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Quantum geometric tensor, including a symmetric real part defined as quantum metric and an antisymmetric part defined as Berry
curvature, is essential for understanding many phenomena. In this study, we investigated the photogalvanic effect of semicon-
ductors with time-reversal-invariant and spatial inversion symmetries using the quantum kinetic equation. We concluded that the
integral of the symmetric (antisymmetric) part of quantum geometric tensor on the equal energy surface in momentum space, sat-
isfying the resonance condition, is related to the generation rate of carriers in semiconductors under linearly (circularly) polarized
light. Under additional bias voltage, the dc photocurrent is proportional to the bias voltage. Our study provided an alternative in-
terpretation for the photogalvanic effect in the view of quantum geometric tensor. Additionally, it classified the intrinsic difference
between linearly and circularly polarized optical fields.

quantum geometry, photovoltaic effect, nonlinear optics

PACS number(s): 04.60.Pp, 72.40.+w, 42.65.-k

Citation: Z. Li, S. Zhang, T. Tohyama, X. Song, Y. Gu, T. Iitaka, H. Su, and H. Zeng, Optical detection of quantum geometric tensor in intrinsic semiconductors,

Sci. China-Phys. Mech. Astron. 64, 107211 (2021), https://doi.org/10.1007/s11433-021-1750-2

1 Introduction

Geometry plays a significant role in various aspects of mod-
ern physics [1-4]. The geometry of the eigenstates is encoded
in the quantum geometric tensor (QGT) [5-9] defined on any
manifold of states smoothly varying with some parameter λ.
The geometric tensor naturally appears when one defines the
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“distance” between nearby states |ψ(λ)⟩ and |ψ(λ + dλ)⟩.

ds2 = 1 − |⟨ψ(λ)|ψ(λ + dλ)⟩|2 = dλαQαβdλβ + O(|dλ|3), (1)

where Qαβ = Γαβ + iΩαβ is an object known as the geometric
tensor consisting of antisymmetric Berry curvature Ωαβ and
symmetric quantum metric Γαβ. The Berry curvature is es-
sential for topological matter [10-16], and the quantum met-
ric defines the distance between eigenstates. The knowledge
of the quantum metric is essential for understanding several
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phenomena, such as the orbital magnetic susceptibility [17],
exciton Lamb shift [18], and anomalous Hall drift [19].

Nonlinear optical response [20], including the second har-
monic generation (SHG) and photogalvanic effect (PGE), has
wide applications in the scientific community [21]. For ex-
ample, SHG is used for frequency doubling of laser light and
the detection of the breaking of spatial inversion symmetry
(SIS) [22]. The PGE, where the dc electronic current is in-
duced when the material is illuminated by light, can occur
in materials with broken SIS without bias [23-28]. There
are two types of PGE in semiconductors: injection and shift
currents. The injection current is also called circular PGE
(CPGE) since the direction of current is determined by the
helicity of light. CPGE can be used for detecting the topo-
logical charge of quantum matter [29-35], i.e., CPGE is re-
lated to the Berry curvature. The direction of shift current
is independent of the helicity of light; hence this is also
known as linear PGE (LPGE). For materials with SIS, if no
dc bias voltage is applied to drive the carrier pumped by light,
both CPGE and LPGE vanish. Recently, the Berry curva-
ture dipole (BCD) defined as the integral of the gradient of
the Berry curvature in momentum space [36-40] offers a new
mechanism for PGE in metallic materials. Bilayer WTe2 with
a tilted Weyl point provides a possible platform for detect-
ing the BCD and its induced nonlinear Hall current [41-45].
Since the CPGE is related to the antisymmetric Berry curva-
ture of occupied states, we probably wonder what the role of
the symmetric quantum metric is. If we can connect the sym-
metric quantum metric to some nonlinear optic effect, we can
bridge the gap between the nonlinear optical effect and QGT.

In this study, we addressed the basic theory of PGE of in-
trinsic semiconductors with TRIS and SIS under an applied
dc bias voltage. We observed that the integral of the sym-
metric (antisymmetric) part of QGT on the equal energy sur-
face in momentum space satisfying the resonance condition
is related to the generation rate of carriers in semiconductors
under linearly (circularly) polarized light with photon energy
larger than the bandgap. Under additional bias voltage, the
driven photocurrent is proportional to the bias voltage. Our
study builds close connections between the nonlinear opti-
cal response of the system using TRIS and QGT of quantum
states. It clarifies the underlying cause of the tensor field
for the nonlinear optical response. Additionally, our study
facilitates the detection of a QGT using photocurrent mea-
surement.

2 Quantum kinetic equation

We consider a typical experimental setup of a biased photo-
conductor under irradiation (Figure 1). The pump light hits

the surface of the semiconductor material with TRIS and SIS.
The bias voltage is applied along the z-direction to drive the
carrier pumped by the laser light. Under spatial homoge-
neous optical field E(t) = E(ω)e−iωt + c.c., light-matter inter-
action can be described by the following model Hamiltonian
in length gauge,

H(t) =
∫

d3rΨ†(r, t)[H0 − eE(t) · r]Ψ(r, t), (2)

where H0 is the unperturbed single-particle Hamiltonian, and
H1 = −eE(t) · r describes the light-matter interaction. The
strength of the electric field E(t) can include the static com-
ponent, which plays the role of bias voltage. Although the
light-matter interaction has another description in the veloc-
ity gauge, we have adopted the length gauge because of un-
physical divergences that arise in the velocity gauge [46,47].
The orthogonal Bloch functions ϕn(k, r) satisfy

H0ϕn(k, r) = ϵn(k)ϕn(k, r), (3)

where n is the band index, and k is position vector in mo-
mentum space. The Bloch functions are orthogonal to each
other,∫

d3rϕ†n(k, r)ϕm(k′, r) = δnmδ(k − k′). (4)

The wave function Ψ(r, t) can be expressed as a combination
of Bloch functions with coefficients an(k, t),

Ψ(r, t) =
∑

n

∫
BZ

d3k
(2π)3 an(k, t)ϕn(k, r)

=
∑
n,k

an(k, t)ϕn(k, r). (5)

The dynamics of the density operator ρ(t) = |Ψ(t)⟩⟨Ψ(t)|
can be described using the quantum kinetic equation with
constant relaxation time [48-51],

i~
∂ρ(t)
∂t
= [H, ρ(t)] + i~

δρ(t)
τ

, (6)
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Figure 1 (Color online) Schematic diagram for the experimental setup.
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where τ is the relaxation time. We expand the density matrix
to second-order field strength,

ρnm(k, t) = ρ(0)
nm(k) + ρ(1)

nm(k, t) + ρ(2)
nm(k, t), (7)

where ρnm(k, t) = ⟨n(k)|ρ|m(k)⟩. From eq. (6), the first-order
inter-band (n,m) density matrix is given as follows:

ρ(1)
nm(k, ω) =

⟨n|H1(ω)|m⟩(ρ(0)
mm(k) − ρ(0)

nn (k))
~ω − ϵnm(k) − iη

, (8)

where ϵnm(k) = ϵn(k)− ϵm(k). The intra-band first-order den-
sity matrix is given as follows:

ρ(1)
nn (k, ω) =

−ie
~ω − iη

E(ω) · ∂kρ
(0)
nn (k). (9)

Here, ρ(0)
nn (k) = 1

1+exp( ϵn(k)−µ
kBT )

(kB Boltzmann constant, T tem-

perature, µ chemical potential) is Fermi-Dirac distribution
of band n, and η = ~/τ. For intrinsic semiconductor, the
intra-band first-order density matrix ρ(1)

nn (k, ω) vanishes com-
pletely. For linear response, the ac current along y-direction
is given as follows:

Jy(ω) =
e

(2π)3

∑
nm

∫
d3k
⟨
m(k)
∣∣∣∣∣∂H0(k)
~∂ky

∣∣∣∣∣n(k)
⟩
ρ(1)

nm(k, ω).

(10)

In the limit of low frequency and clean system, viz, relax-
ation time is infinite, photon energy ~ω is smaller than the
bandgap Eg, and η ∼0. The imaginary part of the optical
conductivity is given by

σyx(ω) =
ie2ω

(2π)3

∑
nm

∫
d3k
Γ

xy
nm(k)
ϵnm(k)

ρ(0)
mm(k), (11)

where, the inter-band metric tensor Γxy
nm(k) is given by

2Γxy
nm(k) =⟨∂xm(k)|n(k)⟩⟨n(k)|∂ym(k)⟩

+ ⟨∂ym(k)|n(k)⟩⟨n(k)|∂xm(k)⟩. (12)

The real part of the optical conductivity describes the quan-
tum Hall effect, and it should vanish for topologically trivial
semiconductors. For resonance, the real part of the optic con-
ductivity is given by

σyx =
−πe2

~(2π)3

∮
2Γxy

cv(k). (13)

The integral should be calculated on an equal energy surface
in momentum space satisfying ~ω = Eg. If there is multiple
pair of the conduction band (c) and valence band (v) satis-
fying ~ω = Eg, we should sum contributions from all pairs.
Thus, we classify the role of the metric tensor in the linear
response.

From eq. (6), the second-order intra-band density matrix
is given as follows:

i~
dρ(2)

cc (k, t)
dt

= ⟨c|[H1, ρ
(1)]|c⟩ + i~

ρ(2)
cc (k, t)
τ

, (14)

where |c(k)⟩ is the Bloch state of a conduction band. The
intra-band photocurrent, including injection and anomalous
currents induced by BCD, vanishes in semiconductors with
SIS and TRIS. However, the density of carriers is not van-
ishing. After some straightforward calculations as shown in
Supporting Information, the density of conducting electron
with zero frequency is given by

nc =

∫
dk

(2π)3 ρ
(2)
cc (k) = Gτ, (15)

where G is the generation rate of carriers with zero frequency.
For linearly polarized optical field applied in xy-plane, the
carrier generation rate is given by

G(ω) = (4π)2αP
∫

dk
(2π)3 Γxy(k)δ(~ω − ϵcv(k)), (16)

where the fine structure constant α = e2

4π~cε0
, and power den-

sity P= 1
2 cε0|E|2. This equation demonstrates that the carrier

generation rate is proportional to the power density. Further,
it connects the generation rate with the symmetric quantum
metric tensor Γxy(k). If the low energy dispersion near the
Fermi level can be described via a pair of conduction and
valence bands, the quantum metric tensor of band c is given
by

Γxy(k) =
1
2
⟨∂xc|∂yc⟩ + 1

2
⟨∂yc|∂xc⟩

+
1
2
⟨c|∂xc⟩⟨c|∂yc⟩ + 1

2
⟨c|∂yc⟩⟨c|∂xc⟩, (17)

where ∂x means ∂
∂kx

. This tensor is symmetric under the ex-
change of x and y. It is a function of momentum k, viz, this
quantum metric tensor is non-vanishing even though TRIS
and SIS are preserved. For multiple-band systems, we should
sum contribution from all pairs of band satisfying ~ω = Eg,
and the metric tensor should be defined as eq. (12).

Under circularly polarized optical field applied in xy-
plane, the generation rate of carrier is given as:

G = (4π)2αP
∫

dk
(2π)3Ωxy(k)δ(~ω − ϵcv(k)), (18)

where Ωxy(k)=i⟨∂xc|∂yc⟩ − i⟨∂yc|∂xc⟩ + i⟨c|∂xc⟩⟨c|∂yc⟩ −
i⟨c|∂yc⟩⟨c|∂xc⟩ is the Berry curvature defined in momentum
space for two-band model systems. In contrast to quantum
metric tensor, this curvature tensor is zero in materials with
TRIS and SIS. However, the Berry curvature is nonzero in
topological materials with broken SIS or TRIS. Both CPGE
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and nonlinear Hall effect are related to the Berry curvature.
The inter-band density is given as:

ρ(2)
nm(k, ω3) =

∑
ω1,ω2

eE(ω1) · Dnm(k)
~ω3 − ϵnm(k)

ρ(1)
nm(ω2)

× δ(ω3, ω1 + ω2).

Here, the shift vector Dnm is defined as Dnm(k)=−i∂k +

Amm(k) − Ann(k), and Amm(k)=i⟨c|∂kc⟩ is the Berry connec-
tion [52]. The shift vector Dnm is invariant under the gauge
transformation of Bloch functions. It characterizes the differ-
ence between intracell position matrices within the valence
and conduction bands. Additionally, it underlies the shift
current in non-centrosymmetric semiconductors. For semi-
conductors with both TRIS and spatial inversion invariant
symmetry, we can adopt a proper local phase gauge for Bloch
function to make Berry connection vanish over the entire BZ;
however, it may be impossible in materials with broken SIS.
Since ρ(1)

nm(k, ω) is an even function of momentum k, the in-
tegral of inter-band matrix element ρ(2)

nm(ω3) in momentum
space is vanishing. For semiconductors with broken SIS, the
inter-band dc current (shift current) contribution is not van-
ishing.

3 Application to massive Dirac model Hamilto-
nian

For applied optical field (pump light) with a frequency larger
than the bandgap Eg, all electrons with momentum ~ω =
ϵcv(k) can be excited, and the domain of integration is same
as the energy surface in momentum space. If the frequency
of the optical field is same as the bandgap of the direct gap
semiconductor, only the electron at the topmost point of the
valence band can be excited. The domain of integration is
reduced to discrete momentum points satisfying ~ω = Eg.
Therefore, the dc bias voltage is not responsible for produc-
ing carriers, whereas it only accelerates the carriers. To clar-
ify the physical meaning of quantum metric and estimate its
magnitude, we take the halide perovskite CsPbBr3 as an ex-
ample. Cubic CsPbBr3 is a direct bandgap semiconductor
with Eg=2.43 eV at Γ=(0,0,0) point. The band dispersion
near Γ point can be described as the low energy effective
Hamiltonian,

H0(k) =

 ∆ V(k)

V†(k) −∆

 , (19)

where the off-diagonal term V(k) describing orbital hy-
bridization, including the spin-orbital coupling, is given as:

V(k) =

 γzkz γxkx − iγyky

γxkx + iγyky −γzkz

 , (20)

where the positive 2∆ is the charge transfer energy between
the s-orbital of cation and p-orbital of halogen ions, and
γ = (γx, γy, γz) is a set of parameters tuning the anisotropic
strength of orbital hybridization V(k) with spin-orbital cou-
pling. Since the valence and conduction bands near the
Fermi level are dominated by the s-orbitals from cation and
p-orbitals from halogen, respectively, the hybridization term
should be an odd function of momentum k. We neglect
higher order off-diagonal elements ∝ k3. From the unper-
turbed Hamiltonian H0(k) in eq. (14), the four band disper-
sions are given as follows:

ϵv↑(k) = ϵv↓(k) = −d(k),

ϵc↑(k) = ϵc↓(k) = d(k),

d(k) =
√
∆2 + [(γxkx)2 + (γyky)2 + (γzkz)2].

However, the periodic part of the Bloch function is given by

|v↑(k)⟩ = η( γzkz γxkx + iγyky −(d + ∆) 0 )T,

|v↓(k)⟩ = η( γxkx − iγyky −γzkz 0 −(d + ∆) )T,

|c↑(k)⟩ = η( d + ∆ 0 γzkz γxkx + iγyky )T,

|c↓(k)⟩ = η( 0 d + ∆ γxkx − iγyky −γzkz )T,

where η = 1√
2d(d+∆)

. Both band dispersions and wavefunc-
tions are differentiable over the entire BZ. For the ground
state, the electronic distribution on different bands obeys
the Fermi-Dirac distribution approximately, neglecting the
temperature dependence because of the large bandgap in
CsPbBr3. H0(k) is the massive Dirac Hamiltonian [53,
54], describing the linear band dispersion of massive Dirac
fermion with mass ∆. At Γ point, the quantum metric
Γxx(0, 0, 0) = γ2

x/E
2
g, Γyy(0, 0, 0) = γ2

y/E
2
g, and Γxy(0, 0, 0) =

0. This result shows that quantum metric strongly depends on
the bandwidth and bandgap determined by the bond strength
and charge transfer energy, respectively. The enhancement
of bond strength and reduction of charge transfer energy can
significantly increase the magnitude of the quantum metric.
For γx = γy = ~vF = 2.43 eV· Å, i.e., inter-band electronic
velocity vF = 2.43 × 105 m/s, the estimated Γxx = Γyy∼1 Å2.
Under optical field with photon energy ~ω = Eg + 0+, the
integral domain is reduced to spherical surface surrounding
the Γ point, and the generation rate is given by

G(ω) = 8αPΓxx(k = 0)/Eg. (21)

For power density P = 3.88 mW/cm2, the generation rate is
8

137 s−1. With typical duration of laser light τ = 1 ps and va-
lence electron density N = 2 × 1024/cm3, the static conduct-
ing electron density nc = 16/137 × 1012/cm3. The average
electron-electron distance is about 200 µm. We neglect the
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electron-electron collision or correlation because of the low
carrier density. Additionally, if it is possible to extract the
carrier generation rate information from the experiment, we
can estimate the quantum metric of the direct gap semicon-
ductor using this equation.

Although the finite density of carriers can be produced us-
ing light with photon energy larger than bandgap, dc current
is still absent in semiconductors with TRIS and SIS. How-
ever, we can drive the carriers to form dc current through
static bias voltage. The drift velocity of carriers induced by
bias electric field along z-direction is v = −eτEb

me+mh
memh

, where
me (mh) is the effective mass of electron (hole). The current
density is given by

jz = −NGτv = −(eτ)2NGEb
me + mh

memh
. (22)

With typical parameters τ=1 ps [55], the density of valence
electron is N = 2×1024/cm3, me = mh = 0.2m0 (m0 is the
mass of electron), small bias electric field is Eb = 0.1 V/cm,
which is about 1/10 strength of the oscillating optical field,
and the estimated current density is about 3.3 nA/cm2. This
photocurrent is proportional to the bias voltage, and it will
vanish under circularly polarized light. It is worth noting that
the tetragonal phase of CsPbBr3 is non-centrosymmetric, and
the low energy band dispersion can be described by a pair
of massive Weyl fermions with opposite chirality instead of
massive Dirac fermion. Thus, CPGE is possible in the tetrag-
onal phase [56, 57].

Finally, we discuss the recent measurement of photocur-
rent in palladium ditelluride (PdTe2) under Terahertz [58].
The bulk PdTe2 single crystal has a space group P3̄m1, and
it is centrosymmetric. The low energy band dispersion can
be described by a massless Dirac electron. Under zero bias
voltage, the photocurrent is not completely vanishing in some
PdTe2-based devices due to the symmetry of electrodes. Al-
though the bulk PdTe2 is metallic, the photocurrent is still
approximately proportional to the bias voltage and vanishes
under circularly polarized light.

4 Summary

In summary, motivated by the CPGE observed in topologi-
cal matters, we addressed the basic theory of PGE of mate-
rials with TRIS and spatial inversion symmetry under a bias
voltage. We observed that the symmetric quantum metric is
related to LPGE, whereas the antisymmetric Berry curvature
is related to CPGE. The generation rate of the carrier is de-
termined via the integral of the quantum metric in the partial
domain of momentum space where the resonance condition
is satisfied. Our study established close connections between

the nonlinear optical response of the system using TRIS and
the QGT of quantum states. Further, it provides a new in-
terpretation for the nonlinear optical response in the view of
the tensor field and facilitates the detection of the QGT via
photocurrent measurement.
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