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Abstract This paper is concerned with solving some structured multi-linear systems, which are called tensor

absolute value equations. This kind of absolute value equations is closely related to tensor complementarity

problems and is a generalization of the well-known absolute value equations in the matrix case. We prove that

tensor absolute value equations are equivalent to some special structured tensor complementary problems. Some

sufficient conditions are given to guarantee the existence of solutions for tensor absolute value equations. We

also propose a Levenberg-Marquardt-type algorithm for solving some given tensor absolute value equations and

preliminary numerical results are reported to indicate the efficiency of the proposed algorithm.
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1 Introduction

The systems of multi-linear equations can be expressed by tensor-vector products, just as we rewrite

linear systems by matrix-vector products. Let A be an m-th-order tensor in Rn × · · · × Rn and b be a

vector in Rn. Then a multi-linear equation can be expressed as

Axm−1 = b, (1.1)

where Axm−1 is a vector in Rn (see [24,25]) with

(Axm−1)i =
n∑

i2=1

· · ·
n∑

im=1

aii2···imxi2 · · ·xim , i = 1, . . . , n.

Solving multi-linear systems is always an important problem in engineering and scientific computing

(see [10,15,36,37]). In this paper, we consider the system of multi-linear absolute value equations, which

can be expressed as

Axm−1 − |x|[m−1] = b, (1.2)
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where |x|[m−1] is a vector in Rn with

|x|[m−1] = (|x1|m−1, . . . , |xn|m−1)T.

It is easy to see that the system of multi-linear absolute value equations (1.2) is a generalization of the

well-known absolute value equations

Ax− |x| = b

with a matrix A ∈ Rn×n. The absolute value equations (AVEs) has wide applications in applied science

and technology such as optimization physical and economic equilibrium problems (see [20–22]). As was

shown in [22], the general NP-hard linear complementarity problem (see [8]), which subsumes many

mathematical programming problems, can be formulated as an AVE. This implies that the AVE is NP-

hard in its general form. Analogous to AVE, we call (1.2) tensor absolute value equations (TAVEs).

Obviously, the TAVE is also NP-hard. Thus, investigating the existence of solutions to the TAVE is a

significant problem.

Recently, Song and Qi [29] introduced a class of complementarity problems, called tensor complemen-

tarity problems, where the involved function is defined by some homogenous polynomial of degree n with

n > 2. It is known that the tensor complementarity problem is a generalization of the linear comple-

mentarity problem (see [8]), and a subclass of nonlinear complementarity problems (see [12]). The tensor

complementarity problem has many applications in n-person non-cooperative games (see [14]), nonlin-

ear compressed sensing (see [19]), and so on. Recently, there has been growing interest in the study of

the theory of tensor complementarity problems such as the structure of the solution set (see [32]) and

the solvability of the problem (see [2]). More results on tensor complementarity problems can be found

in [5, 30, 35] and the references therein. Another kind of complementarity problems related to tensors,

named tensor eigenvalue complementarity problem, is considered in [6,17,18,31,38]. In [22], it was shown

that the AVE is equivalent to a generalized linear complementarity problem. Can we show that the

TAVE is equivalent to a generalized tensor complementarity problem? Although some computational

methods have been presented for the AVE, it is very difficult to extend these algorithms to solve the

TAVE because the TAVE (1.2) is a nonlinear equation. The Levenberg-Marquardt method is one of the

important algorithms for solving nonlinear equations (see [11]). Can we propose an efficient algorithm

such as the Levenberg-Marquardt method for solving the TAVE (1.2)? To our best knowledge, there is

no general answer to these questions. Therefore, we shall focus on some special tensor absolute value

equations.

Let I be an m-th-order n-dimensional unit tensor, whose entries are 1 if and only if i1 = · · · = im and

otherwise zero. A tensor A is called a non-negative tensor if all its entries are non-negative, denoted by

A > 0. A tensor is called a Z-tensor, if all its diagonal entries are non-negative and off-diagonal entries

are nonpositive. M -tensor is a special class of Z-tensor, which was first introduced and studied in [9,39].

To define the M -tensors, we need to introduce the tensor eigenvalues first. Let A be an m-th-order

n-dimensional tensor. If a scalar λ ∈ R and a nonzero vector x ∈ Rn satisfy

Axm−1 = λx[m−1],

where x[m−1] = (xm−1
1 , . . . , xm−1

n )T. Then we call λ an eigenvalue of A and x a corresponding eigenvector.

Qi [24] and Lim [16] first defined the eigenvalues of tensors independently. The spectral radius of a

tensor A is defined by

ρ(A) = max{|λ| : λ is an eigenvalue of A}.

A tensor A is called anM -tensor, if it can be written as A = sI−B with B > 0 and s > ρ(B); furthermore,

it is called a strong M -tensor if s > ρ(B). One can refer to a survey [4] for the spectral theory of non-

negative tensors. In this paper, we first investigate the existence of solutions for the TAVE (1.2). We

show that the TAVE (1.2) with the positive right-hand side b always has a unique solution when A−I is

strong M -tensor. Another sufficient condition for the existence of solution is also given. Can we compute

the solution? We propose an inexact Levenberg-Marquardt method for solving the TAVE (1.2).
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The rest of this paper is organized as follows. In Section 2, we introduce the tensor absolute value

equations which are a generalization of absolute value equations with the matrix case. In Section 3, some

sufficient conditions for the existence of solutions to the TAVE are given. In Section 4, we first reformulate

the TAVE as a special tensor complementarity problem and then we propose an inexact Levenberg-

Marquardt-type algorithm for solving the TAVE. Some numerical results are reported in Section 5.

Finally, some conclusions are given in Section 6.

Throughout this paper, we assume thatm > 2. We use x, y, . . . for scalars, x,y, . . . for vectors, A,B, . . .

for matrixes, A,B, . . . for tensors, and D for the diagonal tensor whose diagonal elements are 1 or −1.

All the tensors discussed in this paper are real. T (m,n) denotes the set of all m-th-order n-dimensional

tensors. Let A = (ai1i2···im) ∈ T (m,n). Then A is called a symmetric tensor if its entries ai1i2···im are

invariant under any permutation of their indices. S(m,n) denotes the set of all symmetric tensors. We

denote the transpose of A by AT. The identity matrix of arbitrary dimensions will be denoted by I.

2 Tensor absolute value equations

In this section, we present some basic definitions and properties in absolute value equations, nonlinear

complementarity problems, and nonsmooth analysis, which will be used in the sequel.

We recall the absolute value equations of the type

Ax− |x| = b, (2.1)

where A ∈ Rn×n, b ∈ Rn and |x| denotes the vector with absolute values of each component of x. The

AVE (2.1) has been widely investigated in many literatures such as [20–22]. In [22], some results about

the AVE are given, which we list as follows:

(i) The AVE (2.1) is equivalent to the bilinear program

0 = min{((A+ I)x− b)T((A− I)x− b) | (A+ I)x− b > 0, (A− I)x− b > 0},

and the generalized linear complementarity problem

(A+ I)x− b > 0, (A− I)x− b > 0, ((A+ I)x− b)T((A− I)x− b) = 0.

(ii) Let C ∈ Rn×n and b ∈ Rn. Then

(C − I)z = b, z > 0 has a solution z ∈ Rn,

which implies that

Ax− |x| = b has a solution for any A = CD with D = diag(±1).

Clearly, the tensor absolute value equation (1.2) is a generalization of the AVE (2.1) from the matrix

case to the tensor case. Take an equation with the coefficient tensor A ∈ R2×2×2 as an example. The

tensor absolute equation

Ax2 − |x|[2] = b

is a condense form of {
a111x

2
1 + (a112 + a121)x1x2 + a122x

2
2 − |x1|2 = b1,

a211x
2
1 + (a212 + a221)x1x2 + a222x

2
2 − |x2|2 = b2.

We want to find x1 and x2 that satisfy the above two equations.

The following example shows a specific tensor absolute value equation.

Example 2.1. Let a tensor A ∈ T (4, 2) be defined by a1111 = a2222 = 1, a2111 = −2, a1222 = −1, and

zero otherwise. Let b = (1, 2)T. Then the corresponding tensor absolute value equation is{
x3
1 − x3

2 − |x1|3 = 1,

−2x3
1 + x3

2 − |x2|3 = 2.
(2.2)
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By a simple computation, we see that the TAVE (2.2) in Example 2.1 has no solution. In the next

section we discuss the existence of solutions to the TAVE (1.2). We can extend the result (ii) to the

TAVE and obtain a similar condition for the existence of solutions to (1.2).

Below, we introduce the classical nonlinear complementarity problem. The tensor complementarity

problem recently studied in [2,5,19,29,30,32,35] is a special kind of nonlinear complementarity problems.

It will be shown in Section 4 that the TAVE (1.2) can be reformulated as a special kind of generalized

tensor complementarity problems.

Definition 2.2. Given a mapping F : Rn → Rn, the nonlinear complementarity problem, denoted by

NCP(F ), is to find a vector x ∈ Rn satisfying

x > 0, F (x) > 0, xTF (x) = 0.

Many solution methods developed for NCP(F ) or related problems are based on reformulating them

as a system of equations using so-called NCP-functions (see [12]). Here, a function ϕ : R2 → R is called

an NCP-function if

ϕ(a, b) = 0 ⇔ a > 0, b > 0, ab = 0.

Given an NCP-function ϕ, let us define

Φ(x) = (ϕ(x1, F1(x)), . . . , ϕ(xn, Fn(x)))
T
.

It is obvious that x ∈ Rn is a solution of NCP(F ) if and only if it solves the system of nonsmooth

equations

Φ(x) = 0.

For the solution to Φ(x) = 0, we recall some definitions in nonsmooth analysis. Suppose that Θ : U ⊆
Rn1 → Rn2 is a locally Lipschitz function, where U is nonempty and open. By Rademacher’s theorem, Θ

is differentiable almost everywhere. Let DΘ ⊆ Rn1 denote the set of points at which Θ is differentiable.

For any x ∈ DΘ, we write JΘ(x) for the usual n2 × n1 Jacobian matrix of partial derivatives. The

B-subdifferential of Θ at x ∈ U is the set defined by

∂BΘ(x) = {V ∈ Rn2×n1 | ∃{xk} ⊆ DΘ with xk → x, JΘ(xk) → V }.

The Clarke’s generalized Jacobian of Θ at x is the set defined by

∂Θ(x) = co(∂BΘ(x)),

where “co” denotes the convex hull. Then, ∂Θ(x) is a nonempty convex compact subset of Rn2×n1

(see [7]). The function Θ is semismooth (see [27]) at x ∈ Rn1 if

lim
V ∈∂Θ(x+td̃)

d̃→d, t↓0

V d̃

exists for all d ∈ Rn1 . If Θ is semismooth at all x ∈ U , we call Θ semismooth on U . The function Θ is

called strongly semismooth (see [28]) if it is semismooth and for any x ∈ U and V ∈ ∂Θ(x+ td),

V d−Θ′(x;d) = O(∥d∥2), d → 0,

where Θ′(x;d) denotes the directional derivative (see [3]) of Θ at x in direction d, i.e.,

Θ′(x;d) = lim
t↓0

Θ(x+ td)−Θ(x)

t
.

Note that if the function Θ is semismooth at x, the directional derivative Θ′(x;d) exists for all d ∈ Rn1 and

Θ′(x;d) = lim
V ∈∂Θ(x+td̃)

d̃→d, t↓0

V d̃.
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We now present some NCP-functions which are widely used in nonlinear complementarity problems

(see [33]). For more details about NCP-functions and their smoothing approximations, one can refer

to [26,40] and the references therein.

Here, we give some well-known NCP-functions as follows:

• The minimum function:

ϕ(a, b) = min{a, b}.

• The Fischer-Burmeister function:

ϕFB(a, b) = a+ b−
√

a2 + b2.

It has been shown that all these NCP-functions are globally Lipschitz continuous, directionally dif-

ferentiable, and strongly semismooth (see [13, 34]). For example, the generalized gradient ∂ϕFB(a, b)

of ϕFB(a, b) is equal to the set of all (va, vb) such that

(va, vb) =


(
1− a√

a2 + b2
, 1− b√

a2 + b2

)
, if (a, b) ̸= (0, 0),

(1− ξ, 1− ς), if (a, b) = (0, 0),

where (ξ, ς) is any vector satisfying ξ2 + ς2 6 1.

In Section 4, we use the Fischer-Burmeister function to reformulate the TAVE (1.2) as a system of

equations and then we propose an algorithm to solve the system of equations.

We now introduce the tensor complementarity problem which is first defined by Song and Qi [29].

Definition 2.3. Given any tensor A ∈ T (m,n) and vector q ∈ Rn, the tensor complementarity

problem, denoted by TCP(A, q), is to find a vector x ∈ Rn satisfying

x > 0, Axm−1 + q > 0, xT(Axm−1 + q) = 0.

Note that when n = 2, the tensor A reduces to a matrix, denoted by A, and the TCP(A, q) becomes:

find a vector x ∈ Rn such that

x > 0, Ax+ q > 0, xT(Ax+ q) = 0,

which is just the linear complementarity problem (see [8]). Very recently, a class of n-person noncoop-

erative games were given in [14] and the authors reformulated this problem as a tensor complementarity

problem to handle. This is regarded as an application of tensor complementarity problems. Some semis-

mooth Newton-type methods are recently proposed for solving the tensor complementarity problems

(see [6]). More results on TCP can be found in [2, 5, 17–19, 29–32, 35] and the references therein. In

Section 4, we extend the result (i) to the TAVE (1.2) and show that the TAVE (1.2) is equivalent to a

bi-multilinear program and a generalized tensor complementarity problem.

3 Existence of solutions

In this section, we give some sufficient conditions for the existence of solutions to the TAVE (1.2).

Specially, we extend the result (ii) about the AVE (2.1) to the TAVE (1.2).

We need the following lemmas which are recently established in [10, Theorems 3.2–3.4].

Lemma 3.1. Let A ∈ T (m,n). If A is a strong M -tensor, then for every positive vector b the

multilinear system of equations Axm−1 = b has a unique positive solution.

Lemma 3.2. Let A ∈ T (m,n) be a Z-tensor. Then it is a strong M -tensor if and only if the multilinear

system of equations Axm−1 = b has a unique positive solution for every positive vector b.

Lemma 3.3. Let A ∈ T (m,n) be an M -tensor and b > 0. If there exists v > 0 such that Avm−1 > b,

then the multilinear system of equations Axm−1 = b has a non-negative solution.
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By the above lemmas, we have the following theorems.

Theorem 3.4. Let A ∈ T (m,n). If A can be written as A = cI − B with B > 0 and c > ρ(B) + 1,

then for every positive vector b the TAVE (1.2) has a unique positive solution.

Proof. Let s = c− 1. Then A = cI − B yields

A− I = sI − B, B > 0, s > ρ(B),

which implies that A− I is a strong M -tensor. By Lemma 3.1, the multilinear system of equations

(A− I)xm−1 = b

has a unique positive solution for every positive vector b. Hence, for every positive vector b, the

TAVE (1.2) has a unique positive solution.

Combining [9, Theorem 3] and Lemma 3.2, we can rewrite the above theorem into an equivalent

condition for A− I being a strong M -tensor.

Theorem 3.5. Let A ∈ T (m,n) be a Z-tensor. Then A can be written as the form of

A = cI − B, B > 0, c > ρ(B) + 1 (3.1)

if and only if for every positive vector b the TAVE (1.2) has a unique positive solution.

Proof. On one hand, by Theorem 3.4, we have the existence and uniqueness of the positive solution

of the TAVE (1.2) for every positive vector b. On the other hand, if for every positive vector b the

TAVE (1.2) has a unique positive solution, then there exists a vector x > 0 such that

(A− I)xm−1 = b > 0.

Since A is a Z-tensor, A−I is also a Z-tensor. Thus, by [9, Theorem 3], A−I is a strong M -tensor and

then the form of (3.1) holds.

Remark 3.6. The sufficient condition in Theorem 3.5 can be weakened as follows: if the TAVE (1.2)

has a non-negative solution for every positive vector b, then we also have the form (3.1). In fact, let

x > 0 be a solution of the TAVE (1.2). Then there exists x > 0 such that (A − I)xm−1 > 0. By [9,

Theorem 3], we can obtain the conclusion.

Theorem 3.7. Let b > 0 and A ∈ T (m,n) be in the form of A = cI −B with B > 0 and c = ρ(B)+1.

If there exists a vector v > 0 such that (A − I)vm−1 > b, then the TAVE (1.2) has a non-negative

solution.

Proof. It follows from

A = cI − B, B > 0, c = ρ(B) + 1

that A− I is an M -tensor. By Lemma 3.3, there is x∗ > 0 such that

(A− I)(x∗)m−1 = b.

Thus, we have

A(x∗)m−1 − |x∗|[m−1] = b.

This completes the proof.

Note that the conditions given in the above theorems only can guarantee the existence of non-negative

solutions to a TAVE. We next extend the result (ii) about the AVE (2.1) to the TAVE (1.2). This

condition can guarantee the existence of solutions to a TAVE. Here, we assume that m is even and

D ∈ T (m,n) is a diagonal tensor with diagonal elements being 1 or −1. We first introduce the product

of a tensor and a diagonal tensor.
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Definition 3.8. Let C = (ci1i2···im) ∈ T (m,n) and B ∈ T (m,n) be a diagonal tensor with diagonal

elements bi···i. We denote by CB = (ai1i2···im) their product, whose elements are defined as

ai1i2···im = ci1i2···im(bi2···i2)
1

m−1 · · · (bim···im)
1

m−1 , 1 6 i1, . . . , im 6 n.

Obviously, Definition 3.8 is well-defined due to the assumption that m is even.

By a simplicity computation, we have the following proposition.

Proposition 3.9. Let C = (ci1i2···im) ∈ T (m,n) and x ∈ Rn. Define a vector u ∈ Rn as

u = (Dxm−1)[
1

m−1 ].

Then, we have

(CD)xm−1 = Cum−1.

Proof. By some definitions introduced in Section 1, the i-th component of the vector Cum−1 can be

written as

(Cum−1)i =
n∑

i2=1

· · ·
n∑

im=1

cii2···imui2 · · ·uim

=
n∑

i2=1

· · ·
n∑

im=1

cii2···im(di2···i2x
m−1
i2

)
1

m−1 · · · (dim···imxm−1
im

)
1

m−1

=
n∑

i2=1

· · ·
n∑

im=1

cii2···imd
1

m−1

i2···i2 · · · d
1

m−1

im···imxi2 · · ·xim . (3.2)

Let A = CD. Then by Definition 3.8, the i-th component of the vector (CD)xm−1 can be written as

((CD)xm−1)i =

n∑
i2=1

· · ·
n∑

im=1

aii2···imxi2 · · ·xim

=
n∑

i2=1

· · ·
n∑

im=1

cii2···imd
1

m−1

i2···i2 · · · d
1

m−1

im···imxi2 · · ·xim . (3.3)

Combining (3.2) and (3.3), we have

(CD)xm−1 = Cum−1.

This completes the proof.

It is easy to see that

|x|[m−1] = Dxm−1 (3.4)

holds for any vector x ∈ Rn, because the i-th component of the vectors |x|[m−1] and Dxm−1 are in the

form of

(|x|[m−1])i = |xi|m−1, (Dxm−1)i = di···ix
m−1
i .

Here, the sign of xi corresponds to the diagonal element 1 or −1 of D.

The following theorem is a generalization of the result (ii) from AVE to TAVE.

Theorem 3.10. Let C ∈ T (m,n), b ∈ Rn and A = CD. If the multilinear system of equations

(C − I)zm−1 = b, z > 0 (3.5)

has a solution, then the tensor absolute value equation

Axm−1 − |x|[m−1] = b

also has a solution.
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Proof. Let z∗ be the solution of the multilinear system of (3.5). Then we have

(C − I)(z∗)m−1 = b, z∗ > 0. (3.6)

Set

D(x∗)m−1 = (z∗)[m−1], u = (D(x∗)m−1)[
1

m−1 ].

Then (3.6) can be rewritten as

Cum−1 −D(x∗)m−1 = b,

which, together with Proposition 3.9 and (3.4), implies that x∗ is a solution of the tensor absolute

value equation

Axm−1 − |x|[m−1] = b.

Thus, we complete the proof.

We give an example to verify the above theorem.

Example 3.11. Let C ∈ T (4, 2) with c1111 = c1222 = c2111 = c2222 = 1 and zero otherwise, and

b = (8, 8)T. Consider the multilinear system of equations

(C − I)zm−1 = b.

It is rewritten as

z31 = 8, z32 = 8.

This implies that z∗ = (2, 2)T is a solution of

(C − I)zm−1 = b, z > 0.

Let D ∈ T (4, 2) be a diagonal tensor with d1111 = 1 and d2222 = −1. Then we have A ∈ T (4, 2) with

a1111 = a2111 = 1, a1222 = a2222 = −1, and zero otherwise, i.e., A = CD. By Theorem 3.10, x∗ = (2,−2)T

is just a solution of the tensor absolute value equation

Axm−1 − |x|[m−1] = b. (3.7)

We now verify the conclusion. We rewrite (3.7) as{
x3
1 − x3

2 − |x1|3 = 8,

−x3
2 + x3

1 − |x2|3 = 8.

By a simple computation, the above equation has a solution x1 = 2, x2 = −2.

4 Reformulation and algorithm

In this section, we extend the result (i) from AVE to TAVE. We show that the TAVE (1.2) is equivalent

to a bi-multiliear program and a generalized tensor complementarity problem. We first introduce the

following definition.

Definition 4.1. Let A ∈ T (m,n) and x, b ∈ Rn. Define

F (x) = (A+ I)xm−1 − b, G(x) = (A− I)xm−1 − b.

The generalized tensor complementarity problem is to find x ∈ Rn satisfying

F (x) > 0, G(x) > 0, F (x)TG(x) = 0. (4.1)

We call the following nonlinear program as a bi-multiliear program:

0 = min{F (x)TG(x) |F (x) > 0, G(x) > 0}. (4.2)
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Theorem 4.2. Let A ∈ T (m,n) and b ∈ Rn. Then the TAVE (1.2) is equivalent to the generalized

tensor complementarity problem (4.1) and the bi-multilinear program (4.2).

Proof. Clearly, the generalized tensor complementarity problem (4.1) is equivalent to the bi-multilinear

program (4.2), i.e., (4.1) ⇔ (4.2).

We only need to prove (1.2) ⇔ (4.2). In fact, |x|[m−1] = |x[m−1]|. Hence, we have

|x|[m−1] 6 Axm−1 − b ⇔ (A+ I)xm−1 − b > 0, (A− I)xm−1 − b > 0.

This implies that x is a feasible solution of (4.2). Since

|x|[m−1] = Axm−1 − b ⇔ ((A+ I)xm−1 − b)T((A− I)xm−1 − b) = 0,

we have

|x|[m−1] = Axm−1 − b ⇔ 0 = min
{
F (x)TG(x) |F (x) > 0, G(x) > 0

}
.

This completes the proof.

By the above theorem, in order to solve the TAVE (1.2), we propose an algorithm for solving the

generalized tensor complementarity problem (4.1). Using the Fischer-Burmeister function ϕFB , we can

reformulate (4.1) as the following equation:

H(x) =


ϕFB(F1(x), G1(x))

...

ϕFB(Fn(x), Gn(x))

 = 0.

Hence, x is a solution of (1.2) if and only if H(x) = 0. Moreover, H(x) is strongly semismooth since the

composition of strongly semismooth function is again strongly semismooth (see [23]), and according to

the Jacobian chain rule, we have the following result.

Theorem 4.3. Let A ∈ S(m,n). Then the function H(x) is strongly semismooth. Moreover, for any

x ∈ Rn, we have

∂H(x) ⊆ Da(x)JF (x) +Db(x)JG(x),

where Da(x) = diag(ai(x)) and Db(x) = diag(bi(x)) are diagonal matrices in Rn×n with entries

(ai(x), bi(x)) ∈ ∂ϕFB(Fi(x), Gi(x)),

where ∂ϕFB(Fi(x), Gi(x)) denotes the set ∂ϕFB(a, b) with (a, b) being replaced by (Fi(x), Gi(x)), and

JF (x) and JG(x) are given by

JF (x) = (A+ I)xm−2, JG(x) = (A− I)xm−2.

Here, for a tensor T = (ti1···im) ∈ T (m,n) and a vector x ∈ Rn, let T xm−2 be a matrix in Rn×n whose

(i, j)-th component is defined by

(T xm−2)ij =

n∑
i3

· · ·
n∑
im

tiji3···imxi3 · · ·xim .

In order to propose an algorithm for the solution of H(x) = 0, we define a merit function as

Ψ(x) =
1

2
∥H(x)∥2.

We present some properties of the merit function, which can be obtained by [7, Theorems 2.2.4 and 2.6.6].

Theorem 4.4. Let A ∈ S(m,n). Then the merit function Ψ(x) is continuously differentiable with

∇Ψ(x) = QTH(x)

for any Q ∈ ∂H(x).
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We are now in the position to propose a Levenberg-Marquardt-type algorithm to solve the semismooth

system of equations H(x) = 0, which is an extension of the nonsmooth inexact Levenberg-Marquardt-

type method in [11]. To ensure global convergence, a line search is performed to minimize the smooth

merit function Ψ. Because the problem with data in a structure of tensor is large scale, and the inexact

version is more suitable to the large-scale case [11], we have the following algorithm.

Algorithm 1 Inexact Levenberg-Marquardt-type method

Step 0. Given a starting vector x0 ∈ Rn and some scales p > 2, 0 < β < 1/2, ρ > 0, ϵ > 0. Set k := 0.

Step 1. If ∥H(xk)∥ 6 ϵ, stop. Otherwise, compute Qk ∈ ∂H(xk).

Step 2. Find a solution dk satisfying

((Qk)TQk + µkI)d = −(Qk)TH(xk) + rk, (4.3)

where µk > 0 is the Levenberg-Marquardt parameter. If the condition

∇Ψ(xk)Tdk 6 −ρ∥dk∥p

is not satisfied, set

dk = −∇Ψ(xk).

Step 3. Find the smallest integer ik ∈ {0, 1, 2, . . .} such that tk = 2−ik and

Ψ(xk + tkd
k) 6 Ψ(xk) + βtk∇Ψ(xk)Tdk.

Step 4. Set xk+1 = xk + tkd
k, k := k + 1, and go to Step 1.

In what follows, we analyze the global convergence of Algorithm 1. We shall assume that Algorithm 1

produces an infinite sequence {xk}. By [11, Theorems 15 and 16], we immediately obtain the following

theorems.

Theorem 4.5. Assume that the sequence {µk} is bounded and that the sequence {rk} satisfies

∥rk∥ 6 αk∥∇Ψ(xk)∥,

where {αk} is a sequence of numbers with 0 < αk < 1 and αk → 0 as k → ∞. Then each accumulation

point of {xk} is a stationary point of Ψ.

Theorem 4.6. Let the assumptions of Theorem 4.5 hold. If one of the accumulation points of {xk},
denoted by x∗, is an isolated solution of the TAVE (1.2), then

lim
k→∞

xk = x∗.

In the implementation of Algorithm 1, the most intensive part is to compute the approximation solution

of (4.3) with rk = 0 at the k-th iteration. We note that the system is always solvable. In fact, if µk > 0,

the matrix (Qk)TQk + µkI is symmetric positive definite and hence (4.3) is surely solvable. If µk = 0,

the matrix (Qk)TQk + µkI reduces to (Qk)TQk, which is guaranteed to be only positive semidefinite.

However, in this case, (4.3) reduces to the normal gradient equation Qkd = −H(xk), which is therefore

solvable. We now have to specify which element Qk ∈ ∂H(xk) we select at the k-th iteration. By

Theorem 4.3, we have that an element of ∂H(xk) can be obtained in the following way. Let

Λ = {i : Fi(x
k) = 0 = Gi(x

k)}

be the set of “degenerate indices” and define z ∈ Rn to be a vector whose components zi are 1 if i ∈ Λ

and 0 otherwise. Then, the matrix Qk, defined by

Qk = A(xk)JF (xk) +B(xk)JG(xk),

where A and B are n× n diagonal matrices whose i-th diagonal elements are given, respectively, by

Aii(x
k) =


1− Fi(x

k)√
F 2
i (x

k) +G2
i (x

k)
, if i ̸∈ Λ,

1− ∇Fi(x
k)Tz√

(∇Fi(xk)Tz)2 + (∇Gi(xk)Tz)2
, if i ∈ Λ,
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and by

Bii(x
k) =


1− Gi(x

k)√
F 2
i (x

k) +G2
i (x

k)
, if i ̸∈ Λ,

1− ∇Gi(x
k)Tz√

(∇Fi(xk)Tz)2 + (∇Gi(xk)Tz)2
, if i ∈ Λ,

belongs to ∂H(xk). In the next section, we compute Qk as the formulation.

5 Numerical results

In this section, we present the numerical performance of Algorithm 1 for the TAVE (1.2). All codes

were written using Matlab Version R2015b and Tensor Toolbox Version 2.6 (see [1]). The numerical

experiments were done on a laptop with an Intel Core i7-4720HQ CPU (2.6GHz) and RAM of 7.89GB.

In the implementation of Algorithm 1, we set ε = 10−6, ρ = 10−10, p = 2.1, β = 10−4 and the

Levenberg-Marquardt parameter µk = 0.3 (k ∈ N). We also set a maximum iteration step for the

algorithm, i.e., Nmax = 300.

The first numerical experiment focuses on the behavior of algorithm’s iterations. We generate a random

symmetric non-negative tensorA ∈ S6,8 and a random vector x∗ ∈ R8. All entries ofA and x∗ are uniform

random numbers in the interval [0, 1]. We calculate b = Ax∗m−1 − |x∗|[m−1] in order to make TAVE

have at least one solution. Then we use Algorithm 1 to solve TAVE: Axm−1 − |x|[m−1] = b, with a

random initial point chosen randomly from [0, 1]8 which is shown as x0 in Table 1. After 13 iterations,

Algorithm 1 can find the solution. The iteration of Algorithm 1 is shown in Table 1. From the table, we

see that ∥H(xk)∥ tends to 0 as the number of iterations k increases. In addition, ∥∇Ψ(xk)∥ also tends

to 0 except that it increases from k = 2 to k = 4. This shows that ∥∇Ψ(xk)∥ does converge to 0 but not

monotonically when the algorithm converges.

The second numerical experiment aims to verify Theorem 3.10. We first generate a random symmetric

non-negative tensor C ∈ S(4, 10) and a random vector

z∗ = (0.1040, 0.7455, 0.7363, 0.5619, 0.1842, 0.5972, 0.2999, 0.1341, 0.2126, 0.8949)T ∈ R10.

All entries of C are uniform random numbers in the interval [0, 1]. Let

b = (C − I)z∗m−1.

Table 1 Iterations of Algorithm 1 for a random tensor A ∈ S6,8 and the corresponding b

k xk ∥H(xk)∥ ∥∇Ψ(xk)∥
0 (0.8143, 0.2435, 0.9293, 0.3500, 0.1966, 0.2511, 0.6160, 0.4733)T 562.2589 1500602.8826

1 (0.7407, 0.2435, 0.6880, 0.3545, 0.1072, 0.3670, 0.4555, 0.3271)T 148.1702 203193.6101

2 (0.4542, 0.4477, 0.4349, 0.4348,−0.2944, 0.7819, 0.4209, 0.3007)T 25.5263 23486.6536

3 (1.0757, 0.3147, 0.2655, 0.4343,−0.2368, 0.4908, 0.1690, 0.3781)T 20.2932 48494.4079

4 (1.2158, 0.3379, 0.4481, 0.5825,−0.2075, 0.1750, 0.3290, 0.0197)T 18.6526 49990.1630

5 (0.8865, 0.3812, 0.3176, 0.5179,−0.3075, 0.3684, 0.4486, 0.2840)T 10.0354 20912.3905

6 (0.8742, 0.2928, 0.3744, 0.5308,−0.3895, 0.5269, 0.2838, 0.3997)T 2.9292 3867.9206

7 (0.8798, 0.2888, 0.3406, 0.6301,−0.3722, 0.4799, 0.3198, 0.3293)T 1.3213 1522.0099

8 (0.8664, 0.2829, 0.3003, 0.6746,−0.3890, 0.4936, 0.3325, 0.3355)T 0.7455 1084.3075

9 (0.8684, 0.2850, 0.2737, 0.6914,−0.3985, 0.4960, 0.3394, 0.3411)T 0.1766 482.0095

10 (0.8690, 0.2852, 0.2752, 0.6895,−0.3976, 0.4957, 0.3383, 0.3411)T 0.0144 21.2907

11 (0.8692, 0.2853, 0.2753, 0.6894,−0.3975, 0.4956, 0.3383, 0.3410)T 0.0029 2.4370

12 (0.8692, 0.2853, 0.2754, 0.6893,−0.3975, 0.4956, 0.3383, 0.3410)T 0.0002 0.1396

13 (0.8692, 0.2853, 0.2754, 0.6892,−0.3975, 0.4956, 0.3383, 0.3410)T 0.0001 0.0008

14 (0.8692, 0.2853, 0.2754, 0.6892,−0.3975, 0.4956, 0.3383, 0.3410)T 0.0000 0.0000
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Table 2 Diagonal elements of Dt

t diag of Dt

1 (−1,−1,−1,−1,−1,−1,−1,−1,−1,−1)T

2 (−1, 1,−1, 1,−1, 1,−1,−1,−1, 1)T

3 (1, 1,−1,−1, 1, 1,−1,−1,−1,−1)T

4 (−1, 1,−1, 1,−1, 1,−1,−1, 1, 1)T

5 (1,−1, 1, 1, 1, 1,−1, 1,−1, 1)T

Table 3 Numerical results for tensors At with type-I initial points

t x∗
t ∥H(x∗

t )∥ Iter. Time

1
(−0.3485,−0.0971,−0.7753,−1.2447,−0.7739,

0.00000012 15 0.2135
−0.5628,−0.4868, 0.4480, 0.2925,−0.9003)T

2
(0.4184,−0.0423,−0.2989, 1.0357,−1.0340,

0.00000022 15 0.2060
0.3109,−0.3686,−0.2755,−0.6852, 0.9528)T

3
(0.7454, 0.5055,−0.6641, 0.3093,−0.1769,

0.00000003 18 0.2673
1.1273,−0.4514,−1.1430,−0.0619,−0.2421)T

4
(−0.9570, 0.5494,−2.1429,−0.1959,−1.8247,

0.00000000 11 0.1355
−0.3996, 0.8803,−0.3457, 0.0458, 0.1694)T

5
(0.3385,−1.1498, 1.0413, 0.3533, 0.7606,

0.00000006 10 0.1265
−0.1214,−0.3290,−0.0458,−0.2049, 0.4027)T

Table 4 Numerical results for tensors At with type-II initial points

t x∗
t ∥H(x∗

t )∥ Iter. Time

1
(−0.1040,−0.7455,−0.7363,−0.5619,−0.1842,

0.00000072 20 0.2523
−0.5972,−0.2999,−0.1341,−0.2126,−0.8949)T

2
(−0.1040, 0.7455,−0.7363, 0.5619,−0.1842,

0.00000090 17 0.2050
0.5972,−0.2999,−0.1341,−0.2126, 0.8949)T

3
(0.1040, 0.7455,−0.7363,−0.5619, 0.1842,

0.00000091 24 0.2838
0.5972,−0.2999,−0.1341,−0.2126,−0.8949)T

4
(−0.1040, 0.7455,−0.7363, 0.5619,−0.1842,

0.00000064 16 0.1896
0.5972,−0.2999,−0.1341, 0.2126, 0.8949)T

5
(0.1040,−0.7455, 0.7363, 0.5619, 0.1842,

0.00000075 14 0.1638
0.5972,−0.2999, 0.1341,−0.2126, 0.8949)T

Since D ∈ S(4, 10) is a diagonal tensor whose diagonal elements are 1 or −1, there are at most 210 = 1,024

different D. The first attempt is to generate all these 1,024 tensors. For each tensor Dt, set At = CDt

(see Definition 3.8) and x∗
t = (Dtz

∗m−1)[
1

m−1 ]. We check whether At(x
∗
t )

m−1−|x∗
t |[m−1] is equal to b for

all t ∈ {1, 2, . . . , 1024}. The result shows that each x∗
t is just one of the solutions to the corresponding

TAVE problem Atx
m−1 − |x|[m−1] = b.

The second attempt of the second numerical experiment is to generate five Dt of all 1,024 tensors

randomly and use Algorithm 1 to solve the corresponding TAVE. The diagonal elements of the five Dt is

shown in Table 2.

We first select the initial points for Algorithm 1 by using normal distribution, i.e., entries are from

standardized normal distribution N(0, 1) independently. Here, we call these initial points type-I initial

points. The results of corresponding TAVE with type-I initial points are summarized in Table 3. We can

easily find out that none of the five x∗
t is in the form of (Dtz

∗m−1)[
1

m−1 ]. Because Algorithm 1 is based

on the thoughts of Newton method, thus its convergence relies heavily on the initial point. In order to

detect the solution which is mentioned in Theorem 3.10 by Algorithm 1, we should choose the initial points
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Table 5 A random symmetric non-negative tensor B = (bi1i2i3i4 ) ∈ S(4, 4)

b1111 = 0.8147 b1112 = 0.9058 b1113 = 0.1270 b1114 = 0.9134 b1122 = 0.6324

b1123 = 0.0975 b1124 = 0.2785 b1133 = 0.5469 b1134 = 0.9575 b1144 = 0.9649

b1222 = 0.1576 b1223 = 0.9706 b1224 = 0.9572 b1233 = 0.4854 b1234 = 0.8003

b1244 = 0.1419 b1333 = 0.4218 b1334 = 0.9157 b1344 = 0.7922 b1444 = 0.9595

b2222 = 0.6557 b2223 = 0.0357 b2224 = 0.8491 b2233 = 0.9340 b2234 = 0.6787

b2244 = 0.7577 b2333 = 0.7431 b2334 = 0.3922 b2344 = 0.6555 b2444 = 0.1712

b3333 = 0.7060 b3334 = 0.0318 b3344 = 0.2769 b3444 = 0.0462 b4444 = 0.0971

Table 6 The symmetric tensor A = (ai1i2i3i4 ) ∈ S(4, 4) based on B

a1111 = 40.8037 a1112 = −0.9058 a1113 = −0.1270 a1114 = −0.9134 a1122 = −0.6324

a1123 = −0.0975 a1124 = −0.2785 a1133 = −0.5469 a1134 = −0.9575 a1144 = −0.9649

a1222 = −0.1576 a1223 = −0.9706 a1224 = −0.9572 a1233 = −0.4854 a1234 = −0.8003

a1244 = −0.1419 a1333 = −0.4218 a1334 = −0.9157 a1344 = −0.7922 a1444 = −0.9595

a2222 = 40.9627 a2223 = −0.0357 a2224 = −0.8491 a2233 = −0.9340 a2234 = −0.6787

a2244 = −0.7577 a2333 = −0.7431 a2334 = −0.3922 a2344 = −0.6555 a2444 = −0.1712

a3333 = 40.9124 a3334 = −0.0318 a3344 = −0.2769 a3444 = −0.0462 a4444 = 41.5213

Table 7 Numerical results for the third experiment

x b Iter. Time max ∥H(x)∥ Attempts

(0.8100, 0.7881, 0.7786, 0.8003)T (1.4193, 0.2916, 0.1978, 1.5877)T 31.00 0.6783 0.00000098 20/100

(0.7285, 0.7212, 0.7156, 0.7098)T (0.8045, 0.6966, 0.8351, 0.2437)T 19.40 0.3109 0.00000099 20/157

(0.7219, 0.7313, 0.7230, 0.7098)T (0.2157, 1.1658, 1.1480, 0.1049)T 19.55 0.3456 0.00000099 20/205

(0.8453, 0.8603, 0.8294, 0.8276)T (0.7223, 2.5855, 0.6669, 0.1873)T 13.65 0.1907 0.00000082 20/244

(0.8445, 0.8584, 0.8321, 0.8507)T (0.0825, 1.9330, 0.4390, 1.7947)T 14.05 0.2168 0.00000084 20/290

(0.7104, 0.7055, 0.6849, 0.6957)T (0.8404, 0.8880, 0.1001, 0.5445)T 68.25 1.7492 0.00000051 20/145

(0.6775, 0.6771, 0.6677, 0.6750)T (0.3035, 0.6003, 0.4900, 0.7394)T 21.75 0.3864 0.00000099 20/216

(0.9021, 0.8787, 0.8894, 0.8805)T (1.7119, 0.1941, 2.1384, 0.8396)T 15.70 0.2535 0.00000089 20/114

(0.8104, 0.8007, 0.7908, 0.7841)T (1.3546, 1.0722, 0.9610, 0.1240)T 14.60 0.2121 0.00000071 20/129

(0.8957, 0.8939, 0.8661, 0.8808)T (1.4367, 1.9609, 0.1977, 1.2078)T 13.60 0.1980 0.00000099 20/114

Table 8 Solutions of TAVE when b = (−1, 1, 1, 1)

x b Iter. Time max ∥H(x)∥ Attempts

(0.0800, 0.3629, 0.3543, 0.3505)T (−1, 1, 1, 1)T 12.67 0.1644 0.00000070 3/20

(−0.2593, 0.2948, 0.2891, 0.2903)T (−1, 1, 1, 1)T 13.67 0.1708 0.00000099 3/20

(0.6258, 0.6600, 0.6522, 0.6537)T (−1, 1, 1, 1)T 11.93 0.1516 0.00000075 14/20

in another way. For each Dt, we generate type-II initial points by adding a random number chosen from

uniform distribution over (−0.3, 0.3) to (Dtz
∗m−1)[

1
m−1 ]. The results of corresponding TAVE with type-II

initial points are shown in Table 4. The solutions are exactly in the form of (Dtz
∗m−1)[

1
m−1 ].

In Tables 3 and 4, t denotes the experiment number corresponding to Table 2, x∗
t denotes the solution

vectors returned by Algorithm 1, and ∥H(x∗
t )∥ denotes the Euclid norm of H(x∗

t ). If the norm ∥H(x∗
t )∥

is small enough, we can regard x∗
t as an approximate solution of TAVE. Iter. denotes the number of

iterations andTime denotes the time of the iteration that finds corresponding solution x∗
t by Algorithm 1.

In the second experiment, we verify Theorem 3.10 from the instant correctly. Besides, from Tables 3
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and 4, we find that under the conditions of Theorem 3.10, the solution (Dz∗m−1)[
1

m−1 ] may not be the

only solution of TAVE Axm−1 − |x|[m−1] = b. There might be some other solutions, such as the solution

in Table 3. To discuss the uniqueness of the positive solution, we conduct the third experiment.

The third numerical experiment focuses on Theorem 3.5. Here, we first generate a random symmetric

non-negative tensor B whose entries are uniform random numbers in the interval [0, 1]. Let

c = 1 + (1 + 0.01) max
16i6n

(Be3)i,

where e = (1, 1, 1, 1)T. Since max16i6n (Be3)i > ρ(B), the choice of c makes sure that c > ρ(B)+1. Then

let A = cI − B, and A satisfy the conditions of Theorem 3.5, i.e., A− I is strong M -tensor. Tensors B
and A are given in Tables 5 and 6, respectively.

We choose 10 random positive vectors b ∈ R4
+. For each random positive vector b, we find 20 repeatable

solutions of TAVE: Axm−1−|x|[m−1] = b with random vectors from N(0, 1)4 as initial points repeatedly

and summarize the results in Table 7.

In Table 7, x denotes the solution of TAVE, b denotes the random generated positive vector, Iter.

denotes the average number of iterations that finds the corresponding solution successfully, and Time de-

notes the average time of the iteration that finds the corresponding solution by Algorithm 1. max ∥H(x)∥
is the maximum norm of all H(x) returned by Algorithm 1 whose x is the corresponding solution. At-

tempts has the form N/T , where N denotes the number of the corresponding x found by Algorithm 1

and T denotes the number of initial points in all.

In this experiment, we use “while” loop in Matlab program to guarantee that we can get exact 20

solutions (might be repeatable) for each b > 0. According to Table 7, for each b > 0, Algorithm 1 only

returns a unique positive solution in all 20 repeatable solutions. This phenomenon fits Theorem 3.5 very

well. Besides, in order to get 20 valid solutions, the initial points we attempt is 10 times more than the

valid ones. This means that most of the random initial points fail to find a solution by Algorithm 1.

The reason might be that the convergence of Newton type method depends on the initial point badly.

Theorem 3.5 shows that under the circumstances, there is only one unique positive solution of TAVE.

Only if the initial point is in the convergence region of some solution of TAVE, the algorithm will converge.

Therefore, it is harder to find valid solutions if b > 0. Table 8 shows the solutions found by Algorithm 1

when b = (−1, 1, 1, 1). The initial points attempted in all is much less.

Moreover, under the circumstances that b > 0 and A − I is strong M -tensor, whether the unique

positive solution of TAVE is the unique solution of TAVE remains a question. In our experiment we have

not found other solutions except for the unique positive ones.

6 Conclusion

We have introduced tensor absolute value equations. The simple definition is a natural generalization of

the definition of absolute value equations in the matrix case. We have established some basic properties for

tensor absolute value equations and reformulated tensor absolute value equations as a generalized tensor

complementarity problem. We have proposed some sufficient conditions for the existence of solutions to

the multilinear equations, and an inexact Levenberg-Marquardt-type method (see Algorithm 1) to solve

the tensor absolute value equations, and some numerical results have shown that our algorithm performs

well.

There are some questions which are still in study. For example, we known that the AVE (2.1) is

uniquely solvable for any b ∈ Rn if the singular values of A exceed 1 (see [22]). Can we extend the

conclusion to TVAE (1.2), i.e., the statement “The TAVE (1.2) is uniquely solvable for any b ∈ Rn if the

singular values of tensor A exceed 1” is correct or not? This is still an open question.
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