28)
o z1(k)

k) = Cathy |

where

0 1 0 0
‘%WLMMﬁwJ’&lJ’&@)l@w

It is assumed that the measured output g(k) is not corrupted by the disturbance w(k).
The closed-loop system under output feedback controller

CCi= 01, Golk) = = |Bfalhk) Lfi(k)]

u(k) = K(k)j(k), K(k)eR (29)
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is then
x(k+1) = (Ao(k) + B2(k)K (k)Ca(k))z (k) + Biw(k),
Z(k’) = (Cl + Dng(k)Cg(k))w(k:) + an(k'),

where = [y(k — 1) y(k)]T.

Thus, the system matrix Ap in (28) is such that Ag € Qa,(Ao;), where N in (20) equals four, and
By € Qp(Bs;), where N = 2.

The controlled output matrix Cy € Qo (Cy;), where N = 4 and Cy; = —[lafo; 11 f1i] is of full rank
whose UR decomposition is

(30)

—lafoi —l1fri

Coi =UR; =[1 O]l )

Theorem 4. The closed-loop system (28) is exponentially stable with Jo, < 1 and Jo < /73, if there
exist symmetric matrices ;, 1 < i < 4 and matrices M;; € R?*2 P € R*2 with

mi 0
Mij: ij ij | P=[p10}7
Mgy Maa
such that
Qi — Rymyj — m};R;F * * *
AoiRimij + By P — j '
0 Mij 2j Ql * o <0, Zal:]')"'74’ J=12, (31)
CiRim;; + D12 P 0 —el
0 B Di, —mI
< 07 1= 1;273547 (32)
By —Q;
Te(Z;) < v2, ©=1,2,3,4,
where
1, >1
e ol (33)
7, M <L

The feedback gain K = plmfl.

Proof. According to [42], the sufficient condition for asymptotic stability of the closed-loop system under
K =pim;tis
N;(Ag;Rym;j + Bo; P) —N,

] <0, d,0l=1,...,4, j=1,2,

where N; = Qi_l. It then yields
2 4 4
PIPBPBLLILE
il

Recalling that Z? aj =1, Z? ap =1, and Zf a; = 1, according to Schur Complement and by choos-

_Ni * . .
<0, il=1,...,4, j=1,2.
Nl(Aoszm” +B2jp) 7Nl

ing the Lyapunov function V (k) = = (k)(zzl:l a;(k)N;)x(k), the conclusion of asymptotic stability is
obtained.

Also, the sufficient condition for H,, performance of the closed-loop system under the output feedback
controller K = pym; ! is

Qi — Rim;; — m;F]-R;f * x ok

0 —v1I % *

ApiRim; + Boj P By —Qp %
CrviRimij+ Dig; P 0 0 —el
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which further yields inequality (31).
The H, performance is bounded by (32) with the upper bound of v being guaranteed by (33), which
finishes the proof.

Remark 7. The UR decomposition is unique. Thus, R; is uniquely determined by Cy;.

Static output feedback controller design with polytopic uncertainties has been well-developed over the
past years. By modifying the output matrix, we attribute the golden-section adaptive control law to the
framework of static output feedback control such that the existing results are available to be inherited.

The static output feedback-based parametrization method provides a less conservative way to determine
the parameter A(k), as compared with the state feedback-based method.

4 Attitude control of hypersonic cruise vehicles

Simulations are carried out on a hypersonic cruise vehicle weighting 4353 kg with length 12.7 m. The
moment of inertia for the pitching movement is .J, = 34979 kng, the one for the yaw movement is
J, = 39924 kng, and the one for the roll movement is J, = 723 kgm2
plane is the elevon control surface deflection d., and the inputs to the lateral-directional plane are aileron
deflections and rudder deflections, respectively.

. The input to the longitudinal

For a robust adaptive control scheme, in the large time scale, the system depends on the adaption of
the parameters fi, Jo in (8) to restrain the states stay close to the commanded value, and during each
sampling interval, we relay on A(k) in particular for the robust transient performance. Note that the
characteristic model during the re-entry phase of hypersonic vehicle is time-varying. Thus the estimation
error is consistently nonzero. This control scheme integrates adaptive control and robust control in a
cooperative way. In the previous section, stability of the closed-loop system at each time instance k has
been proved. The stability of the closed-loop slowly time-varying system over the entire time span was
proved in our previous work [40].

4.1 Attitude control during the gliding phase: state feedback-based parameterizations

During the gliding phase between an altitude of about 35-60 km, the vehicle maneuvers in a small scale
and the flying environment is relatively benign, compared to the vehicle in the TAEM phase or the pull-up
phase. In our previous work, both golden-section adaptive control law and golden-section time-invariant
control law have been applied to the attitude control during the gliding phase [43]. According to the
simulation results, time-invariant golden-section control law provides comparatively satisfying tracking
performance in compared to system under the golden-section adaptive control law. Thus, in this section,
the extreme matrixes of the prism is set to be constant during the gliding phase, and the parameter A in
the golden-section control law is fixed and is calculated offline.

The gliding phase is initialized at an altitude of 42 km and a velocity of 2.5 km/s. The commanded
angle of attack (AOA) and roll angle varies between 0 and 6 degrees. The sideslip angle is expected to
stay at zero. Disturbances consist of windage and absolute uncertainties on the angle of attack appear at
t=(8k+3)s, k=0,1,..., each of which lasts for 0.8 s with an amplitude of 2 degrees. The disturbances
to the roll angle appear at t = (5k +3) s, k = 1,2,... with an amplitude of 3 degrees and width 0.25 s.
According to Theorem 3, the optimal controller parameters for the angle of attack, roll angle and the
sideslip angle, as denoted by m},
To show the optimality, two additional sets of {mq, mg, mg} are randomly chosen for comparison purpose,
and the simulation results are recorded in Table 1 as well. The tracking of the three angles under the
optimal {m},, m, m}j} are shown in Figure 2(a). Comparisons on the tracking performance of the angle

my, m;g, are calculated using the “gevp” command in the LMI-toolbox.

of attack, roll angle, and the sideslip angle among different controller parameters are shown in Figure 2
(b)—(d), respectively.

The attitude system is stable under all three cases in Table 1. According to the table, the Hs and
He norm of the tracking errors under the set {my,, mg, mj} = {400,50,430} is the smallest among the
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Table 1 Hs and Hoo performances under different m: state feedback-based

H; Heo
Ma meg mg
« 0 B « 0 B
1* 400 50 430 2.0399 3.5847 0.2610 26.2686 36.8598 2.9003
Set 1 2 120 19 130 2.4154 4.1677 0.5166 31.1797 41.1991 5.0501
3 639 300 606 2.0640 3.6327 0.2610 41.5950 50.1657 3.1980
1* 500 100 430 2.0428 3.3065 0.2700 25.5526 36.5474 3.0026
Set 2 2 120 19 130 2.4211 4.1835 0.4909 31.1910 43.9708 5.5247
3 639 300 606 2.0637 3.5018 0.2700 42.6507 49.6544 4.0889
1* 480 120 430 2.0409 3.2512 0.4728 26.0056 39.4361 5.0624
Set 3 2 120 19 130 2.4211 4.1835 0.6520 31.1233 48.3117 7.0478
3 639 300 606 2.0657 3.4836 0.4728 45.7326 50.3341 8.5016
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Figure 2 Simulations under commanded angle set 1: state feedback-based.

(a) Tracking of the three angles under

{mg,mg,mj}; (b) tracking of the angle of attack under different ma; (c) tracking of the roll angle under different my;
(d) tracking of the sideslip angle under different mg.

three cases. In case 2, the parameters are smaller than the optimal set and in case 3, the parameters are
larger than the optimal set, both of which result in higher Hy and H, gains, indicating that the attitude
system is more sensitive to external disturbances and aerodynamic coefficients uncertainties compared to

that of case 1. In other words, although in the presence of windage and uncertainties, the attitude system

under the golden-section adaptive control law with parameters given in Table 1 is stable in all the three

cases, the attitude system under parameter set {m?, m}, mz} has the best dynamic performance among

the three cases, and thus can tolerate the largest scale of absolute coefficient errors. The effectiveness of
the proposed state feedback-based parametrization method is verified.

Figures 3 and 4 show another two similar simulations when tracking different angle sets. The Hs

performance and H,, performance are shown in Table 1 as well. The numerical results also verify the

proposed method.
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Figure 3 Simulations under commanded angle set 2:
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(a) Tracking of the three angles under

{m%&,mz,mz}; (b) tracking of the angle of attack under different ma; (c) tracking of the roll angle under different my;
(d) tracking of the sideslip angle under different mg.
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Figure 4 Simulations under commanded angle set 3: state feedback-based.

(a) Tracking of the three angles under

{mg,mg,mj}; (b) tracking of AOA under different ma; (c) tracking of the roll angle under different myg; (d) tracking of
the sideslip angle under different mg.
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The adjusting of m, during the TAEM phase The adjusting of m,, during the TAEM phase
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Figure 5 TAEM Simulations under commanded AOA 1. Windage and absolute uncertainties appear at t =
35,11 5,19 s,.... (a) Online adjusting of ma(k) = —l2f2K (k) under the output feedback-based parametrization; (b)

zoomed in; (c) tracking of the AOA under different Ko.

4.2 Attitude control during the TAEM phase: output feedback-based parameterizations

To further demonstrate the advantages of the golden-section robust adaptive control law that is designed
to accommodate large range of flight conditions, the TAEM phase initialized at an altitude of 33 km and
a velocity of 2.0 km/s is considered. Disturbance w acting on the AOA is simulated by a periodic pulse
signal at time ¢t = (8k43) s, k = 0,1, ... with an amplitude of 3 degrees and width 0.25 s. For the TAEM
phase, because of the fact that the lateral-directional dynamics are strongly coupled such that the SISO
characteristic model dose not fit, we only focus on the longitudinal dynamics, that is, the control of AOA.
According to Theorem 4, a series of the output feedback control gain K, (k) in (30) is calculated online at
different sets of parameter bounds. For easy comparison to the state feedback-based parametrization, the
value of K, (k) in (29) is transmitted to m in (19), as shown in Figure 5(a). The transient performance
when tracking the commanded AOA is shown in Figure 5(c) under the optimal control gain K (k), as
compared to the transient performance under some randomly chosen and constant parameters K, = 300
and K, = 1000. The Hy norm and H,, norm of the tracking errors in the presence of disturbance are
recorded in Table 2.

According to Figure 5(a), compared to m*(«) during the gliding phase in Table 1, K% (k) is adjusted
near m*(«), which indicates that the characteristic parameters bounds are relatively stable during re-
entry. However, when the angle of attack experiences a sudden change because of disturbances, for
example, at t = 11 s, K, (k) also shows a sudden decrease so as to restrict the Hy and Ho, gain within a
satisfying level, as in Figure 5(b). The value of K, (k) tends to decrease, indicating that the estimation
of go tends to increase as the vehicle descends during the TAEM phase. This observation coincide with
the practical experience that when the velocity decelerate is relatively slow as compared to the increase
of the atmospheric density such that the dynamic pressure increases, it produces stronger control efforts
at the same elevon deflection.

Smaller tracking errors and more stronger robustness to external disturbances and aerodynamic coef-
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Table 2 Hs and Hoo performances of AOA under different K: output feedback-based

Ka H»> Hs
1* {Ka(k)} 2.0493 19.9486
AOA 1 2 300 2.1262 21.5565
3 1000 2.0718 22.5941
1* {Ka(k)} 2.0321 20.3343
AOA 2 2 200 2.1261 21.4657
3 800 2.0364 23.1529
550 ’The ad;iusting :)f m, dl:ring [h? TAENJ phase! 12 ‘ ‘ .
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Figure 6 TAEM simulations under commanded AOA 2. Windage and absolute uncertainties appear at t =
35,11 8,19 s,.... (a) overall mq during the TAEM phase; (b) tracking of the AOA under different Kn: output feedback-
based.

ficients uncertainties are observed under the optimal control gain in Table 2, which validates the effec-
tiveness of the output feedback-based parameterizing algorithm.

Figure 6 and Table 2 show another similar simulation when tracking a different angle of attack. The
numerical results also verify the proposed method.

5 Conclusion

This paper focused on robust adaptive control of a lifting body hypersonic cruise vehicle. The character-
istic model with prominent practical privileges is introduced to the attitude dynamics of hypersonic cruise
vehicles. When designing the golden-section adaptive control law, linear matrix inequality-based criteri-
ons are proposed to determine the parameter A in the control law such that the Hs and H., performances
are guaranteed. In the robust adaptive control scheme, the large flight conditions are accommodated by
the adaption of the characteristic parameters, and the external disturbance and absolute errors on the
aerodynamic coefficients are compensated by the online adjusting of A\(k). Experimental results verified
the effectiveness of the proposed method.

Future work would be in the extension of the results to multiple-input-multiple-output characteristic
model which incorporates the coupling between the longitudinal dynamics and the lateral-directional
dynamics. In such a case, several A(k) at different angles should be adjusted simultaneously, which
increases the dimension of the problem.
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Appendix A Proof of Theorem 1
Let py, be the spectral radius of Ay. The characteristic polynomial of matrix Ay is determined by M: M =
k313 f2 + 4kyl1 fo. Substituting k1 with ks in (13) yields

M = K22 f2 + dko fo — Ala fo.

Case 1: the estimations of fl and fg are such that fg + lg’ff < 0.
In this situation, M has a pair of real eigenvalues as shown in Figure A1l. The sufficient condition for M < 0 is

A<k <A, (A1)
_f £2 3 F2 f — _ i £2 3727
where \ = 2=2= Vb /e g X = g 2l2t VIt /i
14 7 I fi
When M < 0, Ao has a pair of complex eigenvalues, and its spectral radius is Pi, = 7]61[1]?2. Thus, the

sufficient condition to pa, Se< 1, where e > 0, e € R, is
2
lo < ko <lg — —. (AQ)
2

It is easy to conclude that A > I3, and further

R e
A—l2+62/f2= > 2 +ET< 7
I f7 fo Ufife

where iu is the lower bound of fl + fg. When I belongs to the convex domain Ds and when e is sufficiently

(E(laf,, + 1 f2)lzf |, — (L +12)f2) — (1 =) f3),

close to 1, inequality A < l2 — E/fz holds.
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Figure A1 Values of M as a function of k.

Merging of (Al) and (A2) yields B R
A< k2 <min{\,lz —¢/f2}. (A3)

On the other hand, the sufficient condition to M > 0 is

ko > 2 or ko < A (A4)

A . . . S kolo f1+4/k212 244k 14 f
When M > 0, matrix Ao has a pair of real eigenvalues, and its spectral radius is Pa, = 2lafy 222f1 s

Thus, the sufficient condition to Pi, Se€<lis

lo < k2 <p, (A5)
— +bf
where p = f2+€l22f?1 ’
When

fL+BfE <o, (A6)

the relationships between A, X, and p are

—2f. 24 lof. 1 P p s s
R s (—Falfo + Llaf2) = (fo + dlafi)?) < 0

Lf2 foteafi  LfA(fo+elafr)

and

Y pm A (4 1) WPt VP8R ¢-daifi  —2h-BF E-difs
—pu=A—l—(p—10)= - - = - _ — = —.

L f? Jo+elafi I f2 fo+elafu
When T'; belongs to the convex domain Dj such that fi + f is lower bounded and under condition (A6), inequality

X > p holds. _
Merging (A4) and (A5) according to the relationship A < p < A, we get

la <k <A (AT)

When M = 0, it is necessarily k2 = X or ko = A, where ko = )\ is a feasible solution in the sense that

p(Ao) <e<1.
Thus, when f2 + 13 f < 0, the feasible region of k2 determined cooperatively by (A3) and (A7) and k2 = ) is

lo < ks < min{X, lo — E/fg}. (A8)

Case 2: the estimations of fl and fg are such that .fg + lgff > 0.
In this situation, M is consistently positive, that is, M > 0, Vk2 € R, and Ao has a pair of real eigenvalues.

AN T i ] . . i
kalafit k2;2f1 kbl Thus, the feasible region of ks when fo 4 I3 ff > 0 is

The spectral radius of Ao is Pi, =

) .
l

lo <k < % (A9)

fo+elafi
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Case 3: the estimations of f1 and fg are such that fg + lg’f}2 = 0. M is non-negative. When ks = ;2;022 = 2la,
1J3
372
M = 0, and the spectral radius is Pa, = 1Lj%2fl =2y > 1. When kg # 2l2, the sufficient condition to pa, Se<l
11

is l2 < k2 < p. Thus, for the special case when fg = —l;’f?, the feasible region is
lo < ks <p, ka#2ls. (AlO)

To conclude, according to the estimations of fl and fg, there always exist a feasible region for k2 belonging to
one of the three cases such that the eigenvalues of matrix Ao lie within the disc of radius e < 1.



