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Abstract This paper aims at introducing H2 and H∞ robustness into the well-known characteristic model-

based golden-section adaptive control law, and applying the robust adaptive control scheme to the attitude

control of hypersonic cruise vehicles that are subject to external disturbances and aerodynamic coefficients un-

certainties. When maneuvering at ultra high speeds, the attitude system of the hypersonic cruise vehicle is

extremely sensitive to external disturbances and aerodynamic coefficients variations, and therefore the adap-

tiveness and the robustness of the attitude system are crucial during the controller design. To enhance the

robustness of the existing golden-section adaptive control law, a golden-section robust adaptive control law is

proposed. Compared to the existing control law where the design of the parameter λ depends on experience and

is carried out offline, linear matrix inequality-based synthesis of λ is proposed such that the closed-loop system is

stable with guaranteed H2 and H∞ performance. It is suitable for online computing and provides a time-varying

λ(k) that is adjusted towards the optimal H2 and H∞ performance. When being applied to the attitude control

of hypersonic vehicles during re-entry, the adaptive nature of the proposed control law provides the attitude

system the capability to accommodate large flight conditions, and its H2 and H∞ robustness brought by λ(k)

guarantees satisfying tracking performance in the presence of disturbances including both external disturbance

and absolute aerodynamic coefficients errors.
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1 Introduction

Research on hypersonic cruise vehicles could be dated back to 1963 characterized by the first successful

flight of X-15 hypersonic vehicle at Mach 6.7 and an altitude of 12 km. Over the last decades, numerous

scientists and engineers have contributed themselves into this challenging field. The successful flight

experiments of the scramjet-powered hypersonic cruise vehicle X-43A in 2004 at Mach 7 and Mach 10 are

an inspiring step into the future [1]. Prominent features of hypersonic cruise vehicles include (1) short
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developing cycle, (2) global reach within 2 hours, and (3) affordable and reliable access to space, all

of which have both commercial and military implications. However, these features are accompanied by

tremendous challenges where one of the most critical issues is the attitude control [2,3].

The attitude dynamics of hypersonic cruise vehicles are generally depicted by a 6-DOF nonlinear

model with strong couplings between variables. A significant amount of literatures has been devoted

to the attitude control of hypersonic vehicles from various perspectives. When treating the nonlinear

model directly, the adaptive control [4,5], the robust control [6,7], and the sliding mode control [8] are

some of the most popular methods. The dynamic inversion control, which provides an effective way

to overcome the nonlinearity of the system, has also been investigated in quite a few literatures [9–11].

Because of the slowly varying nature during the gliding phase, linearization is carried out at several trim

conditions. To improve the dynamic performance, the switching among different controllers is based on

the gain-scheduling technique [12]. Other methods such as the tangent linearization control [13] over

the flight envelope, and very recently, the support vector regression-based method [14], have also showed

their potentials. Combinations of several methodologies provide satisfying performance as well [15].

As can be seen, research on hypersonic cruise vehicles has experienced blooming development over the

past few years. However, the well-known hypersonic cruise vehicle HTV-2 (belongs to the DARPA/Air

Force Falcon Technology Programme) underwent two subsequent failures in 2010 and 2011. Flying at a

velocity of up to Mach 20, this program propels the exploration of hypersonic vehicles into the next era,

and however again, reminds us of the rough road to go.

Compared to aircrafts operating within the conventional speed range, hypersonic cruise vehicles flying

at a speed above Mach 5, or even cruising at Mach 20, will experience ultra high dynamic pressure,

which, together with its intrinsic configuration, will further result in an extremely vulnerable or sensitive

system in the presence of aerodynamic coefficients uncertainties and external disturbances. Because of the

limited flight experiments and inadequate ground test facilities, aerodynamic coefficients uncertainties

also show serious deviations in both an absolute manner and a relative manner, which brought huge

challenges in controller design. Most literatures concerning parameter uncertainties are restricted to

relative errors, as, for example, in [6,16]. In [16], aerodynamic uncertainties were overcome by adding an

adaptive component to the baseline controller. Similar to many other literatures, the controller design

is based on the linearized model that is obtained at several trim conditions. However, in the presence

of absolute errors, there may exist an excursion on the trim condition that affects the corresponding

linearized model, and consequently the stability of the closed-loop system. Only a limited number of

literatures has included both the two types of uncertainties, as in [14]. According to our previous work,

aerodynamic coefficients uncertainties, the absolute offsets in particular, are fatal to the stability of the

attitude system. This phenomenon becomes more prominent when vehicle maneuvers at high Mach

numbers and in relatively dense atmosphere. This observation motivates the present study.

On the other hand, the well-known characteristic model, which was proposed in the 1990s by Wu,

has been developed for more than 20 years and accommodated by the golden-section adaptive control

law [17,18]. The essence of the characteristic model is to use a low-order discrete time-varying system

to approach a high-order nonlinear or linear system based on the characteristics of the plant and control

performance requirements. Rather than dropping information as in reduced-order modeling, it compress-

es/integrates all the information of the high-order model into several characteristic parameters. Based on

this characteristic model, golden-section adaptive control law was further proposed with the prominent

features including both easy implementation and guaranteed stability during the parameter convergence,

as compared with other adaptive control laws. The characteristic model theory has bred a few inspiring

methodologies. In [19,20], fuzzy model and the characteristic model were combined into the fuzzy dy-

namic characteristic model, which inherits the advantages of online adaption and easy implementation

that are brought by characteristic model, and more precise modeling that is brought by the fuzzy model.

The characteristic model was also introduced into the model predictive control so as to avoid model

mismatching [21]. This control scheme has already been applied to more than 400 systems belonging

to 10 kinds of engineering plants in the fields of astronautics (such as in the rendezvous and docking

of Shenzhou-8 spacecraft [22]) and industry [17,23]. In recent years, its potential in hypersonic vehicle
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control was explored during both cruising phase [20,24] and climbing phase [25].

To this end, towards the nonlinearity of the attitude dynamics during the re-entry phase, this paper in-

troduces the characteristic model to provide a control-oriented model where the characteristic parameters

are identified online so as to suit the changing environment and flight status. Golden-section adaptive

control law is designed for stable tracking of the commanded angles. The absolute parameter uncertain-

ties are treated as an external disturbance to the system, and thus H2/H∞ robustness is incorporated

into the existing golden-section adaptive control law through its parameter λ(k) at each sampling time.

Because of the non-uniqueness of λ(k), LMI-based criterions are proposed that provide an effective way

to adjust the parameter λ rather than tuning it according to the designer’s experience. When applying

the robust adaptive control scheme to hypersonic cruise vehicles during re-entry, in the large time scale,

it depends on the adaption of the characteristic parameters to restrain the states near the commanded

value, and during each sampling interval, it relies on λ(k), in particular, to compensate the influences

brought by absolute parameter uncertainties and external disturbances. This control scheme integrates

the adaptive control and the robust control in a cooperative way.

The rest of the paper is organized as follows. Section 2 introduces the backgrounds on the characteristic

model, and builds the characteristic model of the hypersonic cruise vehicle. Section 3 discusses the

existence of the coefficient λ in the golden-section adaptive control law, and further explores the synthesis

of λ(k) that improves the H2/H∞ robustness based on the state feedback control and the output feedback

control, respectively. Section 4 demonstrates the effectiveness and the prominent features of the proposed

control scheme through the hypersonic attitude control. Conclusion is provided in Section 5.

2 Characteristic modeling of hypersonic cruise vehicles

2.1 The characteristic model and the golden-section adaptive control law

Let R be the set of real numbers. The L2 norm and the L∞ norm of a signal x(k) ∈ R
n, k = 0, 1, 2, . . . are

‖x(k)‖2 =
(
∑∞

k=0 ‖x(k)‖2
)1/2

and ‖x(k)‖∞ = supk>0 ‖x(k)‖, respectively, where ‖x(k)‖ =
√

xT(k)x(k)

is the Euclidian norm of the vector.

In the following context, the characteristic model and the golden-section adaptive control law are

introduced. The related existing results inherited from [17,18,24,26,27] are presented in the lemmas and

remarks.

The general transformation function for a single-input-single-output (SISO) linear time invariant sys-

tem is

G(s) =
bmsm + bm−1s

m−1 + · · ·+ b1s+ b0
sn + an−1sn−1 + · · ·+ a1s+ a0

, (1)

where m 6 n are positive integers and ai, bi ∈ R, bm 6= 0.

If G(s) in (1) has γ1 zero eigenvalues, γ2 non-zero real eigenvalues λi, i = 1, . . . , γ2, and γ3 pairs of

complex eigenvalues αi + iβi, i = 1, . . . , γ3, its decomposed form is then

G(s) =

γ1
∑

i=1

li
si

+

γ2
∑

i=1

νi
∑

j=1

rij
(s− λi)j

+

γ3
∑

i=1

υi
∑

j=1

pijs+ qij
((s− αi)2 + β2

i )
j
.

For the discretization of continuous system G(s), the following assumption on the sampling time ∆t is

made:

Assumption 1.

∆t ≪ min{|λ|, |λ̄|, max
i=1,...,γ3

(π/βi, ǫ/M)},

where ǫ is sufficiently small, M is the upper bound of |ẏ(t)|, y = G(s)u, and

λ(λ̄) = min(max)

{

λ1, . . . , λγ2
, α1 +

β2
1

α1
, . . . , αγ3

+
β2
γ3

αγ3

}

.
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Figure 1 The three variables lie in a prism.

The characteristic model for the linear system G(s) is then

Lemma 1 ([18]). Consider a linear time invariant system G(s) under Assumption 1, if G(s) has no

eigenvalues on the imaginary axis, and when the control requirement is position keeping or tracking, its

characteristic model has the following second-order difference form:

y(k + 1) = f1(k)y(k) + f2(k)y(k − 1) + g0(k)u(k), (2)

where g0(k) = O(∆t) and

f1(k) ∈















[2, 2 + 2∆tλ], λ > λ > 0,

[2 + 2∆tλ, 2], λ < λ < 0,

2 + 2∆t[λ, λ], Otherwise,

f2(k) ∈















[−(1 + 2∆tλ),−1], λ > λ > 0,

[−1,−(1 + 2∆tλ)], λ < λ < 0,

−1− 2∆t[λ, λ], Otherwise.

Remark 1. To improve the transient performance of the closed-loop system, there is sometimes an

additional factor g1(k)u(k−1) being added to y(k+1). In engineering applications, when treating a mini-

mal phase system or a weakly non-minimal phase system, this factor is always omitted for simplicity [27].

Thus, the characteristic model (2) is more commonly used rather than the one discussed in [18].

The parameters fi and gi in the characteristic model are identified online based on the least square

method or the gradient method [28]. Let f̂i and ĝi be the estimations of fi and gi, respectively. The

triplets Γ = [f1, f2, g0] and Γ̂ = [f̂1, f̂2, ĝ0] belong to a prism whose eight vertexes are denoted by

Γ̄ = [f̄1i, f̄2i, ḡ0i], i = 1, 2, . . . , 8. The prism is determined according to the sampling time and the layouts

of the open-loop eigenvalues, that is, ∆t, λ̄, and λ. When ∆t is relatively large, the bound is comparatively

loose. For a second-order system when ∆t/Ts = 1/3 with Ts being the minimal equivalent time constant,

the transverse section of the prism is a diamond, as for example shown in Figure 1. According to the

layouts of the pair of eigenvalues in the continuous domain, the loose bounds, or the convex sets where

the characteristic parameters belong to have three different cases (please refer to Chapter 5 in [27] for

details).

When the estimations f̂i and ĝ0 are confined within the given convex hull, the corresponding estimated

output ŷ(k) is such that

Remark 2. The transient estimation error δy(k) = ŷ(k) − y(k) is O(∆t), and the steady modeling

error is zero.

Lemma 2. The system (2) in Lemma 1 is stable under the golden-section adaptive control law

u(k) =
−[l1f̂1(k)y(k) + l2f̂2(k)y(k − 1)]

λ+ ĝ0(k)
, (3)

where l1 = 0.382, l2 = 0.618 and λ ∈ R.
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2.2 Characteristic modeling of the longitudinal dynamics

In addition to the high-order LTI system, it has further been proved that with an appropriate sampling

time, the characteristic model (2) and the control law (3) also apply to the linear time-varying system

and nonlinear system [27], including the attitude dynamics of hypersonic vehicles [24,25].

We consider hypersonic vehicles that maneuver with the engine off during the re-entry, and focus on

the gliding and the terminal area energy management (TAEM) phase. In such a case, the hypersonic

vehicle is subject to only aerodynamic force and gravity. Thus, its dynamics equation in the longitudinal

plane proposed by Bolender et al. [29] has the simple form of

V̇ = − 1

m
D − g sin γ, ṙ = V sin γ, γ̇ =

1

mV
L−

(

V

r
− g

V

)

cos γ, α̇ = q − γ̇, q̇ =
My(α, δe)

Iy
, (4)

where V, r, γ, α, q, m, My, Iy, D, L, g, and δe are the vehicle velocity, the radial distance from the

Earth’s center, the flight path angle, the angle of attack (AOA), the pitch rate, the vehicle mass, the

pitching moment, vehicle y-axis inertia per unit width, the drag, the lift, the gravity acceleration, and

the pitching control surface deflection, respectively. Note that the thrust T is omitted as the hypersonic

vehicle we considered here is a glider that depends on the high lift-to-drag ratio for long-range gliding

rather than a scram-jet powered engine.

When concentrating on the attitude dynamics, variables V and r are generally considered as slow

modes, compared to fast modes α and δe, and thus are treated as constant values. Meanwhile, the lift

force and the drag force are calculated according to L = q̄SCL and D = q̄SCD, where q̄ = 1/2ρV 2 is the

dynamic pressure and ρ is the air density. The lift and drag coefficients CL and CD are approximated by

fitting the experimental data with second-order polynomials, such as the one in [30], where CL and CD

are not sensitive to AOA or MV . In other words, when concentrating on the dynamics of α, the lift L

and drag D could be taken constant as well.

The dynamics of the AOA has a relative degree of 2 [24]. Thus its second-order differential equation

derived from (4) is

α̈ = q̇ − γ̈ =
1/2q̄SreflrefCmy(α, δe)

Iy
− gr − V 2

V r
γ̇ sin γ ≈ 1/2q̄SreflrefCmy(α, δe)

Iy
, f(α, δe), (5)

where Sref and lref are the reference area and reference length, respectively, and the aerodynamic co-

efficients Cmy in the longitudinal plane is obtained by the linear interpolation method. Note that for

vehicles flying at Mach 5 and above, the first item in (5) is generally greater than 0.1, while the second

item gr−V 2

V r γ̇ sin γ belongs to 10−4. Thus, the second item could be omitted during the abbreviation for

simplicity.

The nonlinear function f(α, δe) is such that

(i) |f(α(t+∆t), δe(t+∆t))| − |f(α(t), δe(t))| < M∆t, M > 0;

(ii) the partial differentials of f(α, δe) on α and δe are bounded;

(iii) f(0, 0) = 0.

According to the characteristic model in Section 2, with an appropriate sampling time ∆t and when

the control requirement is angle keeping or tracking, the characteristic model for the angle of attack α in

(5) is

α(k + 1) = f1(k)α(k) + f2(k)α(k − 1) + g0(k)δe(k). (6)

Similar analysis and the second-order characteristic model apply to the roll angle and the sideslip angle

as well.

3 Golden-section robust adaptive control law

During the re-entry of the hypersonic vehicle, its ultra high speed and its intrinsic configuration produce

an extremely sensitive attitude system. Measurements on the aerodynamic coefficients become inadequate
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and are beyond the capability of ground wind tunnels test. Small aerodynamic coefficients uncertainties,

the absolute uncertainties in particular, may drag the trim conditions away from the designed ones such

that controllers that are designed for the linearized models are no longer reliable, and hence jeopardize

the stability. Although the attitude system is stable, its transient performance may not be maintained

in a satisfying level.

Although both the absolute offset and the relative offset are caused by disturbances to the aerodynamic

coefficients, the relative error only affects the nonzero coefficients, while the absolute error further affects

the zero coefficients. For example, in the nominal case when the elevon deflection is zero, that is, δe = 0,

the corresponding pitching moment coefficient Cmy0 = 0, which means it has no control effort on the angle

of attack. When absolute error ∆Cmy 6= 0, the new pitching moment coefficient is Cmy = Cmy0+∆Cmy 6=
0, that is, elevon on its zero position will now produce a pitching moment that affects the angle of attack.

In the presence of absolute error, this phenomenon becomes more prominent on the sideslip channel

where the rudder may expect a nonzero deflection so as to overcome the unexpected yaw moment at zero

sideslip angle.

Although the absolute offset could not be explicitly depicted by the standard characteristic model (6),

it is in the essence a norm-bounded external disturbance that could be merged into the characteristic

model (6) in the form of

α(k + 1) = f1(k)α(k) + f2(k)α(k − 1) + g0(k)δe(k) +B1(k)w(k), (7)

where the absolute offset δabs of the aerodynamic coefficients is incorporated into w(k) and its relative

offset δrel is accommodated by purely the adaption of the characteristic parameters.

By treating the absolute errors as external disturbances, the robustness of the system in the presence of

exogenous disturbances should be strengthened during controller design so as to cope with the excursion of

the trim conditions. In the presence of various uncertainties and disturbances, H2 and H∞ performances

are two of the most important robustness criterions that are used to evaluate the ability to resist exogenous

disturbances.

The mixed H2/H∞ robust control problem has been discussed in numerous literatures concerning

either the topic of cost-guaranteed filtering problem with state-error variance constraints [31], or the

topic of robust controller design [32] even in a decentralized scheme [33]. When dealing with time-

varying systems, gain-scheduled H2/H∞ control has been proved efficient to engineering problems [34].

However, the design of the conventional H2 and/or H∞ controllers relies strongly on the system model,

which itself is a crucial issue to the research of hypersonic vehicles. A common way is to use the linear

model obtained at the trim condition. Because of the severe parametric uncertainties and aerodynamic

changes [35,36], a large amount of trim conditions are expected so as to deal with the wide range of

flight conditions during the re-entry phase, especially at low altitudes. In comparison with the constant

controller, adaptive control that adjusts its parameters online is a more rational way for the attitude

control during the entire re-entry phase. Thus, to fit the large flight conditions and to improve the

transient performance in the presence of uncertainties and disturbances, the combined scheme of mixed

H2/H∞ robustness and the golden-section adaptive control for hypersonic vehicles has a strong demand

in practical applications.

Based on the conventional golden-section control law (3), a more intelligent golden-section adaptive

control law is proposed with a time-varying λ(k):

u(k) =
−[l1f̂1(k)y(k) + l2f̂2(k)y(k − 1)]

λ(k) + ĝ0(k)
. (8)

In the rest of the paper, the main focus is on seeking an effective and efficient way to determine λ(k)

online, as compared with choosing a constant λ offline according to experience.

Problem 1. Find λ(k) such that system (2) under controller (8) is stable and, for all admissible exogenous

disturbance w(k), criterions (i) and (ii) are satisfied:

(i) the H∞ gain of the transfer function Tz∞w from w(k) to the corresponding outputs z∞(k) satisfies

J∞ = ‖Tz∞w‖∞ < γ; (9)



Huang H, et al. Sci China Inf Sci January 2015 Vol. 58 012202:7

(ii) the H2 gain of the transfer function Tz2w from w(k) to the corresponding outputs z2(k) is guaran-

teed by

J2 = ‖Tz2w‖2 6 J̄ , J̄ ∈ R
+, (10)

where J̄ is the upper bound of the H2 gain in the worst case.

The golden-section adaptive control law (8) with λ(k) satisfying the above criterions is then called a

golden-section robust adaptive control law.

3.1 The existence of λ(k)

It has been proved in [26] that for a second-order time-invariant system whose characteristic model is a

minimum phase one, the parameter λ in (3) equals zero, and when it is a non-minimum phase system but

is stable in the open loop, there always exists λ > 0 such that u(k) in (3) is a stable robust controller.

Recently, it has further been proved through the root locus analysis that when the sampling time is small

enough, there always exist λ, not necessarily being positive, such that the closed-loop system is stable [37].

These results were concluded according to the classical root locus analysis, and thus are limited to low-

order systems. In this section, we further prove the existence of λ from the matrix perturbation theory

perspective, which is ready to be extended to characteristic model of high orders.

At time instance k, the closed-loop system matrix of model (2) with controller (3) is

Ac =

[

0 1

f2 − l2
g0

ĝ0+λ f̂2 f1 − l1
g0

ĝ0+λ f̂1

]

, (11)

which is further decomposed into

Ac =

[

0 1

k1l1f̂2 k2l2f̂1

]

+

[

0 0

f2 − f̂2 f1 − f̂1

]

, Â0 + δA, (12)

where

k1 =
1

l1
− 1

l2

g0
ĝ0 + λ

, k1 > 0, k2 = l2 + l1k1. (13)

Note that the simple relationship between k1 and k2 is because of the unique property of the golden-section

parameters l1 and l2 that l1 = l22.

Theorem 1. Given a time instance k, there exists λ ∈ R such that when Γ̂ ∈ Ds, Â0 is stable in the

discrete domain.

Proof. See Appendix A.

The system matrices Â0 and Ac are full rank matrices that are diagonalized by Λ̂ = X̂−1Â0X̂ and

Λ = X−1AcX , respectively, where

X̂ =

[

1 1
k2l2f̂1+

√
M

2
k2l2f̂1−

√
M

2

]

or X̂ =

[

1 1
k2l2f̂1+i

√
M

2
k2l2f̂1−i

√
M

2

]

is the eigenvector matrix with its inverse

X̂−1 =
−1

√

|M |

[

k2l2f̂1−
√
M

2 −1

−k2l2f̂1+
√
M

2 1

]

or X̂−1 =
−1

i
√

|M |

[

k2l2f̂1−i
√
M

2 −1

−k2l2f̂1+i
√
M

2 1

]

.

It has been well-established that the sensitivity of the eigenvalues subject to perturbations is determined

by the condition number of the eigenvectors [38]. That is,

‖δΛ‖ = ‖Λ̂− Λ‖ 6 ‖X̂−1‖‖X̂‖‖δA‖ = κ(X̂)‖δA‖, (14)

where κ(X̂) is the condition number of X̂.
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Theorem 2. Consider the characteristic model (2) whose characteristic parameters are estimated

within the convex set Ds. For a triplet Γ̂ and given a time instance k, the closed-loop system Ac in (12)

is stable if there exists λ such that Â0 in (12) is stable.

Proof. When Â0 is stable in the discrete domain, |X̂(2, 1)| < 1 and |X̂(2, 2)| < 1. Let ‖ · ‖ be the L2

norm, then according to the well-known inequality

max
i,j

|aij | 6 ‖A‖2 6
√
mnmax

i,j
|aij |, A = [aij ] ∈ R

m×n,

the condition number κ(X̂) in (14) is bounded by

κ(X̂) 6
4

√

|k22l22f̂2
1 + 4k2f̂2 − 4l2f̂2|

= 4/
√

|M |. (15)

When Â0 is perturbed by δA, the corresponding variation on its spectral radius is bounded by (14).

According to the upper bound of the condition number shown in (15), it further yields

‖δΛ‖ 6
4

√

|M |
‖δA‖ 6

4
√

|M |
2max

1,2
|fi − f̂i|.

To guarantee ρAc
< 1, it is equivalent that ρAc

− ρÂ0
< 1− ρÂ0

, whose sufficient condition is

4
√

|M |
2max

1,2
|fi − f̂i| < 1− ρÂ0

,

or equivalently,

64max |fi − f̂i|2 < |M |(1− ρÂ0
)2. (16)

When k2 belongs to (A8), (A9), or (A10), |M | is bounded and ρÂ0
is also upper bounded by ǫ < 1.

Recall that the characteristic parameters fi and f̂i belong to the set Ds, whose bound is determined by

the open-loop characteristics and the sampling time. Thus, as long as the sampling time is small enough

so as to restrain the estimation errors within a reasonable bound, there always exists an appropriate k2
that provides adequate stability margin such that inequality (16) is satisfied. The parameter λ, which is

uniquely determined by k1 or k2, g0 and ĝ0, is further calculated to guarantee the asymptotic stability

of the closed-loop system under the golden-section adaptive control law (3).

Remark 3. Theorem 2 proves the stability of Ac at each time instance k. The stability of the closed-

loop system over the entire time span can be proved based on the stability criterion of slowly time-varying

system, as in [39,40].

When the dimension of Ac increases, Theorem 2 applies consistently, as compared to root locus-based

analysis [37] that is restricted to low-order system.

Notice that u(k) in (3) is a time-varying controller whose coefficients are identified online. Thus it

is significant to find an efficient way to solve λ online during each time interval as in (8), rather than

choosing an identical λ offline.

However, there lacks an analytical method to determine the exact value of λ(k) during controller design.

Although Theorems 1 and 2 give the feasible region for λ(k), it is not suitable for online computing as

the design of k2 and sampling time ∆t is a recursive process. In particular, finding an appropriate ∆t

to guarantee condition (16) is blind. At the current stage, it consumes a large amount of time to guess

an appropriate λ(k) in practice. Meanwhile, although λ(k) is not unique, at the current stage, picking

up λ is a random process as the relationship between λ and the performance of the closed-loop system

is unknown. Thus, it is demanding to find an effective and reliable way to compute λ(k) such that the

closed-loop system is stable and the H2 and H∞ performances are guaranteed. This problem is explored

in the next two sections from the state feedback control perspective and the output feedback control

perspective, respectively.
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3.2 State feedback-based parametrization

In the attitude control of hypersonic cruise vehicles, the attitude angles are measurable. Without loss of

generality, choose the measured output matrix C2 = [0 1], and the golden-section adaptive control law

is then treated as a state feedback control law where the LMI-based criterions are well-developed. In the

following context it will be shown that the golden-section control law is a structured state feedback law

where challenges arise during the synthesis of λ(k).

Setting the states x1(k) = y(k − 1), x2(k) = y(k), system (2) under control law (8) is then

[

x1(k + 1)

x2(k + 1)

]

= Ãc(k)

[

x1(k)

x2(k)

]

+B1w(k), (17)

and the controlled output is

z(k + 1) = C1x(k), (18)

where

Ãc(k) =

[

0 1

f2(k)− l2
g0(k)

ĝ0(k)+λ(k) f̂2(k) f1(k)− l1
g0(k)

ĝ0(k)+λ(k) f̂1(k)

]

,

B1 = [0 1]T, and C1 = [0 1]. When w(k) ∈ L2, the output z corresponds to the H∞ performance, and

when w(k) ∈ L∞, it corresponds to the H2 performance.

Matrix Ãc(k) is a time-varying system matrix because of the time varying nature of fi, gi and the

updates of f̂i and ĝi. Parameter λ(k) is also calculated at each sampling time simultaneously. In the

remaining context, (k) is usually omitted for simplicity.

During each sampling interval, Ãc is decomposed into

Ãc =

[

0 1

f2 f1

]

+

[

0 0

−l2
g0

ĝ0+λ f̂2 −l1
g0

ĝ0+λ f̂1

]

=

[

0 1

f2 f1

]

+

[

0

g0

]

[

1 µ
]

m , A0 +B2Um, (19)

where m = −l2
1

ĝ0+λ f̂2 and µ = f̂1l1
f̂2l2

.

Matrix A0 belongs to a diamond determined by four vertexes A0i, i = 1, . . . , 4, as in Figure 1. The

control input matrix B2 belongs to a convex domain determined by two vertexes B21 and B22. Thus, ÃC

belongs to a convex domain determined by eight extreme matrices

ΩA(ACi) :=

{

A(ǫ) : A(ǫ) =

8
∑

i=1

ǫiACi, ǫi > 0,

8
∑

i=1

ǫi = 1

}

, (20)

where ACi = A0i + B2iUm. Those extreme matrices are highly related to the plant and the sampling

time ∆t.

Lemma 3. The closed-loop system (17) with output (18) is exponentially stable with J∞ < γ1 and

J2 <
√
γ2 if there exist symmetric matrices H and Ni, i = 1, . . . , 8, and a matrix Q of appropriate

dimensions such that












Ni ACiQ B1 0

QTAT
Ci Q+QT −Ni 0 QTCT

1

BT
1 0 I 0

0 C1Q 0 γ1I













> 0, (21)

[

Hi C1Q

QTCT
1 Q+QT −Ni

]

> 0, (22)

Tr(Hi) < γ2, (23)

where ACi, i = 1, . . . , 8 are the eight extreme matrices in ΩA.
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This sufficient condition integrates the H2 and H∞ performances, as compared to its origin in [41]

where the sufficient conditions for H2 performance and H∞ performance are provided in a respective

way.

Remark 4. Lemma 3 is only a sufficient condition. Thus, if there is no solution to inequalities

(21)–(23), it is not contradictory to the existence of λ concluded in [26].

Recalling (19), the extreme matrix ACi is an affine function on m. Thus, inequality (21) is a bilin-

ear matrix inequality. A similar problem emerges in our previous work [40] where the bilinear matrix

inequality on the scalar m is transformed into a linear matrix inequality form by introducing a certain

degree of conservativeness. In this paper, to find a feasible way to determine m rather than solving the

NP-hard BMI problem in Lemma 3, the following theory provides an effective way.

Theorem 3. The closed-loop system consisting of (17) and (18) is exponentially stable with J∞ < γ1
and J2 <

√
γ2, if there exist symmetric matrices H and Ni, i = 1, . . . , 8, and a matrix Q such that

Eqs. (24a) (or (24b)), (25), and (26) are satisfied.

min τ + γ2

s.t.

Σi < τ













Ni (A0i +B2iU)Q B1 0

QT(A0i +B2iU)T Q+QT −Ni 0 QTCT
1

BT
1 0 I 0

0 C1Q 0 γ1I













, m < 1, τ =
1

1−m
, (24a)

−Σi < τ













Ni (A0i +B2iU)Q B1 0

QT(A0i +B2iU)T Q+QT −Ni 0 QTCT
1

BT
1 0 I 0

0 C1Q 0 γ1I













, m > 1, τ =
1

m− 1
, (24b)

[

Hi C1Q

QTCT
1 Q+QT −Ni

]

> 0, (25)

Tr(Hi) < γ2, ∀i = 1, . . . , 8, (26)

where

Σi =













0 B2iUQ 0 0

QT(B2iU)T 0 0 0

0 0 0 0

0 0 0 0













.

Proof. Substituting ÃCi into (21) yields













Ni (A0i +B2iU)Q B1 0

QT(A0i +B2iU)T Q+QT −Ni 0 QTCT
1

BT
1 0 I 0

0 C1Q 0 γ1I













> (1 −m)Σi. (27)

Condition (21) in Lemma 3 is equivalent to inequality (27), which, when m < 1, is equivalent to (24a),

and when m > 1, is equivalent to (24b). Conditions (24a) (or (24b)), (25), and (26) is then a generalized

eigenvalue problem.
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When m < 1,

Σi < τ

















Ni (A0i + B2iU)Q B1

QT(A0i +B2iU)T Q+QT −Ni 0

BT
1 0 I









− 1

γ1
QTCT

1 C1Q









.

Recalling that C1 = [0 1], it is easy to conclude that QTCT
1 C1Q is positive semidefinite. Thus, m is

proportional to γ. By minimizing τ = 1
1−m , the minimum of m corresponds to the minimum of γ1.

When m > 1, the maximum of m corresponds to the minimum of γ1. Thus, the generalized eigenvalue

problem results in the optimal γ1 + γ2, which corresponds to the optimal H2 and H∞ performances.

By introducing weighting coefficients to τ and γ2, more flexible design objectives could be covered so

as to suit different control requirements.

Remark 5. This generalized eigenvalue optimization problem can be solved using “gevp” in LMI-

toolbox.

Remark 6. The situation when m = 1 is not included in the theorem. According to (27), when m = 1,

it is a positive definite problem.

Based on Lemma 3, Theorem 3 further provides a feasible way to determine m such that the H2 and

H∞ performances are optimized. In other words, the dynamic performance of the system with w(k) is

optimized when λ(k) is parameterized according to Theorem 3.

3.3 Static output feedback-based parametrization

In this section, parameter λ(k) is further explored under the static output feedback control scheme.

Although the golden-section adaptive control law is an output feedback control law, the feedback gain

is a 1 × 2 matrix with a particular structure, that is, the two entries are a convex combination of two

extreme values determined by the characteristic model of the plant. According to the analysis in the

previous section, when determining the parameter λ(k) or m in (19), the structural restriction on the

feedback control gain is not guaranteed by the conventional feedback controller synthesis. Compared

to the state feedback-based parametrization method, in this section the design of parameter λ(k) is

investigated through the output feedback perspective.

To ensure that the control input preserves the specific structure of the golden-section adaptive control

law, the output matrix in the state-space equation of the characteristic model-based system (17) is

rewritten into the following form

[

x1(k + 1)

x2(k + 1)

]

= A0(k)

[

x1(k)

x2(k)

]

+B1w(k) +B2(k)u(k),

z(k) = C1

[

x1(k)

x2(k)

]

+D11w(k) +D12u(k), (28)

ỹ(k) = C2(k)

[

x1(k)

x2(k)

]

,

where

A0(k) =

[

0 1

f2(k) f1(k)

]

, B1 =

[

0

1

]

, B2(k) =

[

0

g0(k)

]

, C1 =
[

0 1
]

, C2(k) = −
[

l2f̂2(k) l1f̂1(k)
]

.

It is assumed that the measured output ỹ(k) is not corrupted by the disturbance w(k).

The closed-loop system under output feedback controller

u(k) = K(k)ỹ(k), K(k) ∈ R (29)
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is then
x(k + 1) = (A0(k) +B2(k)K(k)C2(k))x(k) +B1w(k),

z(k) = (C1 +D12K(k)C2(k))x(k) +D11w(k),
(30)

where x = [y(k − 1) y(k)]T.

Thus, the system matrix A0 in (28) is such that A0 ∈ ΩA0
(A0i), where N in (20) equals four, and

B2 ∈ ΩB(B2i), where N = 2.

The controlled output matrix C2 ∈ ΩC(C2i), where N = 4 and C2i = −[l2f̄2i l1f̄1i] is of full rank

whose UR decomposition is

C2i = URi = [1 0]

[

−l2f̄2i −l1f̄1i

0 1

]

.

Theorem 4. The closed-loop system (28) is exponentially stable with J∞ < γ1 and J2 <
√
γ2, if there

exist symmetric matrices Qi, 1 6 i 6 4 and matrices Mij ∈ R
2×2, P ∈ R

1×2 with

Mij =

[

m1 0

mij
21 mij

22

]

, P =
[

p1 0
]

,

such that












Qi −Rimij −mT
ijR

T
i ∗ ∗ ∗

A0iRimij +B2jP −Ql ∗ ∗ ∗
C1Rimij +D12P 0 −ǫI ∗

0 BT
1 DT

11 −γ1I













< 0, i, l = 1, . . . , 4, j = 1, 2, (31)

[

−Zi ∗
B1 −Qi

]

< 0, i = 1, 2, 3, 4, (32)

Tr(Zi) < γ2, i = 1, 2, 3, 4,

where

ǫ =

{

1, γ1 > 1

γ1, γ1 6 1.
(33)

The feedback gain K = p1m
−1
1 .

Proof. According to [42], the sufficient condition for asymptotic stability of the closed-loop system under

K = p1m
−1
1 is

[

−Ni ∗
Ni(A0iRimij +B2jP ) −Nl

]

< 0, i, l = 1, . . . , 4, j = 1, 2,

where Ni = Q−1
i . It then yields

2
∑

j

4
∑

l

4
∑

i

αjαlαi

[

−Ni ∗
Ni(A0iRimij +B2jP ) −Nl

]

< 0, i, l = 1, . . . , 4, j = 1, 2.

Recalling that
∑2

j αj = 1,
∑4

l αl = 1, and
∑4

i αi = 1, according to Schur Complement and by choos-

ing the Lyapunov function V (k) = xT(k)(
∑4

i=1 αi(k)Ni)x(k), the conclusion of asymptotic stability is

obtained.

Also, the sufficient condition for H∞ performance of the closed-loop system under the output feedback

controller K = p1m
−1
1 is













Qi −Rimij −mT
ijR

T
i ∗ ∗ ∗

0 −γ1I ∗ ∗
A0iRimij +B2jP B1i −Ql ∗
C1iRimij +D12jP 0 0 −ǫI













< 0, i, l = 1, . . . , 4, j = 1, 2, (34)
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which further yields inequality (31).

The H2 performance is bounded by (32) with the upper bound of γ2 being guaranteed by (33), which

finishes the proof.

Remark 7. The UR decomposition is unique. Thus, Ri is uniquely determined by C2i.

Static output feedback controller design with polytopic uncertainties has been well-developed over the

past years. By modifying the output matrix, we attribute the golden-section adaptive control law to the

framework of static output feedback control such that the existing results are available to be inherited.

The static output feedback-based parametrization method provides a less conservative way to determine

the parameter λ(k), as compared with the state feedback-based method.

4 Attitude control of hypersonic cruise vehicles

Simulations are carried out on a hypersonic cruise vehicle weighting 4353 kg with length 12.7 m. The

moment of inertia for the pitching movement is Jy = 34979 kgm2, the one for the yaw movement is

Jz = 39924 kgm2, and the one for the roll movement is Jx = 723 kgm2. The input to the longitudinal

plane is the elevon control surface deflection δe, and the inputs to the lateral-directional plane are aileron

deflections and rudder deflections, respectively.

For a robust adaptive control scheme, in the large time scale, the system depends on the adaption of

the parameters f̂i, ĝ0 in (8) to restrain the states stay close to the commanded value, and during each

sampling interval, we relay on λ(k) in particular for the robust transient performance. Note that the

characteristic model during the re-entry phase of hypersonic vehicle is time-varying. Thus the estimation

error is consistently nonzero. This control scheme integrates adaptive control and robust control in a

cooperative way. In the previous section, stability of the closed-loop system at each time instance k has

been proved. The stability of the closed-loop slowly time-varying system over the entire time span was

proved in our previous work [40].

4.1 Attitude control during the gliding phase: state feedback-based parameterizations

During the gliding phase between an altitude of about 35–60 km, the vehicle maneuvers in a small scale

and the flying environment is relatively benign, compared to the vehicle in the TAEM phase or the pull-up

phase. In our previous work, both golden-section adaptive control law and golden-section time-invariant

control law have been applied to the attitude control during the gliding phase [43]. According to the

simulation results, time-invariant golden-section control law provides comparatively satisfying tracking

performance in compared to system under the golden-section adaptive control law. Thus, in this section,

the extreme matrixes of the prism is set to be constant during the gliding phase, and the parameter λ in

the golden-section control law is fixed and is calculated offline.

The gliding phase is initialized at an altitude of 42 km and a velocity of 2.5 km/s. The commanded

angle of attack (AOA) and roll angle varies between 0 and 6 degrees. The sideslip angle is expected to

stay at zero. Disturbances consist of windage and absolute uncertainties on the angle of attack appear at

t = (8k+3) s, k = 0, 1, . . . , each of which lasts for 0.8 s with an amplitude of 2 degrees. The disturbances

to the roll angle appear at t = (5k + 3) s, k = 1, 2, . . . with an amplitude of 3 degrees and width 0.25 s.

According to Theorem 3, the optimal controller parameters for the angle of attack, roll angle and the

sideslip angle, as denoted by m∗
α, m

∗
θ, m

∗
β, are calculated using the “gevp” command in the LMI-toolbox.

To show the optimality, two additional sets of {mα,mθ,mβ} are randomly chosen for comparison purpose,

and the simulation results are recorded in Table 1 as well. The tracking of the three angles under the

optimal {m∗
α,m

∗
θ,m

∗
β} are shown in Figure 2(a). Comparisons on the tracking performance of the angle

of attack, roll angle, and the sideslip angle among different controller parameters are shown in Figure 2

(b)–(d), respectively.

The attitude system is stable under all three cases in Table 1. According to the table, the H2 and

H∞ norm of the tracking errors under the set {m∗
α,m

∗
θ,m

∗
β} = {400, 50, 430} is the smallest among the
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Table 1 H2 and H∞ performances under different m: state feedback-based

mα mθ mβ

H2 H∞

α θ β α θ β

Set 1

1* 400 50 430 2.0399 3.5847 0.2610 26.2686 36.8598 2.9003

2 120 19 130 2.4154 4.1677 0.5166 31.1797 41.1991 5.0501

3 639 300 606 2.0640 3.6327 0.2610 41.5950 50.1657 3.1980

Set 2

1* 500 100 430 2.0428 3.3065 0.2700 25.5526 36.5474 3.0026

2 120 19 130 2.4211 4.1835 0.4909 31.1910 43.9708 5.5247

3 639 300 606 2.0637 3.5018 0.2700 42.6507 49.6544 4.0889

Set 3

1* 480 120 430 2.0409 3.2512 0.4728 26.0056 39.4361 5.0624

2 120 19 130 2.4211 4.1835 0.6520 31.1233 48.3117 7.0478

3 639 300 606 2.0657 3.4836 0.4728 45.7326 50.3341 8.5016
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Figure 2 Simulations under commanded angle set 1: state feedback-based. (a) Tracking of the three angles under

{m∗

α,m
∗

θ
,m∗

β
}; (b) tracking of the angle of attack under different mα; (c) tracking of the roll angle under different mθ ;

(d) tracking of the sideslip angle under different mβ .

three cases. In case 2, the parameters are smaller than the optimal set and in case 3, the parameters are

larger than the optimal set, both of which result in higher H2 and H∞ gains, indicating that the attitude

system is more sensitive to external disturbances and aerodynamic coefficients uncertainties compared to

that of case 1. In other words, although in the presence of windage and uncertainties, the attitude system

under the golden-section adaptive control law with parameters given in Table 1 is stable in all the three

cases, the attitude system under parameter set {m∗
α,m

∗
θ,m

∗
β} has the best dynamic performance among

the three cases, and thus can tolerate the largest scale of absolute coefficient errors. The effectiveness of

the proposed state feedback-based parametrization method is verified.

Figures 3 and 4 show another two similar simulations when tracking different angle sets. The H2

performance and H∞ performance are shown in Table 1 as well. The numerical results also verify the

proposed method.
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Figure 3 Simulations under commanded angle set 2: state feedback-based. (a) Tracking of the three angles under

{m∗

α,m
∗

θ
,m∗

β
}; (b) tracking of the angle of attack under different mα; (c) tracking of the roll angle under different mθ ;

(d) tracking of the sideslip angle under different mβ .
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Figure 4 Simulations under commanded angle set 3: state feedback-based. (a) Tracking of the three angles under

{m∗

α,m
∗

θ
,m∗

β
}; (b) tracking of AOA under different mα; (c) tracking of the roll angle under different mθ ; (d) tracking of

the sideslip angle under different mβ .
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Figure 5 TAEM Simulations under commanded AOA 1. Windage and absolute uncertainties appear at t =

3 s, 11 s, 19 s, . . . . (a) Online adjusting of mα(k) = −l2f̂2Kα(k) under the output feedback-based parametrization; (b)

zoomed in; (c) tracking of the AOA under different Kα.

4.2 Attitude control during the TAEM phase: output feedback-based parameterizations

To further demonstrate the advantages of the golden-section robust adaptive control law that is designed

to accommodate large range of flight conditions, the TAEM phase initialized at an altitude of 33 km and

a velocity of 2.0 km/s is considered. Disturbance w acting on the AOA is simulated by a periodic pulse

signal at time t = (8k+3) s, k = 0, 1, . . . with an amplitude of 3 degrees and width 0.25 s. For the TAEM

phase, because of the fact that the lateral-directional dynamics are strongly coupled such that the SISO

characteristic model dose not fit, we only focus on the longitudinal dynamics, that is, the control of AOA.

According to Theorem 4, a series of the output feedback control gain Kα(k) in (30) is calculated online at

different sets of parameter bounds. For easy comparison to the state feedback-based parametrization, the

value of Kα(k) in (29) is transmitted to m in (19), as shown in Figure 5(a). The transient performance

when tracking the commanded AOA is shown in Figure 5(c) under the optimal control gain K∗
α(k), as

compared to the transient performance under some randomly chosen and constant parameters Kα = 300

and Kα = 1 000. The H2 norm and H∞ norm of the tracking errors in the presence of disturbance are

recorded in Table 2.

According to Figure 5(a), compared to m∗(α) during the gliding phase in Table 1, K∗
α(k) is adjusted

near m∗(α), which indicates that the characteristic parameters bounds are relatively stable during re-

entry. However, when the angle of attack experiences a sudden change because of disturbances, for

example, at t = 11 s, Kα(k) also shows a sudden decrease so as to restrict the H2 and H∞ gain within a

satisfying level, as in Figure 5(b). The value of Kα(k) tends to decrease, indicating that the estimation

of ĝ0 tends to increase as the vehicle descends during the TAEM phase. This observation coincide with

the practical experience that when the velocity decelerate is relatively slow as compared to the increase

of the atmospheric density such that the dynamic pressure increases, it produces stronger control efforts

at the same elevon deflection.

Smaller tracking errors and more stronger robustness to external disturbances and aerodynamic coef-
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Table 2 H2 and H∞ performances of AOA under different Kα: output feedback-based

Kα H2 H∞

AOA 1

1* {Kα(k)} 2.0493 19.9486

2 300 2.1262 21.5565

3 1000 2.0718 22.5941

AOA 2

1* {Kα(k)} 2.0321 20.3343

2 200 2.1261 21.4657

3 800 2.0364 23.1529
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Figure 6 TAEM simulations under commanded AOA 2. Windage and absolute uncertainties appear at t =

3 s, 11 s, 19 s, . . . . (a) overall mα during the TAEM phase; (b) tracking of the AOA under different Kα: output feedback-

based.

ficients uncertainties are observed under the optimal control gain in Table 2, which validates the effec-

tiveness of the output feedback-based parameterizing algorithm.

Figure 6 and Table 2 show another similar simulation when tracking a different angle of attack. The

numerical results also verify the proposed method.

5 Conclusion

This paper focused on robust adaptive control of a lifting body hypersonic cruise vehicle. The character-

istic model with prominent practical privileges is introduced to the attitude dynamics of hypersonic cruise

vehicles. When designing the golden-section adaptive control law, linear matrix inequality-based criteri-

ons are proposed to determine the parameter λ in the control law such that the H2 and H∞ performances

are guaranteed. In the robust adaptive control scheme, the large flight conditions are accommodated by

the adaption of the characteristic parameters, and the external disturbance and absolute errors on the

aerodynamic coefficients are compensated by the online adjusting of λ(k). Experimental results verified

the effectiveness of the proposed method.

Future work would be in the extension of the results to multiple-input-multiple-output characteristic

model which incorporates the coupling between the longitudinal dynamics and the lateral-directional

dynamics. In such a case, several λ(k) at different angles should be adjusted simultaneously, which

increases the dimension of the problem.
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Appendix A Proof of Theorem 1

Let ρÂ0
be the spectral radius of Â0. The characteristic polynomial of matrix Â0 is determined by M : M =

k2
2l

2
2f̂

2
1 + 4k1l1f̂2. Substituting k1 with k2 in (13) yields

M = k2
2l

2
2f̂

2
1 + 4k2f̂2 − 4l2f̂2.

Case 1: the estimations of f̂1 and f̂2 are such that f̂2 + l32f̂
2
1 < 0.

In this situation, M has a pair of real eigenvalues as shown in Figure A1. The sufficient condition for M < 0 is

λ < k2 < λ, (A1)

where λ = 2
−f̂2−

√
f̂2

2
+l3

2
f̂2

1
f̂2

l1 f̂
2

1

and λ = 2
−f̂2+

√
f̂2

2
+l3

2
f̂2

1
f̂2

l1f̂
2

1

.

When M < 0, Â0 has a pair of complex eigenvalues, and its spectral radius is ρÂ0
=

√

−k1l1f̂2. Thus, the

sufficient condition to ρÂ0
6 ǫ < 1, where ǫ > 0, ǫ ∈ R, is

l2 < k2 < l2 −
ǫ2

f̂2
. (A2)

It is easy to conclude that λ > l2, and further

λ− l2 + ǫ2/f̂2 =
(

√

−f̂2 −
√

−f̂2 − l32f̂
2
1 )

2

l1f̂2
1

+
ǫ2

f̂2
<

1

l1f̂2
1 f̂2

(ǫ2(l2f
12

+ l1f̂2)(l2f
12

− (1 + l2)f̂2)− (1− ǫ2)f̂2
2 ),

where f
12

is the lower bound of f̂1 + f̂2. When Γ̂i belongs to the convex domain Ds and when ǫ is sufficiently

close to 1, inequality λ < l2 − ǫ/f̂2 holds.
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Figure A1 Values of M as a function of k2.

Merging of (A1) and (A2) yields

λ < k2 < min{λ, l2 − ǫ/f̂2}. (A3)

On the other hand, the sufficient condition to M > 0 is

k2 > λ or k2 < λ. (A4)

When M > 0, matrix Â0 has a pair of real eigenvalues, and its spectral radius is ρÂ0
=

k2l2f̂1+
√

k2

2
l2
2
f̂2

1
+4k1l1f̂2

2
.

Thus, the sufficient condition to ρÂ0
6 ǫ < 1 is

l2 < k2 < µ, (A5)

where µ = ǫ2+l2f̂2
f̂2+ǫl2f̂1

.

When

f̂2 + l32f̂
2
1 < 0, (A6)

the relationships between λ, λ, and µ are

λ− µ <
−2f̂2

l1f̂2
1

− ǫ2 + l2f̂2

f̂2 + ǫl2f̂1
=

1

l1f̂2
1 (f̂2 + ǫl2f̂1)

(−f̂2(f̂2 + l1l2f̂
2
1 )− (f̂2 + ǫl2f̂1)

2) < 0

and

λ− µ = λ− l2 − (µ− l2) =
(

√

−f̂2 +

√

−f̂2 − l32f̂
2
1 )

2

l1f̂2
1

− ǫ2 − ǫl1f̂1

f̂2 + ǫl2f̂1
>

−2f̂2 − l32f̂
2
1

l1f̂2
1

− ǫ2 − ǫl1f̂1

f̂2 + ǫl2f̂1
.

When Γ̂i belongs to the convex domain Ds such that f̂1+ f̂2 is lower bounded and under condition (A6), inequality

λ̄ > µ holds.

Merging (A4) and (A5) according to the relationship λ < µ < λ, we get

l2 < k2 < λ. (A7)

When M = 0, it is necessarily k2 = λ or k2 = λ, where k2 = λ is a feasible solution in the sense that

ρ(Â0) 6 ǫ < 1.

Thus, when f̂2 + l32f̂
2
1 < 0, the feasible region of k2 determined cooperatively by (A3) and (A7) and k2 = λ is

l2 < k2 < min{λ, l2 − ǫ/f̂2}. (A8)

Case 2: the estimations of f̂1 and f̂2 are such that .f̂2 + l32f̂
2
1 > 0.

In this situation, M is consistently positive, that is, M > 0, ∀k2 ∈ R, and Â0 has a pair of real eigenvalues.

The spectral radius of Â0 is ρÂ0
=

k2l2f̂1+
√

k2

2
l2
2
f̂2

1
+4k1l1 f̂2

2
. Thus, the feasible region of k2 when f̂2 + l32f̂

2
1 > 0 is

l2 < k2 <
ǫ2 + l2f̂2

f̂2 + ǫl2f̂1
. (A9)



Huang H, et al. Sci China Inf Sci January 2015 Vol. 58 012202:21

Case 3: the estimations of f̂1 and f̂2 are such that f̂2 + l32f̂
2
1 = 0. M is non-negative. When k2 = −2f̂2

l1f̂
2

1

= 2l2,

M = 0, and the spectral radius is ρÂ0
=

−2l3
2
f̂2

1

l1f̂
2

1

= 2l2 > 1. When k2 6= 2l2, the sufficient condition to ρÂ0
6 ǫ < 1

is l2 < k2 < µ. Thus, for the special case when f̂2 = −l32f̂
2
1 , the feasible region is

l2 < k2 < µ, k2 6= 2l2. (A10)

To conclude, according to the estimations of f̂1 and f̂2, there always exist a feasible region for k2 belonging to

one of the three cases such that the eigenvalues of matrix Â0 lie within the disc of radius ǫ < 1.


