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Abstract It is known that every C·0-contraction has a dilation to a Hardy shift. This leads to an elegant

analytic functional model for C·0-contractions, and has motivated lots of further works on the model theory

and generalizations to commuting tuples of C·0-contractions. In this paper, we focus on doubly commuting

sequences of C·0-contractions, and establish the dilation theory and the analytic model theory for these sequences

of operators. These results are applied to generalize the Beurling-Lax theorem and Jordan blocks in the

multivariable operator theory to the operator theory in the infinite-variable setting.
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1 Introduction

1.1 Background

Suppose that T is a contraction on a Hilbert space H, i.e., T is a bounded linear operator with ∥T∥ 6 1.

An operator V on a larger Hilbert space K ⊇ H is said to be a dilation of T if for each n ∈ N,

Tn = PHV n |H,

where N = {1, 2, . . .}, the set of positive integers. The Nagy-Foias dilation theory is of great significance

in the operator theory, which builds functional models for contractions, not only revealing the structure

of these operators, but also giving a way for calculations [50].

For a contraction T , we call

DT = (I − T ∗T )
1
2

the defect operator of T , and call

DT = DTH
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the defect space of T . A contraction T is said to be in the class C·0 if T ∗k → 0 (as k → ∞) in the

strong operator topology, in which case DT ̸= 0. The functional model for C·0-contractions was built by

Rota [40], Rovnyak [41] and Helson [26] in a direct way. To be more specific, let D denote the open unit

disk in the complex plane, and H2(D) the Hardy space over D. Then a C·0-contraction T is unitarily

equivalent to the compression of the multiplication operator Mz, defined on the vector-valued Hardy

space H2
DT∗ (D) = H2(D)⊗DT∗ , on some invariant subspace J of H2

DT∗ (D) for the backward shift M∗
z .

In another word, every contraction of the class C·0 has a dilation to a Hardy shift. For the dilation of

general contractions, we refer the readers to [50].

The existence of the isometric dilation of any commuting pair of contractions was proved by Andô [4].

However, commuting n-tuples of contractions have no isometric dilations in general when n > 3 [37].

Under some additional conditions, the above graceful analytic model for the single contraction of

the class C·0 can be generalized to the situation of a commuting finite-tuple (T1, . . . , Tn) of C·0-

contractions. That is to say, this tuple (T1, . . . , Tn) has a dilation to the tuple (Mζ1 , . . . ,Mζn) of

coordinate multiplication operators on an E-valued analytic function space HE = H⊗E with H consisting

of holomorphic functions over some domain in Cn [3,10,15,32,38]. The particular case where the tuple is

doubly commuting is rather interesting since in this case the function space H is exactly the Hardy space

H2(Dn) over the n-polydisk, and the underlying space E is the defect space of the tuple (T ∗
1 , . . . , T

∗
n).

Moreover, we can require this dilation to be minimal and regular [10]. Recall that two operators T and S

are said to be doubly commuting if TS = ST and T ∗S = ST ∗, and a tuple or a sequence of operators

is said to be doubly commuting if any pair of operators in it are doubly commuting. For more about

developments on model theory, we refer the readers to [1, 31, 49,52].

A natural question arises: does a commuting sequence of C·0-contractions, under the conditions

analogous to those given in the above-mentioned papers, have a dilation to the tuple of coordinate

multiplication operators on some vector-valued Hardy space over the infinite-dimensional polydisk?

Except for the assumption of being “doubly commuting”, most of these conditions do not carry over to

infinitely many operators. For this reason, we focus on doubly commuting sequences of C·0-contractions

in this paper, and establish the dilation theory and the analytic model theory for these sequences of

operators.

Another motivation for our study of such operator sequences comes from investigations on the structure

of some special submodules and quotient modules of the Hardy module over the polydisk in [44,47], which

are said to be doubly commuting.

The analytic Hilbert module theory developed by Douglas and Paulsen [19, 20] opens a new door for

the study of joint invariant subspaces of the Hardy space H2(Dn) (n ∈ N) for the tuple Mζ of coordinate

multiplication operators. Let Pn denote the polynomial ring in n-complex variables. It is known that

the Hardy space H2(Dn) carries a Pn-Hilbert module structure, where the module action is defined by

multiplications by polynomials, and a submodule of H2(Dn) is just an Mζ-joint invariant subspace. A

quotient module of H2(Dn) is defined to be the orthocomplement of some submodule with a Pn-module

structure determined by the compression of Mζ on it. These notions are defined analogously on vector-

valued Hardy spaces H2
E(Dn). For more details, we refer the readers to [12,21].

The famous theorem of Beurling [6] states that every nonzero submodule of H2(D) is of the form

ηH2(D) for some inner function η ∈ H∞(D), where H∞(D) denotes the space of bounded holomorphic

functions on D. Lax [29] generalized Beurling’s theorem to vector-valued Hardy spaces H2
E(R), and of

course there is an equivalent version on H2
E(D): a nonzero submodule of H2

E(D) takes the form θH2
F (D)

with θ ∈ H∞
B(F,E)(D) being inner, where H∞

B(F,E)(D) is the space of the uniformly bounded holomorphic

B(F , E)-valued functions on D. For the multivariable situation, such a Beurling-Lax type theorem fails

in general [42]. Some efforts were made to determine when a submodule enjoys a Beurling-Lax type

representation. In [30], Mandrekar considered the case of the scalar-valued Hardy space over the bidisk,

and obtained a necessary and sufficient condition that the restriction of the tuple Mζ on the submodule

is doubly commuting. The same conclusion was also obtained by Nakazi [33]. This characterization was

further generalized to the vector-valued Hardy space H2
E(Dn) for arbitrary positive integer n in [47], and

to the Hardy space over the infinite-dimensional polydisk within the language of the Hilbert space of
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Dirichlet series with square-summable coefficients in [36].

A proper quotient module of H2(D) is called a model space, and the compression of the Hardy shift

Mz on a model space is called a Jordan block. The notion of the Jordan block plays a central role in

the model theory for operators of the class C0: every C0-operator is quasi-similar to the direct sum of

Jordan blocks [50]. Following previous works on the Hardy quotient module over the bidisk [22, 23, 28],

Sarkar [44] proved that if the compression of the tuple Mζ on a nonzero quotient module Q of H2(Dn)

is doubly commuting, then

Q = J1 ⊗ · · · ⊗ Jn,

where either Ji is a model space or Ji = H2(D) (1 6 i 6 n). Thus, for any i so that Ji ̸= H2(D),
the compression PQMζi |Q is the tensor product of a Jordan block and an identity operator. Then the

compression of the tuple Mζ on Q can be considered as the Jordan block in finitely many variables.

We refer the readers to [27, 39, 46, 53, 54] for the related works and further discussions (see also [17,

Remark 4.7]).

In this paper, we establish the dilation theory and the analytic model theory for doubly commuting

sequences of C·0-contractions, and then apply them to generalize the Beurling-Lax theorem for doubly

commuting submodules and the Jordan block type characterization for doubly commuting quotient

modules in the multivariable case to the Hardy module in infinitely many variables.

1.2 Main results

To state our main results, we need to introduce some notations and definitions. Let D∞ denote the

Cartesian product D × D × · · · of countably infinitely many unit disks. The Hilbert’s multidisk D∞
2 is

defined to be

D∞
2 = {ζ = (ζ1, ζ2, . . .) ∈ l2 : |ζn| < 1 for all n > 1}.

The Hardy space H2(D∞
2 ) in infinitely many variables is defined as follows:

H2(D∞
2 ) =

{
F =

∑
α∈Z(∞)

+

cαζ
α : ∥F∥2 =

∑
α∈Z(∞)

+

|cα|2 < ∞
}
,

where Z(∞)
+ denotes the set of finitely supported sequences of nonnegative integers, and ζα denotes the

monomial

ζα = ζα1
1 · · · ζαn

n

for α = (α1, . . . , αn, 0, 0, . . .) ∈ Z(∞)
+ . The space H2(D∞

2 ) is a reproducing kernel Hilbert space over

Hilbert’s multidisk D∞
2 with the kernels [35]

Kλ(ζ) =
∞∏

n=1

1

1− λnζn
, λ = (λ1, λ2, . . .) ∈ D∞

2 .

This space has close connections with the study of Beurling’s completeness problem and Dirichlet series

[7, 25, 35], and is the expected function space upon which we build analytic models. The vector-valued

Hardy space H2
E(D∞

2 ) in infinitely many variables is defined analogously as in the finite-variable situation

(see Section 2 for the details).

If T = (T1, T2, . . .) is a doubly commuting sequence of contractions on a Hilbert space H, then the

infinite product

DT = (SOT) lim
n→∞

DT1 · · ·DTn = (SOT) lim
n→∞

(I − T ∗
1 T1)

1
2 · · · (I − T ∗

nTn)
1
2

of defect operators of {Tn}n∈N converges [14, Proposition 43.1], and is called the defect operator of T .

Similarly, define the defect space DT of T to be

DT = DTH.
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Let DC(H) (or simply DC if no confusion is caused) denote the class of doubly commuting sequences of

C·0-contractions on H. For convenience, we identify the class of doubly commuting finite-tuples of C·0-

contractions with the class DCF of sequences in the class DC with only finitely many nonzero components.

Let T ∗ denote the sequence (T ∗
1 , T

∗
2 , . . .) and T α the operator Tα1

1 · · ·Tαn
n for T = (T1, T2, . . .) and

α = (α1, . . . , αn, 0, 0, . . .) ∈ Z(∞)
+ (n ∈ N). The key ingredient in the dilation theory for doubly commuting

finite-tuples of C·0-contractions is the following norm identity [10]:

∥x∥2 =
∑
α∈Zn

+

∥DT ∗T ∗αx∥2, x ∈ H, (1.1)

where n ∈ N and T = (T1, . . . , Tn) ∈ DCF . It is natural to expect that such an identity holds for

sequences in the class DC in the following sense: for each x ∈ H and T = (T1, T2, . . .) ∈ DC,

∥x∥2 =
∑

α∈Z(∞)
+

∥DT ∗T ∗αx∥2.

Unfortunately, the answer is negative in general. We see that there exists a sequence T ∈ DC such that

the defect operator DT ∗ of T ∗ is 0, which cannot occur in the finite-tuple case.

The class of doubly commuting sequences of pure isometries on H is denoted by DI(H) (or DI). Since
an isometry V is of the class C·0 if and only if V is pure (that is to say, the unitary part in the Wold

decomposition of V is 0), DI is a subclass of DC. Any doubly commuting sequence of contractions has

a minimal, doubly commuting, regular isometric dilation, which is unique up to unitary equivalence [48].

Furthermore, we show that the minimal regular isometric dilation of a sequence in the class DC consists

of doubly commuting pure isometries. This therefore provides us with an approach to the question raised

in the previous subsection via the study of the sequences in the class DI. These notions concerning the

dilation will be explained in Section 2.

Unlike the finite-tuple case, sequences in the class DI require further classification. Let us start with

some notations and definitions. For a family T of bounded linear operators on H and a subset E of H,

let [E]T denote the joint invariant subspace for T generated by E. In particular, if T is a sequence of

operators, then one has

[E]T =
∨

α∈Z(∞)
+

T αE,

where the notation
∨

denotes the closed linear span of subsets of a Hilbert space. Following [24], if a

closed subspace M of H is orthogonal to T αM for any α ∈ Z(∞)
+ \ {0}, then M is called a wandering

subspace for the sequence T (see [8] for an analogous definition in the finite-tuple case).

Suppose V = (V1, V2, . . .) ∈ DI. It is easy to verify that the defect space

DV ∗ =

∞∩
n=1

Ker V ∗
n ,

and DV ∗ is a wandering subspace for V . It follows from Beurling’s theorem that if I is an invariant

subspace of H2(D) for the Hardy shift Mz, then the wandering subspace for the isometry MI = Mz |I
always generates the entire I, i.e.,

[DM∗
I
]MI = [I ⊖ zI]MI = I.

The conclusion is indeed valid for the vector-valued Hardy space H2
E(D) by Halmos’s observation in [24]

or the Beurling-Lax theorem. This suggests the following definition.

Definition 1.1. Suppose V ∈ DI(H). The sequence V is said to be of Beurling type if [DV ∗ ]V = H.

Suppose T ∈ DC(H). The sequence T is said to be of Beurling type if its minimal regular isometric

dilation is of Beurling type.
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It was shown in [45] (also see [11]) that every doubly commuting finite-tuple of pure isometries enjoys

a “Beurling type” property. The tuple

Mζ = (Mζ1 ,Mζ2 , . . .)

of coordinate multiplication operators on a vector-valued Hardy space

H2
E(D∞

2 ) = H2(D∞
2 )⊗ E

is clearly of Beurling type. More interestingly, we see that the converse also holds: if a sequence V ∈ DI
is of Beurling type, then V must be of the above form. Then the question reduces to the characterization

for sequences in the class DC which are of Beurling type.

Let φa (a ∈ D) denote the holomorphic automorphism

φa(z) =
a− z

1− āz
, z ∈ D

of D. It is known that the Riesz functional calculus

φa(T ) = (aI − T )(I − āT )−1, a ∈ D

of a contraction T on the Hilbert space H is also a contraction. Furthermore, if T ∈ C·0, then φa(T ) ∈ C·0
by the dilation theory for a single C·0-contraction. For T = (T1, T2, . . .) ∈ DC and λ = (λ1, λ2, . . .) ∈ D∞,

set

Φλ(T ) = (φλ1(T1), φλ2(T2), . . .).

Obviously, for any λ ∈ D∞, Φλ defines a bijection from DC onto itself, and Φ0 = Φλ ◦ Φλ = idDC .

Therefore, for a sequence T of operators, T ∈ DC if and only if Φλ(T ) ∈ DC. It is also easy to

see that Φλ maps DI onto itself. We also write Φα
λ(T ) for the operator φα1

λ1
(T1) · · ·φαn

λn
(Tn), where

α = (α1, . . . , αn, 0, 0, . . .) ∈ Z(∞)
+ (n ∈ N).

There are various examples of sequences V in the class DI satisfying the wandering space DV ∗ = {0},
while the defect space DΦλ(V )∗ of Φλ(V )∗ is nonzero. For example, let {ηn}n∈N be a sequence of

nonconstant inner functions in H∞(D) and consider the sequence V = (Mη̃1
,Mη̃2

, . . .) of multiplication

operators on the Hardy space H2(D∞
2 ), η̃n(ζ) = ηn(ζn) (n ∈ N, ζ ∈ D∞

2 ). We prove that for “almost all”

choices of the sequence {ηn}n∈N of inner functions, the wandering spaceDV ∗ for theDI-sequence V is {0},
and Φλ(V ) is of Beurling type for some λ ∈ D∞ (see Proposition 3.4 and Remark 3.5). Therefore, for

those DI-sequences which are not of Beurling type, the family of maps Φλ (λ ∈ D∞) could be a powerful

tool in building analytic models. We thus obtain important information of such DI-sequences V from

the Beurling type sequences Φλ(V ) for some λ ∈ D∞.

Inspired by this, we consider the following sequences in the class DI.
Definition 1.2. Suppose V ∈ DI. The sequence V is said to be of quasi-Beurling type if Φλ(V ) is of

Beurling type for some λ ∈ D∞.

Suppose T ∈ DC. The sequence T is said to be of quasi-Beurling type if its minimal regular isometric

dilation is of quasi-Beurling type.

Sequences of quasi-Beurling type is relatively tractable in the class DI. In Section 3, we show that

a sequence V ∈ DI is of quasi-Beurling type if and only if V is jointly unitarily equivalent to the

sequence Φλ(Mζ) on a vector-valued Hardy space H2
E(D∞

2 ) for some λ ∈ D∞. Recall that two sequences

T = (T1, T2, . . .) and S = (S1, S2, . . .) of operators, defined on H and K, respectively, are said to be

jointly unitarily equivalent if there exists a unitary operator U : H → K such that

Sn = UTnU
∗, n ∈ N.

The first main result in this paper is to give a complete characterization of sequences in the class DC
that can be decomposed into direct sums of sequences of quasi-Beurling type. Note that for a commuting
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sequence of operators on H, by using a standard argument involving Zorn’s lemma, one can decompose H
into orthogonal direct sums of separable T -joint reducing subspaces. It suffices to restrict our study to

the case of separable Hilbert spaces. From now on, we only consider separable Hilbert spaces.

A sequence T ∈ DC(H) is said to have a decomposition of quasi-Beurling type if there exists an

orthogonal decomposition H =
⊕

γ Hγ of the Hilbert space H, such that each Hγ is T -joint reducing and

each T |Hγ is of quasi-Beurling type.

Theorem 1.3. Suppose T ∈ DC(H). The following are equivalent:

(1) T has a decomposition of quasi-Beurling type;

(2) there exists an at most countable subset Λ of D∞, such that for each x ∈ H,

∥x∥2 =
∑
λ∈Λ

∑
α∈Z(∞)

+

∥DΦλ(T )∗Φ
α
λ(T )∗x∥2;

(3)
∨

λ∈D∞ DΦλ(T )∗ = H.

The following particular case of Theorem 1.3 completely answers the question when a doubly

commuting sequence of C·0-contractions has a regular dilation to the tuple of coordinate multiplication

operators on some vector-valued Hardy space over the infinite-dimensional polydisk.

Corollary 1.4. Suppose T ∈ DC(H). The following are equivalent:

(1) T is of Beurling type;

(2) the minimal regular isometric dilation of T is jointly unitarily equivalent to the tuple Mζ of

coordinate multiplication operators on a vector-valued Hardy space H2
E(D∞

2 );

(3) for each x ∈ H, ∥x∥2 =
∑

α∈Z(∞)
+

∥DT ∗T ∗αx∥2;
(4)

∨
λ∈D∞

2
DΦλ(T )∗ = H.

Note that for T ∈ DCF , since Corollary 1.4(3) coincides with the identity (1.1), Corollary 1.4 actually

generalizes the finite-tuple case.

Here are some remarks for Theorem 1.3. If T ∈ DC with a decomposition T =
⊕

γ Tγ of quasi-

Beurling type, then there correspond a point λγ ∈ D∞ and a Hilbert space Eγ to each index γ, such that

Tγ is jointly unitarily equivalent to PQγΦλγ (Mζ) |Qγ , where the sequence Φλγ (Mζ) is defined on the

vector-valued Hardy space H2
Eγ
(D∞

2 ), and Qγ ⊆ H2
Eγ
(D∞

2 ) is an M∗
ζ -joint invariant subspace. This gives

T ∼=
⊕
γ

PQγΦλγ (Mζ) |Qγ , (1.2)

and we therefore build an analytic model for a sequence T ∈ DC(H) under the assumption that the

subset

{DΦλ(T )∗x : λ ∈ D∞, x ∈ H}

is complete in H. Note that this assumption always holds for the finite-tuple case (see Lemma 2.7).

Condition (2) in Theorem 1.3 further generalizes the identity (1.1) (see Section 3 for more details). Also,

the following result illustrates some extreme phenomenon in the infinite-tuple case different from the

finite-tuple case (see Lemma 2.7).

Theorem 1.5. There exists a sequence V ∈ DI such that DΦλ(V )∗ = {0} for each λ ∈ D∞.

We further refine the representation (1.2) by giving a characterization of the subspaces Qγ involving

characterization functions of operators in Tγ . We give the details in Section 4. This generalizes the

results in [10] to the infinite-variable case.

In Section 4, we prove that every sequence in the class DI is jointly unitarily equivalent to a sequence of

multiplication operators induced by operator-valued inner functions each of which involves one different

variable (see Theorem 4.1). Thus we establish operator-valued analytic functional models for general

sequences in the class DC, which generalize (1.2). We also have the following application of our results.

Corollary 1.6. Suppose T ∈ DC. Then there exists a sequence {Bn}n∈N of finite Blaschke products,

such that {
∏n

i=1 Bi(Ti)}n∈N converges in the strong operator topology.
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In the rest of this paper, we use the language of Hilbert module by Douglas and Paulsen [20] to state the

generalization of the Beurling-Lax theorem and results related with Jordan blocks in the finite-variable

case to the case in infinitely many variables.

Let P∞ denote the polynomial ring in countably infinitely many complex variables, in which each

polynomial only involves finitely many variables. Similar to the finite-variable case, for each commuting

sequence T of operators on a Hilbert space H, one defines a P∞-module structure on H by

ph = p(T )h, p ∈ P∞, h ∈ H.

We say that this P∞-module H is doubly commuting if the sequence T is doubly commuting. Conversely,

any P∞-module structure is determined by a commuting sequence of operators in the above way.

We can also define the Hardy module structure on a vector-valued Hardy space H2
E(D∞

2 ) in infinitely

many variables via the tuple Mζ of coordinate multiplication operators on H2
E(D∞

2 ). The module action

is the multiplication by polynomials and submodules of H2
E(D∞

2 ) are exactly joint invariant subspaces

for Mζ . By definition, a submodule S of H2
E(D∞

2 ) is doubly commuting if the restriction

(Mζ1 |S ,Mζ2 |S , . . .)

ofMζ on S is doubly commuting; a quotient moduleQ ofH2
E(D∞

2 ) is doubly commuting if the compression

(PQMζ1 |Q, PQMζ2 |Q, . . .)

of Mζ on Q is doubly commuting. We prove that such doubly commuting restrictions and compressions

are of Beurling type. As a consequence, we have the following theorem.

Theorem 1.7. Let S be a submodule of the vector-valued Hardy module H2
E(D∞

2 ). Then S is doubly

commuting if and only if there exist a Hilbert space F and an inner function Ψ ∈ H∞
B(F,E)(D

∞
2 ), such that

S = ΨH2
F (D∞

2 ).

See Subsection 2.2 for a definition of inner functions in infinitely many variables.

Theorem 1.8. Every doubly commuting quotient module of H2(D∞
2 ) is the tensor product of some

sequence of quotient modules of H2(D).
Theorem 1.7 is an infinite-variable version of the Beurling-Lax theorem for doubly commuting Hardy

submodules. Also from Theorem 1.8, the compression of the tuple of coordinate multiplication operators

on a nontrivial doubly commuting quotient module of H2(D∞
2 ) is a Jordan block in infinitely many

variables (see Section 5 for the details).

Evidences (for example, Theorem 1.5) have shown that compared with the finite-variable case, the

infinite-variable case is much more complicated, and there are some essential difficulties in treating this

case. For this, we develop new methods and techniques in this paper, which are quite different from those

in [10,36,44]. Also, our treatments are valid for nonseparable Hilbert spaces.

Finally, we mention that our ideas and techniques used to treat doubly commuting sequences have

proven to be powerful in studying the cyclic vector problem in H2(D∞
2 ), which is an analytic function

space version of the classical and long-standing Beurling-Wintner problem [25, 35]. For example, in [16]

we proved that a composition operator defined by some sequence of inner functions with mutually

independent variables preserves the cyclicity in H2(D∞
2 ).

2 Some preparation

In this section, we first establish a lemma to guarantee the validity of Definitions 1.1 and 1.2. Then we

list some basic properties of vector-valued Hardy spaces and operator-valued functions. Lastly, the rest

of this section is dedicated to some preparation for the proofs of main results in the subsequent sections.
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2.1 The minimal regular isometric dilation

Suppose that the sequence T = (T1, T2, . . .) is a doubly commuting sequence of contractions on H. A

sequence V = (V1, V2, . . .) of isometries, defined on a larger Hilbert space KV ⊇ H, is an isometric

dilation of T if for each α ∈ Z(∞)
+ ,

T α = PHV α |H.

Furthermore, if for α, β ∈ Z(∞)
+ satisfying α ∧ β = (0, 0, . . .),

T ∗αT β = PHV ∗αV β |H,

then the isometric dilation V of T is said to be regular, where

α ∧ β = (min{α1, β1},min{α2, β2}, . . .).

An isometric dilation V of T is said to be minimal if the V -joint invariant subspace [H]V generated

by H is KV . It is clear to see that for any regular isometric dilation V of T , the restriction V |[H]V of

the sequence V on [H]V is a minimal regular isometric dilation of T . The minimal regular isometric

dilation is unique up to the joint unitary equivalence in the sense that if both V = (V1, V2, . . .) and

W = (W1,W2, . . .) are minimal regular isometric dilations of T , then there exists a unitary operator

U : KV → KW such that U fixes vectors in H and

UVn = WnU, n ∈ N.

Applying [48, Theorem 4.2] to the semigroup Z(∞)
+ , we see that the minimal regular isometric dilation

of T always exists and is also doubly commuting. Note that the existence can also be deduced from [50,

pp. 36–37] by restricting the minimal regular unitary dilation U of T to [H]U . For the convenience of

the readers, below we prove directly for the case T ∈ DC that the minimal regular isometric dilation V

of T is in the class DI. Moreover, V is a coextension of T , which means that H is invariant for V ∗ and

T ∗ = V ∗ |H, the restriction of V ∗ on H.

Lemma 2.1. The minimal regular isometric dilation of a sequence T ∈ DC is in the class DI and

coextends T .

Proof. It is equivalent to show that if V = (V1, V2, . . .) is the minimal regular isometric dilation of

T ∈ DC(H), then for any given n ∈ N, Vn is pure and doubly commutes with Vm for any m ̸= n, and H is

invariant for V ∗
n . Assume n = 1 without loss of generality, and put E = DT∗

1
and T ′ = (T2, T3, . . .). Since

T is doubly commuting, we see that E is T ′-joint reducing and the restriction T ′ |E = (T2 |E , T3 |E , . . .) of
T ′ on E is also doubly commuting. Let the sequence S = (S1, S2, . . .), defined on a Hilbert space F ⊇ E ,
be the minimal regular isometric dilation of T ′ |E .

The functional model theory for the single C.0-contraction gives the following isometric embedding:

V : H → H2
E(D) = H2(D)⊗ E ,

x 7→
∞∑
k=0

zk ·DT∗
1
T ∗k
1 x.

By identifying H with the M∗
z ⊗ IE -invariant subspace VH via the isometry V , one obtains a minimal

isometric dilation Mz ⊗ IE of the contraction T1, which is also a coextension. Set

W1 = Mz ⊗ IF

and

Wm = IH2(D) ⊗ Sm−1, m > 2.

It is routine to check that the sequence W = (W1,W2, . . .) of isometries is a regular isometric dilation

of T . We claim that this dilation W is also minimal. Since S = (S1, S2, . . .) is the minimal regular

isometric dilation of T ′ |E , we have

[H2
E(D)]W ′ = H2(D)⊗ [E ]S = H2

F (D),
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where W ′ = (W2,W3, . . .). This together with [H]W1 = H2
E(D) proves the claim. By the uniqueness of

the minimal regular isometric dilation, there exists a unitary operator U that intertwines V and W and

fixes vectors in H. Therefore, V1 is pure and doubly commutes with Vm (m > 2). Moreover,

V ∗
1 H = U∗W ∗

1UH = U∗W ∗
1H = U∗(Mz ⊗ IE)

∗H ⊆ U∗H = H.

The proof is completed.

We also record the following useful lemma concerning the minimal regular isometric dilation.

Lemma 2.2. Let T be a sequence in the class DC(H), and V ∈ DI(K) be an isometric coextension

of T . Put

Hn =
∨

α∈Z(∞)
+

αn=0

V αH, n ∈ N.

Then the following conclusions hold:

(1) Hn (n ∈ N) is V ∗-joint invariant and [H]V is V -joint reducing.

(2) PHV ∗
nPHn = V ∗

nPH for each n ∈ N.
(3) Furthermore, if V is the minimal isometric dilation of T , then

H =
∞∩

n=1

Hn.

Here, for a closed subspace M of K, PM denotes the orthogonal projection from K onto M .

Proof. (1) Since the sequence V is doubly commuting, and H is joint invariant for V ∗, one obtains

that for n,m ∈ N and α ∈ Z(∞)
+ with αn = 0,

V ∗
mV αH = V αV ∗

mH ⊆ V αH ⊆ Hn, if αm = 0,

V ∗
mV αH = V α−1mH ⊆ Hn, if αm > 1,

where

1m = (0, . . . , 0,
m-th
1 , 0, . . .).

This gives that each Hn is V ∗-joint invariant, and then

[H]V =

∞∨
n=1

Hn

is V -joint reducing.

(2) Since the sequences T and V are doubly commuting, and H is joint invariant for V ∗, we see that

for n ∈ N and α ∈ Z(∞)
+ with αn = 0,

PHV ∗
nV

α |H = PHV αPHV ∗
n |H = T αT ∗

n = T ∗
nT

α = V ∗
nPHV α |H,

forcing

V αH ⊆ Ker(PHV ∗
n − V ∗

nPH).

It follows that for each n ∈ N,
Hn ⊆ Ker(PHV ∗

n − V ∗
nPH),

and then

PHV ∗
nPHn = V ∗

nPHPHn = V ∗
nPH.

(3) Write H̃ =
∩∞

n=1 Hn. It is trivial that H ⊆ H̃. It follows from (1) and (2) that H̃ is joint invariant

for V ∗, and for each n ∈ N,

PHV ∗
nPH̃ = PHV ∗

nPHnPH̃ = V ∗
nPHPH̃ = V ∗

nPH.
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Assume that x is an element in H̃ ⊖ H. Then for each n ∈ N,

PHV ∗
n x = PHV ∗

nPH̃x = V ∗
nPHx = 0,

forcing V ∗
n x ∈ H̃ ⊖ H. Therefore, V ∗αx ∈ H̃ ⊖ H for every α ∈ Z(∞)

+ , i.e., x is orthogonal to the V -

invariant subspace [H]V generated by H. Since V is the minimal isometric dilation of the sequence T

defined on H, we actually have [H]V = K. Thus x = 0, and this proves H = H̃.

2.2 Some basic properties of vector-valued Hardy spaces and operator-valued functions

Here, we list some basic properties of vector-valued Hardy spaces and operator-valued functions, and the

notations E ,F and G always denote some Hilbert spaces.

The vector-valued Hardy space H2
E(D∞

2 ), over the domain D∞
2 (being a connected open subset) in the

Hilbert space l2, consists of all the E-valued functions of the form

F (ζ) =
∑

α∈Z(∞)
+

ζα · xα, ζ ∈ D∞
2

with each xα ∈ E and ∥F∥2 =
∑

α∈Z(∞)
+

∥xα∥2E < ∞. By the Cauchy-Schwarz inequality, the above series

converges pointwisely on D∞
2 in the E-norm. We follow the definition of the holomorphic mapping given

in [18, Definitions 3.1 and 3.6] for any vector-valued function F : D∞
2 → X , where X is an arbitrary

Banach space. Every function F : D∞
2 → E in H2

E(D∞
2 ) is then holomorphic in this sense.

The space H2
E(D∞

2 ) can be considered as the tensor product of the Hardy space H2(D∞
2 ) and the

Hilbert space E by identifying the vector-valued function F · x with the tensor product F ⊗ x, where

F ∈ H2(D∞
2 ) and x ∈ E . Then the tuple of coordinate multiplication operators on H2

E(D∞
2 ) has the form

Mζ ⊗ IE = (Mζ1 ⊗ IE ,Mζ2 ⊗ IE , . . .).

For simplicity, we often write only Mζ for this tuple. Moreover, one can expanse functions in H2
E(D∞

2 )

with respect to any orthonormal basis {ek}k∈N of E as
∑∞

k=1 Fk · ek, where each Fk ∈ H2(D∞
2 ) and∑∞

k=1 ∥Fk∥2H2(D∞
2 ) < ∞.

Let Kλ denote the reproducing kernel of H2(D∞
2 ) at the point λ ∈ D∞

2 . Recall that a subset E of a

Hilbert space H is said to be complete in H if E spans a dense subspace of H, i.e., the orthocomplement

E⊥ of E in H is {0}.
Lemma 2.3. Suppose F ∈ H2

E(D∞
2 ). Then the following conclusions hold:

(1) ⟨F,Kλ · x⟩ = ⟨F (λ), x⟩ for every λ ∈ D∞
2 and every x ∈ E. Consequently, the set

{Kλ · x : λ ∈ D∞
2 , x ∈ E}

is complete in H2
E(D∞

2 ).

(2) If F ̸= 0 and M∗
ζn
F = λnF for each n ∈ N and a sequence λ = (λ1, λ2, . . .) of complex numbers,

then λ ∈ D∞
2 and F = Kλ · x for some x ∈ E.

Proof. (1) Assume ∥x∥ = 1 without loss of generality and take any orthonormal basis {ek}k∈N of the

subspace {x}⊥ of E . Expand the function F with respect to the orthonormal basis {x}∪ {ek}k∈N of E as

F = Fx · x+

∞∑
k=1

Fk · ek.

Then we have

⟨F,Kλ · x⟩ = ⟨Fx · x,Kλ · x⟩+
∞∑
k=1

⟨Fk · ek,Kλ · x⟩ = Fx(λ)

and

⟨F (λ), x⟩ = ⟨Fx(λ)x, x⟩+
∞∑
k=1

⟨Fk(λ)ek, x⟩ = Fx(λ).
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This proves (1).

(2) Expand the function F with respect to an orthonormal basis {ek}k∈N of E as F =
∑∞

k=1 Fk · ek,
and then

M∗
ζnF = M∗

ζn

( ∞∑
k=1

Fk · ek
)

=

∞∑
k=1

(M∗
ζnFk) · ek, n ∈ N.

It follows that M∗
ζn
Fk = λnFk for every k, n ∈ N. This implies that all Fk’s are in the orthocomplement

of the invariant subspace generated by ζ1 − λ1, ζ2 − λ2, . . . Since F ̸= 0, it follows that this invariant

subspace is proper, and its orthocomplement is CKλ. Therefore, we have λ ∈ D∞
2 and Fk = ckKλ with∑∞

k=1 |ck|2 < ∞, and thus

F =
∞∑
k=1

Fk · ek = Kλ ·
( ∞∑

k=1

ckek

)
.

The proof is completed.

The space H∞
B(F,E)(D

∞
2 ) consists of all the uniformly bounded holomorphic operator-valued functions

Ψ : D∞
2 → B(F , E). Here, by Ψ uniformly bounded we mean ∥Ψ∥∞ = supζ∈D∞

2
∥Ψ(ζ)∥ < ∞, and B(F , E)

denotes the Banach space of bounded linear operators from F to E . Every function Ψ in H∞
B(F,E)(D

∞
2 )

naturally induces a multiplication operator MΨ as follows:

MΨ : H2
F (D∞

2 ) → H2
E(D∞

2 ),

F 7→ ΨF,

where ΨF (ζ) = Ψ(ζ)F (ζ) (ζ ∈ D∞
2 ). It is clear that MΨ is bounded by ∥Ψ∥∞. We now claim that

M∗
Ψ(Kλ · x) = Kλ ·Ψ(λ)∗x (2.1)

for every λ ∈ D∞
2 and every x ∈ E . By Lemma 2.3(1), it suffices to show that for any fixed µ ∈ D∞

2 and

y ∈ F ,

⟨Kµ · y,M∗
Ψ(Kλ · x)⟩ = ⟨Kµ · y,Kλ ·Ψ(λ)∗x⟩.

Again by Lemma 2.3(1), we have

⟨Kµ · y,M∗
Ψ(Kλ · x)⟩ = ⟨Ψ(Kµ · y),Kλ · x⟩ = ⟨Kµ(λ)Ψ(λ)y, x⟩.

On the other hand,

⟨Kµ · y,Kλ ·Ψ(λ)∗x⟩ = ⟨Kµ,Kλ⟩ · ⟨Ψ(λ)y, x⟩ = Kµ(λ)⟨Ψ(λ)y, x⟩.

This proves the claim.

We are ready to prove the following proposition.

Proposition 2.4. Let Mζ and Mξ be the tuple of coordinate multiplication operators on H2
E(D∞

2 ) and

H2
F (D∞

2 ), respectively. If T : H2
F (D∞

2 ) → H2
E(D∞

2 ) is a bounded linear operator satisfying

TMξn = MζnT, n ∈ N,

then there exists an operator-valued function Ψ ∈ H∞
B(F,E)(D

∞
2 ) such that T = MΨ.

Proof. By (2.1), for each n ∈ N, each λ ∈ D∞
2 and each x ∈ E ,

M∗
ξnT

∗(Kλ · x) = T ∗M∗
ζn(Kλ · x) = λnT

∗(Kλ · x).

Then by Lemma 2.3(2), to every pair λ, x, there corresponds an element yλ,x ∈ F such that

T ∗(Kλ · x) = Kλ · yλ,x,

and therefore x 7→ yλ,x defines a linear operator Sλ ∈ B(E ,F) for each λ ∈ D∞
2 . Now put Ψ(λ) = S∗

λ

(λ ∈ D∞
2 ). It is routine to check that Ψ : D∞

2 → B(F , E) is uniformly bounded and holomorphic with

∥Ψ∥∞ 6 ∥T∥. Since T ∗ and M∗
Ψ coincide on the set {Kλ · x : λ ∈ D∞

2 , x ∈ E} by (2.1), it follows from

Lemma 2.3(1) that T = MΨ.
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In [5], the infinite tensor product of a sequence of Hilbert spaces {Hn}n∈N with the stabilizing sequence

{e(n)}n∈N is introduced, where e(n) is a unit vector in Hn for each n ∈ N. We remark that the Hilbert

space structure of H2(D∞
2 ) coincides with the infinite tensor product

H2(D)⊗H2(D)⊗ · · ·

of countably infinitely many Hardy spaces over D with the stabilizing sequence {1}n∈N. So for any closed

subspace M of the Hardy space

H2(Dn) = H2(D)⊗ · · · ⊗H2(D)︸ ︷︷ ︸
n times

, n ∈ N,

the infinite tensor product

M ⊗H2(D)⊗H2(D)⊗ · · ·

is exactly the (Mζn+1 ,Mζn+2 , . . .)-joint invariant subspace ofH
2(D∞

2 ) generated byM (= M⊗C⊗C⊗· · · ).
For later use, we also note that the vector-valued Hardy space H2

E(D∞
2 ) can be written as

H2
E(D∞

2 ) = H2(D)⊗ · · · ⊗H2(D)︸ ︷︷ ︸
n−1 times

⊗H2
E(D)⊗H2(D)⊗H2(D)⊗ · · ·

= H2
E(Dn)⊗ Ln, (2.2)

where

Ln = C⊗ · · · ⊗ C︸ ︷︷ ︸
n times

⊗H2(D)⊗H2(D)⊗ · · ·

= span{ζα : α = (α1, α2, . . .) ∈ Z(∞)
+ with α1 = · · · = αn = 0}.

One simplest class of vector-valued or operator-valued functions on D∞
2 is the functions induced by

those of one variable. More precisely, put f̃(ζ) = f(ζn) and θ̃(ζ) = θ(ζn) (ζ ∈ D∞
2 ) for every f ∈ H2

E(D),
every θ ∈ H∞

B(F,E)(D) and every n ∈ N. Then we have f̃ ∈ H2
E(D∞

2 ) and θ̃ ∈ H∞
B(F,E)(D

∞
2 ). The

multiplication operator Mθ̃ has the form

Mθ̃ = IH2(D) ⊗ · · · ⊗ IH2(D)︸ ︷︷ ︸
n−1 times

⊗Mθ ⊗ IH2(D) ⊗ · · ·

with respect to the representation (2.2). The property of Mθ̃ thus relies heavily on that of θ. For example,

Mθ̃ is isometric if and only if Mθ is isometric, if and only if θ is inner. Recall that θ ∈ H∞
B(F,E)(D) is

said to be inner if the boundary values of θ, on some subset E of the unit circle T with full measure, are

isometries, which is defined to be the radial limit

(SOT) lim
r→1−

θ(rz), z ∈ E

(see, for example, [34, 50]). On the other hand, since rD∞ " D∞
2 for every 0 < r < 1, the radial limits

for bounded holomorphic functions on D∞
2 do not make sense in general. Let T∞ be the infinite torus

T× T× · · · , and σ be the Haar measure of T∞. In [43], Saksman and Seip defined boundary values, on

the distinguished boundary T∞, for bounded holomorphic functions on D∞
2 by taking quasi-radial limits

instead (see also [2]). Another way to define the boundary value function can be derived from the work

of Cole and Gamelin [13]. It was shown in [13] that each F ∈ H2(D∞
2 ) is the Poisson integral of a unique

function F ∗ ∈ L2(T∞, σ). Thus one naturally defines the boundary value function of F to be F ∗. A

bounded holomorphic function η on D∞
2 is said to be inner if |η∗| = 1, a.e. (see [16, Subsection 2.2]).

However, to avoid more discussion about the boundary behavior of operator-valued functions on D∞
2 ,

we introduce an alternative definition that Ψ ∈ H∞
B(F,E)(D

∞
2 ) is said to be inner if MΨ is an isometry.

Finally, applying Lemma 2.3(1) to the function f̃ and (2.1) to the function θ̃, we have
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(i) ⟨f,Ka · x⟩ = ⟨f(a), x⟩ for every a ∈ D and every x ∈ E ; consequently, the set

{Ka · x : a ∈ D, x ∈ E}

is complete in H2
E(D);

(ii) M∗
θ (Ka · x) = Ka · θ(a)∗x for every a ∈ D and every x ∈ E .

Here, Ka denotes the reproducing kernel of H2(D) at the point a ∈ D. Note that by (ii), for a, b ∈ D and

x, y ∈ E , we have

⟨MθM
∗
θ (Ka · x),Kb · y⟩ = ⟨M∗

θ (Ka · x),M∗
θ (Kb · y)⟩

= ⟨Ka · θ(a)∗x,Kb · θ(b)∗y⟩

=
1

1− āb
⟨θ(b)θ(a)∗x, y⟩. (2.3)

The following lemma is also needed in the sequel.

Lemma 2.5. Suppose θ ∈ H∞
B(F,E)(D) and ϑ ∈ H∞

B(G,E)(D). Then the following conclusions hold:

(1) Let E0 be a closed subspace of E. Then H2
E0
(D) is invariant for MθM

∗
θ if and only if E0 is invariant

for θ(b)θ(a)∗ for every a, b ∈ D. In this case, if θ is inner, we have

M∗
θH

2
E0
(D) = H2

F0
(D),

where F0 =
∨

a∈D θ(a)∗E0.
(2) MθM

∗
θ = MϑM

∗
ϑ if and only if

θ(b)θ(a)∗ = ϑ(b)ϑ(a)∗

for every a, b ∈ D.
Proof. (1) By (i), H2

E0
(D) is reducing for MθM

∗
θ if and only if

⟨MθM
∗
θ (Ka · x),Kb · y⟩ = 0

for every a, b ∈ D, every x ∈ E0 and every y ∈ E ⊖ E0. This together with (2.3) gives that H2
E0
(D) is

reducing for MθM
∗
θ if and only if θ(b)θ(a)∗E0 ⊆ E0 for every a, b ∈ D. For the latter conclusion, note

that by (ii), M∗
θH

2
E0
(D) is a dense subspace of H2

F0
(D). Now suppose in addition that θ is inner. Then

MθM
∗
θ is an orthogonal projection on H2

E(D). Since H2
E0
(D) is reducing for MθM

∗
θ , MθM

∗
θH

2
E0
(D) is

closed, forcing M∗
θH

2
E0
(D) to be also closed. This proves (1).

(2) By (i), MθM
∗
θ = MϑM

∗
ϑ if and only if

⟨MθM
∗
θ (Ka · x),Kb · y⟩ = ⟨MϑM

∗
ϑ(Ka · x),Kb · y⟩

for every a, b ∈ D and every x, y ∈ E . Then (2) follows from (2.3).

2.3 Some preparation for proofs

Lemma 2.6. If T is a doubly commuting sequence of contractions on H and V is a doubly commuting

isometric coextension of T , then for each λ ∈ D∞ and each x ∈ H,

∥DΦλ(T )∗x∥ = ∥DΦλ(V )∗x∥.

Proof. For any fixed λ ∈ D∞, set

S = (S1, S2, . . .) = Φλ(T )

and

W = (W1,W2, . . .) = Φλ(V ).
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It is clear that W is an isometric coextension of S. Since for x ∈ H,

∥DΦλ(T )∗x∥ = ∥DS∗x∥ = lim
n→∞

∥DS∗
1
· · ·DS∗

n
x∥

and

∥DΦλ(V )∗x∥ = ∥DW ∗x∥ = lim
n→∞

∥DW∗
1
· · ·DW∗

n
x∥,

it suffices to prove that for n ∈ N,

∥DS∗
1
· · ·DS∗

n
x∥ = ∥DW∗

1
· · ·DW∗

n
x∥, x ∈ H. (2.4)

We show this by induction on n. For n = 1, one has

∥DS∗
1
x∥2 = ∥x∥2 − ∥S∗

1x∥2 = ∥x∥2 − ∥W ∗
1 x∥2 = ∥DW∗

1
x∥2, x ∈ H.

Assume that (2.4) holds for n = k. Since S and W are doubly commuting, we have that for x ∈ H,

∥DS∗
1
· · ·DS∗

k+1
x∥2 = ∥DS∗

1
· · ·DS∗

k
x∥2 − ∥S∗

k+1DS∗
1
· · ·DS∗

k
x∥2

= ∥DS∗
1
· · ·DS∗

k
x∥2 − ∥DS∗

1
· · ·DS∗

k
S∗
k+1x∥2

= ∥DW∗
1
· · ·DW∗

k
x∥2 − ∥DW∗

1
· · ·DW∗

k
S∗
k+1x∥2

= ∥DW∗
1
· · ·DW∗

k
x∥2 − ∥DW∗

1
· · ·DW∗

k
W ∗

k+1x∥2

= ∥DW∗
1
· · ·DW∗

k
x∥2 − ∥W ∗

k+1DW∗
1
· · ·DW∗

k
x∥2

= ∥DW∗
1
· · ·DW∗

k+1
x∥2.

Thus, (2.4) also holds for n = k + 1. This completes the proof.

Lemma 2.7. If (T1, . . . , Tn) is a doubly commuting n-tuple of C.0 contractions on a Hilbert space H,

then ∩
(λ1,...,λn)∈Dn

KerDφλ1
(T1)∗ · · ·Dφλn (Tn)∗ = {0}.

Equivalently, ∨
(λ1,...,λn)∈Dn

Dφλ1
(T1)∗ · · ·Dφλn (Tn)∗H = H.

Proof. The equivalence is guaranteed by the fact that (T1, . . . , Tn) is doubly commuting and then the

operator

Dφλ1
(T1)∗ · · ·Dφλn (Tn)∗

is self-adjoint. We prove this lemma by induction on n. For n = 1, let T be a contraction of the class

C.0, and assume f ∈ H so that Dφa(T )∗f = 0 for any a ∈ D. As in the proof of Lemma 2.1, T has a

coextension to the Hardy shift Mz on the vector-valued Hardy space H2
DT∗ (D). Since Mφa (a ∈ D) is

isometric on H2
DT∗ (D), we have

∥f∥ = ∥φa(T )
∗f∥ = ∥φa(Mz)

∗f∥ = ∥M∗
φa

f∥ = ∥MφaM
∗
φa

f∥.

Note that MφaM
∗
φa

is the orthogonal projection onto RanMφa for each a ∈ D, and the above identity

yields f = Mφaga = φa · ga for some ga ∈ H2
DT∗ (D). This gives

f(a) = φa(a) · ga(a) = 0, a ∈ D,

forcing f = 0, which proves the case n = 1. Now assume that the conclusion holds for n = k, and let

(T1, . . . , Tk+1) be a doubly commuting tuple of C.0 contractions. Then∨
(λ1,...,λk+1)∈Dk+1

Dφλ1
(T1)∗ · · ·Dφλk+1

(Tk+1)∗H
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=
∨

(λ1,...,λk)∈Dk

( ∨
a∈D

Dφλ1
(T1)∗ · · ·Dφλk

(Tk)∗Dφλa (Tk+1)∗H
)

=
∨

(λ1,...,λk)∈Dk

Dφλ1
(T1)∗ · · ·Dφλk

(Tk)∗

( ∨
a∈D

Dφλa (Tk+1)∗H
)

=
∨

(λ1,...,λk)∈Dk

Dφλ1
(T1)∗ · · ·Dφλk

(Tk)∗H

= H.

By induction, the proof is completed.

Suppose that V = (V1, V2, . . .) is a sequence in the class DI. Recall that for any λ = (λ1, λ2, . . .) ∈ D∞,

the defect space DΦλ(V )∗ of the sequence Φλ(V )∗ is the closure of the range of the defect operator

DΦλ(V )∗ =
∞∏

n=1

(I − φλn(Vn)φλn(Vn)
∗).

Since V is doubly commuting, {I − φλn(Vn)φλn(Vn)
∗}n∈N is a commuting sequence of orthogonal

projections, and then DΦλ(V )∗ is also an orthogonal projection onto the subspace

∞∩
n=1

Ran(I − φλn(Vn)φλn(Vn)
∗) =

∞∩
n=1

(Ranφλn(Vn))
⊥ =

∞∩
n=1

Kerφλn(Vn)
∗.

Note that x ∈ Kerφλn
(Vn)

∗ if and only if V ∗
n x = λnx (n ∈ N), and nonzero elements in the defect space

DΦλ(V )∗ exactly coincide with the set of joint eigenvectors of the sequence V ∗ corresponding to the joint

eigenvalue λ = (λ1, λ2, . . .).

Lemma 2.8. Suppose V ∈ DI. If x is a nonzero element in the defect space DΦλ(V )∗ of the sequence

Φλ(V )∗ for some λ ∈ D∞, then [x]V (= [{x}]V ) is V -joint reducing, and V |[x]V is jointly unitarily

equivalent to the sequence Φλ(Mζ), where Mζ is the tuple of coordinate multiplication operators on the

Hardy space H2(D∞
2 ).

Proof. Assume ∥x∥ = 1 without loss of generality, and we first prove the desired conclusion for

λ = 0 = (0, 0, . . .). Since x ∈ DV ∗ , we have that for n,m ∈ N and α ∈ Z(∞)
+ ,

V ∗
mV αx = V αV ∗

mx = 0 ∈ [x]V , if αm = 0,

V ∗
mV αx = V α−1mx ∈ [x]V , if αm > 1.

This implies that [x]V is V -joint reducing. The rest of the proof is given by defining a linear map U from

P∞ to [x]V as follows:

Up = p(V )x, p ∈ P∞,

where P∞ = C[ζ1, ζ2, . . .], the polynomial ring in countably infinitely many variables, which is dense

in H2(D∞
2 ) [35]. It is routine to check that U can be extended to a unitary operator from H2(D∞

2 ) onto

[x]V , and Mζ is jointly unitarily equivalent to V |[x]V via this unitary operator.

For general λ ∈ D∞, put W = Φλ(V ). Then the above argument shows that W |[x]V = W |[x]W is

jointly unitarily equivalent to Mζ ; equivalently, V |[x]V = Φλ(W |[x]V ) is jointly unitarily equivalent to

the sequence Φλ(Mζ). The proof is completed.

Lemma 2.9. Let λ be a point in D∞ and Mζ be the tuple of coordinate multiplication operators on

H2(D∞
2 ). Then DΦλ(Mζ)∗ = {0} if and only if λ /∈ D∞

2 .

Proof. By comments before the previous lemma, we have

DΦλ(Mζ)∗ =
∞∩

n=1

(φ̃λnH
2(D∞

2 ))⊥,
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and hence

D⊥
Φλ(Mζ)∗

=

∞∨
n=1

φ̃λnH
2(D∞

2 ) = [{φ̃λn}n∈N]Mζ
,

where φ̃λn(ζ) = φλn(ζn) (ζ ∈ D∞
2 ). By [17, Proposition 4.5],

[{φ̃λn}n∈N]Mζ
= H2(D∞

2 )

if and only if λ /∈ D∞
2 . This completes the proof.

By an irreducible family of operators, we mean that these operators have no nontrivial joint reducing

subspaces.

Lemma 2.10. The tuple Mζ of coordinate multiplication operators on H2(D∞
2 ) is irreducible.

Proof. It suffices to prove that for any orthogonal projection P commuting with every coordinate

multiplication operator, we have P1 = 0 or P1 = 1. Put Q = I − P and Q1 =
∑

α∈Z(∞)
+

cαζ
α. Since

Pζα = PMζα1 = MζαP1 = ζα · P1,

we have

0 = P (Q1) = P

( ∑
α∈Z(∞)

+

cαζ
α

)
=

∑
α∈Z(∞)

+

cαPζα =
∑

α∈Z(∞)
+

(cαζ
α · P1) = Q1 · P1.

Note that Q1 = (I − P )1 = 1− P1, and P1 only takes the value in {0, 1}. Then the proof is completed

due to the continuity of P1.

Lemma 2.11. Let H and K be two Hilbert spaces, and T be an irreducible family of bounded linear

operators on H. Then any bounded linear operator on H ⊗ K that doubly commutes with the family

{T ⊗ IK : T ∈ T } is of the form IH ⊗ S for some S ∈ B(K).

In particular, any joint reducing subspace for the family {T ⊗ IK : T ∈ T } is of the form H ⊗M for

some closed subspace M of K.

Proof. Since the family T of operators has no nontrivial joint reducing subspace, the von Neumann

algebra generated by T is the entire B(H) by the double commutant theorem [14]. This gives

V∗({T ⊗ IK : T ∈ T }) = B(H)⊗ CIK = {T ⊗ IK : T ∈ B(H)},

where V∗({T ⊗IK : T ∈ T }) denotes the von Neumann algebra generated by the family {T ⊗IK : T ∈ T }.
If a bounded linear operator on H⊗K doubly commutes with the family {T ⊗ IK : T ∈ T }, then it also

commutes with the algebra B(H) ⊗ CIK, and therefore has the form IH ⊗ S for some bounded linear

operator S on K (see [51, p. 184]).

Lemma 2.12. Suppose V ∈ DI(H). Then for any ε > 0 and x ∈ H, there exists a sequence (k1, k2, . . .)

of positive integers such that

∥DW ∗x∥ > (1− ε)∥x∥,

where W = (V k1
1 , V k2

2 , . . .).

Proof. Take an arbitrary positive number ε and assume ∥x∥ = 1 without loss of generality. Since each

Vn (n ∈ N) is pure, there exists a sequence (k1, k2, . . .) of positive integers, such that

∥V ∗kn
n x∥ <

1

2n
ε, n ∈ N. (2.5)

Rewrite (W1,W2, . . .) = (V k1
1 , V k2

2 , . . .). For each n ∈ N, we have

∥(I −W1W
∗
1 ) · · · (I −WnW

∗
n)x∥

> ∥(I −W2W
∗
2 ) · · · (I −WnW

∗
n)x∥ − ∥W1W

∗
1 (I −W2W

∗
2 ) · · · (I −WnW

∗
n)x∥

> ∥(I −W2W
∗
2 ) · · · (I −WnW

∗
n)x∥ − ∥W1(I −W2W

∗
2 ) · · · (I −WnW

∗
n)W

∗
1 x∥
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> ∥(I −W2W
∗
2 ) · · · (I −WnW

∗
n)x∥ − ∥W ∗

1 x∥,

and then by induction and (2.5),

∥(I −W1W
∗
1 ) · · · (I −WnW

∗
n)x∥ > ∥x∥ −

n∑
i=1

∥W ∗
i x∥ > 1−

(
1− 1

2n

)
ε.

Setting n → ∞ in the above inequality, we obtain the desired conclusion.

3 Dilation theory

In this section, we give some operator-theoretical characterization for sequences in the class DC. Recall

that a sequence T ∈ DC(H) is said to have a decomposition of quasi-Beurling type if there exists an

orthogonal decomposition H =
⊕

γ Hγ of the Hilbert space H, such that each Hγ is T -joint reducing and

T |Hγ
is of quasi-Beurling type.

Proof of Theorem 1.3. Consider the following statement:

(2′) there exist an orthogonal decomposition H =
⊕

γ Hγ of the Hilbert space H and λγ ∈ D∞

corresponding to each index γ, such that each Hγ is T -joint reducing and

∥x∥2 =
∑
γ

∑
α∈Z(∞)

+

∥PHγDΦλγ (T )∗Φ
α
λγ
(T )∗x∥2.

Here, PHγ denotes the orthogonal projection from H onto Hγ .

Our strategy of the proof is to show that (1), (2′) and (3) are equivalent firstly, and then show that

(2) and (3) are equivalent.

(1) ⇒ (2′). Suppose that there exists an (at most countable) orthogonal decomposition H =
⊕

γ Hγ

of the Hilbert space H, such that each Hγ is T -joint reducing and T |Hγ is of quasi-Beurling type. For

each γ, choose λγ ∈ D∞ such that Φλγ (T ) is of Beurling type. Now take an arbitrary element x in H, and

let xγ be the orthogonal projection of x into the subspace Hγ . Then ∥x∥2 =
∑

γ ∥xγ∥2. The implication

(1) ⇒ (2′) is proved once we show

∥xγ∥2 =
∑

α∈Z(∞)
+

∥PHγDΦλγ (T )∗Φ
α
λγ
(T )∗x∥2. (3.1)

Since each Hγ is T -joint reducing, we see T |Hγ ∈ DC(Hγ). Fix an index γ and let V ∈ DI(K) be the

minimal regular isometric dilation of T |Hγ . Then by Lemma 2.1, V is a coextension of T |Hγ . Since T |Hγ

is of quasi-Beurling type, there is a point λ ∈ D∞ such that W = (W1,W2, . . .) = Φλ(V ) is of Beurling

type, i.e., [DW ∗ ]W = K. Rewrite E = DW ∗ . Since W is doubly commuting and E =
∩∞

n=1 KerW ∗
n , we

have that the family {W αE}
α∈Z(∞)

+

of subspaces is pairwise orthogonal, and therefore,

K =
⊕

α∈Z(∞)
+

W αE .

It is easy to see that for each α ∈ Z(∞)
+ , the operator W αDW ∗W ∗α is exactly the orthogonal projection

onto W αE , and then

∥xγ∥2 =
∑

α∈Z(∞)
+

∥W αDW ∗W ∗αxγ∥2 =
∑

α∈Z(∞)
+

∥DW ∗W ∗αxγ∥2.
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Also noting that W is an isometrical coextension of Φλ(T ), by Lemma 2.6 we have

∥xγ∥2 =
∑

α∈Z(∞)
+

∥DW ∗W ∗αxγ∥2

=
∑

α∈Z(∞)
+

∥DW ∗Φα
λ(T |Hγ )

∗xγ∥2

=
∑

α∈Z(∞)
+

∥DΦλ(T |Hγ )∗Φ
α
λ(T |Hγ )

∗xγ∥2

=
∑

α∈Z(∞)
+

∥DΦλ(T )∗ |HγΦ
α
λ(T )∗ |Hγxγ∥2

=
∑

α∈Z(∞)
+

∥DΦλ(T )∗Φ
α
λ(T )∗PHγx∥2

=
∑

α∈Z(∞)
+

∥PHγDΦλ(T )∗Φ
α
λ(T )∗x∥2.

(2′) ⇒ (3). Fix x ∈ H ⊖ (
∨

λ∈D∞ DΦλ(T )∗). We show that for any given µ = (µ1, µ2, . . .) ∈ D∞ and

α = (α1, . . . , αn, 0, 0, . . .) ∈ Z(∞)
+ (n ∈ N),

DΦµ(T )∗Φ
α
µ(T )∗x = 0

so that x = 0 by the assumption in (2′).

Put T̃ = (Tn+1, Tn+2, . . .) and µ̃ = (µn+1, µn+2, . . .), and let (λ, µ̃) denote the sequence

(λ1, . . . , λn, µn+1, µn+2, . . .)

for λ = (λ1, . . . , λn) ∈ Dn. Since x is orthogonal to

DΦ(λ,µ̃)(T )∗ = RanDΦ(λ,µ̃)(T )∗

for each λ ∈ Dn, we have

x ∈
∩

λ∈Dn

KerD∗
Φ(λ,µ̃)(T )∗ =

∩
λ∈Dn

KerDΦ(λ,µ̃)(T )∗ . (3.2)

Note that for each λ = (λ1, . . . , λn) ∈ Dn,

DΦ(λ,µ̃)(T )∗ = Dφλ1
(T1)∗ · · ·Dφλn (Tn)∗DΦµ̃(T̃ )∗ ,

and therefore (3.2) gives DΦµ̃(T̃ )∗x ∈ KerDφλ1
(T1)∗ · · ·Dφλn (Tn)∗ . This together with Lemma 2.7 implies

DΦµ̃(T̃ )∗x = 0. Since the sequence T is doubly commuting, DΦµ̃(T̃ )∗ commutes with Φα
µ(T )∗ on H, which

gives

DΦµ(T )∗Φ
α
µ(T )∗x = Dφµ1 (T1)∗ · · ·Dφµn (Tn)∗DΦµ̃(T̃ )∗Φ

α
µ(T )∗x

= Dφµ1 (T1)∗ · · ·Dφµn (Tn)∗Φ
α
µ(T )∗DΦµ̃(T̃ )∗x

= 0.

(3) ⇒ (1). In order to make this part of the proof more accessible, we divide it into several steps.

Step I. We give the construction of the subspaces Hγ of the Hilbert space H, and prove that each Hγ

is T -joint reducing.

Define a binary relation ∼ on D∞ as follows: for two points λ = (λ1, λ2, . . .) and µ = (µ1, µ2, . . .) in

D∞, set

λ ∼ µ ⇔
∞∑

n=1

∣∣∣∣ λn − µn

1− λnµn

∣∣∣∣2 < ∞.
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It follows from the triangle inequality of the pseudo-hyperbolic distance

ρ(z, w) =

∣∣∣∣ z − w

1− zw

∣∣∣∣, z, w ∈ D

that the binary relation ∼ is transitive, and therefore is an equivalence relation on D∞. The set of

∼-equivalence classes is denoted by ∆. For γ ∈ ∆, put

Hγ =
∨
λ∈γ

DΦλ(T )∗ .

Now we show that Hγ is T -joint reducing for any given γ ∈ ∆. Put T ′ = (T2, T3, . . .) and γ′ =

{(λ2, λ3, . . .) : λ = (λ1, λ2, . . .) ∈ γ}. Since the sequence T is doubly commuting, we have that the defect

operators Dφa(T1)∗ and DΦλ(T ′)∗ commute with each other for every a ∈ D and every λ ∈ D∞. Also, it

is easy to see that γ = D× γ′, i.e.,

γ = {(a, µ) : a ∈ D, µ ∈ γ′}.

It follows from Lemma 2.7 that

H =
∨
a∈D

Dφa(T1)∗H,

and therefore,

Hγ =
∨
λ∈γ

DΦλ(T )∗

=
∨
µ∈γ′

( ∨
a∈D

Dφa(T1)∗DΦµ(T ′)∗H
)

=
∨
µ∈γ′

DΦµ(T ′)∗

( ∨
a∈D

Dφa(T1)∗H
)

=
∨
µ∈γ′

DΦµ(T ′)∗ .

This implies that Hγ is reducing for T1. Similarly, Hγ is Tn-reducing for each n > 2.

Step II. We prove H =
⊕

γ∈∆ Hγ .

By the assumption in (3), we have

H =
∨
γ∈∆

Hγ .

It remains to show that the subspaces Hγ (γ ∈ ∆) are pairwise orthogonal.

Let V = (V1, V2, . . .) ∈ DI(K) be the minimal regular isometric dilation of T . Put

Kγ =
∨
λ∈γ

DΦλ(V )∗

for γ ∈ ∆. Applying the argument in Step I, we see that each Kγ is V -joint reducing.

For any closed subspace M of the Hilbert space K, let PM denote the orthogonal projection from K
onto M . We first prove the following claims:

(a) For each γ ∈ ∆, Hγ ⊆ PHKγ .

Assume that x ∈ H is orthogonal to PHKγ . Then x is orthogonal to Kγ , which implies

x ∈ KerDΦλ(V )∗ = KerD∗
Φλ(V )∗ , λ ∈ γ.

It follows from Lemma 2.1 that V is a coextension of T . Then by Lemma 2.6, we have

x ∈ KerDΦλ(T )∗ = KerD∗
Φλ(T )∗ , λ ∈ γ.
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Therefore, x is orthogonal to Hγ . This gives

H⊖ PHKγ ⊆ H⊖Hγ ,

and then the claim (a) is proved.

(b) The subspaces Kγ (γ ∈ ∆) of K are pairwise orthogonal.

Assume that x ∈ DΦλ(V )∗ ̸= {0} for some λ ∈ D∞. It suffices to show that for any µ ∈ D∞ not

equivalent to λ,

x ∈ KerDΦµ(V )∗ = KerD∗
Φµ(V )∗ .

We first consider the case λ = 0. Then we have µ /∈ D∞
2 in this case. By Lemma 2.8, [x]V is V -joint

reducing, and V |[x]V is jointly unitarily equivalent to the tuple Mζ of coordinate multiplication operators

on the Hardy space H2(D∞
2 ). Then [x]V is reducing for DΦµ(V )∗ , and DΦµ(V )∗ |[x]V is jointly unitarily

equivalent to DΦµ(Mζ)∗ . It follows from Lemma 2.9 that DΦµ(Mζ)∗ = 0, and hence DΦµ(V )∗ vanishes on

[x]V . The case for general λ ∈ D∞ is proved by replacing the sequence V with Φλ(V ) in the previous

argument.

By the claims (a) and (b), it suffices to show that PHPKγ = PKγPH for every γ ∈ ∆. Put

Hn =
∨

α∈Z(∞)
+

αn=0

V αH

for n ∈ N. We also claim that

(c) for each n ∈ N and γ ∈ ∆, PHnPKγ = PKγPHn .

Assuming this claim, we see that the desired conclusion PHPKγ = PKγPH (γ ∈ ∆) immediately follows

from Lemma 2.2(3). Below we prove the claim (c).

Without loss of generality, we only prove the case for n = 1. Put V ′ = (V2, V3, . . .). By Lemma 2.2(1),

H1 is joint invariant for V ∗. This gives that H1 is V ′-joint reducing, and then for each λ ∈ D∞,

PH1
DΦλ(V ′)∗ = DΦλ(V ′)∗PH1

.

Applying a similar argument in Step I, one obtains

Kγ =
∨
µ∈γ′

DΦµ(V ′)∗ ,

where γ′ = {(λ2, λ3, . . .) : λ = (λ1, λ2, . . .) ∈ γ}. Thus, the claim (c) follows.

Step III. We prove that the restriction T |Hγ on each nonzero Hγ (γ ∈ ∆) is of quasi-Beurling type,

and this completes the proof.

Suppose that Hγ is nonzero for some γ ∈ ∆. By the claims in Step II of the proof, we see

Hγ ⊆ PHKγ = H ∩Kγ .

Then the minimal regular isometric dilation of the sequence T |Hγ is V |Kγ . It remains to prove that

V |Kγ
is of quasi-Beurling type, i.e.,

[DΦλ(V )∗ ]V = [DΦλ(V )∗ ]Φλ(V ) = Kγ

for some λ ∈ γ. Actually, we show that the above identity holds for every λ ∈ γ.

Fix λ = (λ1, λ2, . . .) ∈ γ. Since Kγ is V -joint reducing (see Step II), one has [DΦλ(V )∗ ]V ⊆ Kγ . For

the converse inclusion, we show DΦµ(V )∗ ⊆ [DΦλ(V )∗ ]V for every µ = (µ1, µ2, . . .) ∈ γ with DΦµ(V )∗

̸= {0}. Now take an arbitrary nonzero element x ∈ DΦµ(V )∗ . Lemma 2.8 implies that [x]V is V -joint

reducing, and V |[x]V is jointly unitarily equivalent to the sequence Φµ(Mζ), where Mζ is the tuple of

coordinate multiplication operators on the Hardy space H2(D∞
2 ). Then [x]V is reducing for DΦλ(V )∗ ,

and DΦλ(V )∗ |[x]V is jointly unitarily equivalent to

D(Φλ◦Φµ(Mζ))∗ =
∞∏

n=1

(I − (φλn ◦ φµn(Mζn))(φλn ◦ φµn(Mζn))
∗).
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Note that for each n ∈ N, φλn ◦ φµn = cnφηn for some unimodular constant cn and ηn ∈ D, and we have

D(Φλ◦Φµ(Mζ))∗ =

∞∏
n=1

(I − (cnφηn(Mζn))(cnφηn(Mζn))
∗)

=
∞∏

n=1

(I − φηn(Mζn)φηn(Mζn)
∗)

= DΦη(Mζ)∗ .

The fact that λ ∼ µ yields η = (η1, η2, . . .) ∈ D∞
2 , and then Lemma 2.9 gives DΦη(Mζ)∗ ̸= 0. Thus, there

exists an element x′ ∈ [x]V such that

y = DΦλ(V )∗x
′ ∈ [x]V ∩DΦλ(V )∗

is nonzero (otherwise, one would have DΦλ(V )∗ |[x]V = 0). Again by Lemma 2.8, [y]V is a joint reducing

subspace of [x]V for the sequence V |[x]V , and of course for the sequence Φµ(V |[x]V ). Since Φµ(V |[x]V )

is jointly unitarily equivalent to Mζ , Lemma 2.10 implies that Φµ(V |[x]V ) is also irreducible, which gives

[x]V = [y]V ⊆ [DΦλ(V )∗ ]V .

In particular, x ∈ [DΦλ(V )∗ ]V . This completes the proof of Step III.

(2) ⇒ (3). In the proof of the implication (2′) ⇒(3), we have shown that if

x ∈ H ⊖
( ∨

λ∈D∞

DΦλ(T )∗

)
,

then

DΦµ(T )∗Φ
α
µ(T )∗x = 0

for every µ ∈ D∞ and every α ∈ Z(∞)
+ . Thus for such an x, we still have x = 0 under the assumption

in (2).

(3) ⇒ (2). Now assume that (3) holds. In the proof of the implication (3) ⇒ (1), we actually establish

a concrete orthogonal decomposition of H, i.e., there exists an at most countable subset ∆0 of ∆, such

that H =
⊕

γ∈∆0
Hγ , where

Hγ =
∨
λ∈γ

DΦλ(T )∗ .

Moreover, Φλ(T |Hγ ) is of Beurling-type for every λ ∈ γ.

For each γ ∈ ∆0, we fix λγ ∈ γ. As in the proof of the implication (1) ⇒ (2′), one has

∥PHγx∥2 =
∑

α∈Z(∞)
+

∥PHγDΦλγ (T )∗Φ
α
λγ
(T )∗x∥2

for each γ ∈ ∆0. Since ∥x∥2 =
∑

γ∈∆0
∥PHγx∥2 for every x ∈ H, it remains to show

∥PHγDΦλγ (T )∗Φ
α
λγ
(T )∗x∥2 = ∥DΦλγ (T )∗Φ

α
λγ
(T )∗x∥2

for any given γ ∈ ∆0, α ∈ Z(∞)
+ and x ∈ H. Since for any δ ∈ ∆0 with δ ̸= γ, Hδ is orthogonal to

Hγ =
∨
λ∈γ

DΦλ(T )∗ ,

we have PHδ
DΦλγ (T )∗ = 0. It follows that

∥DΦλγ (T )∗Φ
α
λγ
(T )∗x∥2 = ∥PHγDΦλγ (T )∗Φ

α
λγ
(T )∗x∥2 +

∑
δ ̸=γ

∥PHδ
DΦλγ (T )∗Φ

α
λγ
(T )∗x∥2

= ∥PHγDΦλγ (T )∗Φ
α
λγ
(T )∗x∥2,

which completes the proof.
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From the proof of Theorem 1.3, we actually obtain the following collection of results, which will be

used later.

Corollary 3.1. Let T be a sequence in the class DC(H), and V ∈ DI(K) be the minimal regular

isometric dilation of T .

(1) If T is of Beurling type, then K has an orthogonal decomposition

K =
⊕

α∈Z(∞)
+

V αDV ∗ ,

and for each x ∈ H,

∥x∥2 =
∑

α∈Z(∞)
+

∥DT ∗T ∗αx∥2.

(2) If λ, µ ∈ D∞ are not ∼-equivalent, then the defect spaces DΦλ(T )∗ and DΦµ(T )∗ are mutually

orthogonal.

(3) For any ∼-equivalence class γ, put

Hγ =
∨
λ∈γ

DΦλ(T )∗ , Kγ =
∨
λ∈γ

DΦλ(V )∗ .

Then Kγ = [DΦµ(V )∗ ]V for each µ ∈ γ, V |Kγ is the minimal regular isometric dilation of T |Hγ , and

Hγ ,Kγ are joint reducing for T and V , respectively.

We are ready to prove Corollary 1.4.

Proof of Corollary 1.4. (1) ⇒ (2) and (1) ⇒ (3). See Corollary 3.1(1).

(2) ⇒ (1). This is obvious.

(3) ⇒ (4). This implication follows from the proof of Theorem 1.3 and the fact that D∞
2 coincides with

the Cartesian product

{(λ, µ) : λ ∈ Dn, µ ∈ D∞
2 }.

(4) ⇒ (1). Let V ∈ DI(K) be the minimal regular isometric dilation of T . Note that D∞
2 is a

∼-equivalence class that contains 0 and H = HD∞
2
. It follows from Corollary 3.1(3) that

K = KD∞
2

= [DV ∗ ]V .

The proof is completed.

It follows immediately from Corollary 1.4 that a sequence T ∈ DC is of quasi-Beurling type if and only

if the minimal regular isometric dilation of T is jointly unitarily equivalent to the sequence Φλ(Mζ) on

a vector-valued Hardy space H2
E(D∞

2 ) for some λ ∈ D∞.

Below we give an example to illustrate that Theorem 1.3(3) is nontrivial for sequences in the class DC.
By comparing this with Lemma 2.7, we see that the infinite-tuple case diverges considerably from the

finite-tuple case.

Theorem 3.2. There exists a sequence V ∈ DI such that DΦλ(V )∗ = {0} for each λ ∈ D∞.

Proof. Let T 2 denote (T 2
1 , T

2
2 , . . .) for a sequence T = (T1, T2, . . .) of operators, and Mζ =

(Mζ1 ,Mζ2 , . . .) be the tuple of coordinate multiplication operators on H2(D∞
2 ). Put

En = KerM∗
ζn = H2(D∞

2 )⊖ ζnH
2(D∞

2 ), n ∈ N.

It is clear that

H2(D∞
2 ) =

∞⊕
k=0

ζknEn

for each n ∈ N. Define a sequence V of isometries on H2(D∞
2 ) by setting

Vn(ζ
k
nF ) =

{
ζk+3
n F, if k is even,

ζk−1
n F, if k is odd
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for n ∈ N and F ∈ En. It is routine to check that V ∈ DI and V 2 = M2
ζ .

Now we show DΦλ(V )∗ = {0} for each λ ∈ D∞. Assume conversely that there exists a point λ ∈ D∞

such that DΦλ(V )∗ contains a function F ̸= 0. By the comments above Lemma 2.8, F is exactly an

eigenvector of the sequence V ∗ corresponding to the joint eigenvalue λ = (λ1, λ2, . . .), and therefore,

F ∈ DΦλ2 (V 2)∗ = DΦλ2 (M2
ζ )

∗ ,

where λ2 = (λ2
1, λ

2
2, . . .). Let Kµ denote the reproducing kernel of H2(D∞

2 ) at the point µ ∈ D∞
2 . Then

Kµ ∈ DΦµ2 (M2
ζ )

∗ ⊆
∨

ξ∈D∞
2

DΦξ(M2
ζ )

∗ ,

which gives ∨
ξ∈D∞

2

DΦξ(M2
ζ )

∗ = H2(D∞
2 ),

since the set {Kµ : µ ∈ D∞
2 } is complete in H2(D∞

2 ). Then by Corollary 3.1(2), DΦξ(V 2)∗ = {0} for

ξ /∈ D∞
2 , forcing λ2 ∈ D∞

2 . In particular, λn → 0 (n → ∞).

Write F = DV ∗2 = DM∗2
ζ
. Then

F =
∞∩

n=1

KerM∗2
ζn = span{ζα : α = (α1, α2, . . .) ∈ Z(∞)

+ with each αn 6 1}

and

PF =

∞∏
n=1

(I − V 2
n V

∗2
n ) =

∞∏
n=1

(I −M2
ζnM

∗2
ζn ),

where PF is the orthogonal projection from H2(D∞
2 ) onto F . This implies that

n∏
i=1

(I −M2
ζiM

∗2
ζi )F =

n∏
i=1

(I −M2
ζiV

∗2
i )F = F ·

n∏
i=1

(1− λ2
nζ

2
n)

converges to G = PFF (n → ∞) in the H2(D∞
2 )-norm. Note that the reproducing kernel Kλ2 vanishes

nowhere on D∞
2 ,

∏n
i=1(1−λ2

nζ
2
n) converges pointwisely to the function 1

Kλ2
on D∞

2 as n → ∞, and G must

coincide with the function F
Kλ2

on D∞
2 , forcing G ̸= 0. Since G ∈ F , there exists some α = (α1, α2, . . .)

∈ Z(∞)
+ with each αn 6 1 such that ⟨G, ζα⟩ ̸= 0.

Below we prove ⟨G, ζα⟩ = 0 to reach a contradiction. Since for each n ∈ N,

G ∈ KerM∗2
ζn = KerV ∗2

n ,

there corresponds a decomposition G = Gn+Hn of G such that Gn ∈ KerV ∗
n and Hn ∈ KerV ∗2

n ⊖KerV ∗
n .

Since V is doubly commuting, for any n ∈ N,

Gn = (I − VnV
∗
n )G = (I − VnV

∗
n ) ·

∞∏
m ̸=n

(I − V 2
mV ∗2

m )F

and

Hn = (VnV
∗
n − V 2

n V
∗2
n )G

= (VnV
∗
n − V 2

n V
∗2
n ) ·

∞∏
m ̸=n

(I − V 2
mV ∗2

m )F

= Vn(I − VnV
∗
n )V

∗
n ·

∞∏
m ̸=n

(I − V 2
mV ∗2

m )F

= Vn(I − VnV
∗
n ) ·

∞∏
m ̸=n

(I − V 2
mV ∗2

m )V ∗
nF

= λnVn(I − VnV
∗
n ) ·

∞∏
m ̸=n

(I − V 2
mV ∗2

m )F,
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which gives

∥Hn∥ = |λn|∥VnGn∥ = |λn|∥Gn∥.

By the fact that λn → 0 (n → ∞) and ∥G∥2 = ∥Gn∥2 + ∥Hn∥2 (n ∈ N), we see ∥Hn∥ → 0 (n →
∞). This gives that Gn → G (n → ∞) in the norm, and then ⟨Gn, ζ

α⟩ → ⟨G, ζα⟩ (n → ∞). Since

Gn ∈ ζnH
2(D∞

2 ) (n ∈ N), ⟨Gn, ζ
α⟩ = 0 for n large sufficiently, forcing ⟨G, ζα⟩ = 0. This completes the

proof.

We also have the following application of Theorem 1.3 and Corollary 1.4. Set Γ to be the set of points

λ = (λ1, λ2, . . .) ∈ D∞

satisfying

lim
m→∞

∞∏
n=m

λm = 1.

For the equivalence relation∼ on D∞ given in the proof of Theorem 1.3, Γ is a union of some ∼-equivalence

classes, namely for a pair λ, µ of ∼-equivalent points in D∞, λ ∈ Γ if and only if µ ∈ Γ. In fact, if λ ∈ Γ

and λ ∼ µ, then
∞∑

n=1

(1− |λn|) < ∞

and
∞∑

n=1

|λn − µn|2 < ∞,

which give
∞∑

n=1

|1− λnµn|2 < ∞,

since

|1− λnµn| 6 |1− λnλn|+ |λnλn − λnµn| 6 2(1− |λn|) + |λn − µn|, n ∈ N.

Hence by the Cauchy-Schwarz inequality,

∞∑
n=1

|λn − µn| 6
( ∞∑

n=1

∣∣∣∣ λn − µn

1− λnµn

∣∣∣∣2) 1
2
( ∞∑

n=1

|1− λnµn|2
) 1

2

< ∞,

forcing
∑∞

n=1(1− |µn|) < ∞ and
∑∞

n=1 |arg λn − arg µn| < ∞. It follows immediately that µ ∈ Γ.

Corollary 3.3. Suppose T ∈ DC(H) and put An = T1 · · ·Tn (n ∈ N). If
∨

λ∈Γ DΦλ(T )∗ = H, then

{An}n∈N converges in the strong operator topology.

Proof. Assume
∨

λ∈Γ DΦλ(T )∗ = H. By Theorem 1.3, T can be decomposed into the direct sum of

DC-sequences of quasi-Beurling type. Without loss of generality, we may further assume that T itself is

of quasi-Beurling type. Take λ ∈ Γ so that Φλ(T ) is of Beurling type. Then Corollary 1.4 implies that the

minimal regular isometric dilation V of T is jointly unitarily equivalent to the sequence (Mφ̃λ1
,Mφ̃λ2

, . . .)

of multiplication operators on a vector-valued Hardy space H2
E(D∞

2 ), where φ̃λn(ζ) = φλn(ζn) (ζ ∈ D∞
2 ).

Put Fn =
∏n

i=1 φ̃λi (n ∈ N). It suffices to show that {MFn}n∈N converges in the strong operator

topology. Since this sequence has uniformly bounded operator norms and

{p · x : p ∈ P∞, x ∈ E}

is complete in H2
E(D∞

2 ), we only need to prove that for every p ∈ P∞ and every x ∈ E , {Fnp · x}n∈N
converges in H2

E(D∞
2 ), where P∞ is the polynomial ring in countably infinitely many variables. This is

clearly equivalent to the fact that {Fn}n∈N converges in H2(D∞
2 ).
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For n > m, since the norm of a function in H2(D∞
2 ) equals the norm of the function on a polydisk if

the function depends only on finitely many variables, we have1)

∥Fn − Fm∥2 =

∥∥∥∥ n∏
i=m+1

φ̃λi − 1

∥∥∥∥2
=

∫
Tn−m

∣∣∣∣ n∏
i=m+1

φλi(ξi)− 1

∣∣∣∣2dξm+1 · · · dξn

=

∫
Tn−m

∣∣∣∣ n∏
i=m+1

φλi
(ξi)

∣∣∣∣2dξm+1 · · · dξn

− 2Re

∫
Tn−m

n∏
i=m+1

φλi(ξi)dξm+1 · · · dξn + 1

= 2− 2Re

( n∏
i=m+1

λi

)

= 2Re

(
1−

n∏
i=m+1

λi

)
.

Since limm→∞
∏∞

n=m λm = 1, {Fn}n∈N is a Cauchy sequence, which completes the proof.

To end this section, we record an example of the DC-sequence of quasi-Beurling type.

Proposition 3.4. Let {fn}n∈N be a sequence of bounded analytic functions on the unit disk D. If for

each n ∈ N, ∥fn∥∞ 6 1 and fn is not a unimodular constant, then the sequence (Mf̃1
,Mf̃2

, . . .) of

multiplication operators on the Hardy space H2(D∞
2 ) is a DC-sequence of quasi-Beurling type, where

f̃n(ζ) = fn(ζn) (n ∈ N, ζ ∈ D∞
2 ).

Proof. It is routine to check that (Mf̃1
,Mf̃2

, . . .) is a sequence in the class DC. Put

gn = φfn(0) ◦ fn, n ∈ N.

Then for each n ∈ N, gn(0) = 0 and Mg̃n = φfn(0)(Mf̃n
), where g̃n(ζ) = gn(ζn). We show that the

sequence M = (Mg̃1 ,Mg̃2 , . . .) is of Beurling type, which implies the desired conclusion.

Note that for each n ∈ N and λ = (λ1, λ2, . . .) ∈ D∞
2 ,

φgn(λn)(Mg̃n)
∗Kλ = M∗

φgn(λn)◦g̃nKλ = φgn(λn)(g̃n(λ))Kλ = 0,

which gives

(I − φgn(λn)(Mg̃n)φgn(λn)(Mg̃n)
∗)Kλ = Kλ.

It follows that DΦµ(λ)(M)∗Kλ = Kλ for every λ ∈ D∞
2 , where

µ(λ) = (g1(λ1), g2(λ2), . . .).

Also by Schwarz’s lemma, we have that for each λ ∈ D∞
2 ,

∞∑
n=1

|gn(λn)|2 6
∞∑

n=1

|λn|2 < ∞,

and then

Kλ ∈ DΦµ(λ)(M)∗ ⊆
∨

µ∈D∞
2

DΦµ(M)∗ .

This gives ∨
µ∈D∞

2

DΦµ(M)∗ = H2(D∞
2 ).

It follows from Corollary 1.4 that the sequence M = (Mg̃1 ,Mg̃2 , . . .) is of Beurling type.

1) The authors thank the referees for suggesting this calculation to make things more clear.
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Remark 3.5. From the proof of Proposition 3.4, we see that the ∼-equivalence class of the point

(f1(0), f2(0), . . .) ∈ D∞ (see Corollary 3.1) is an invariant for the sequence (Mf̃1
,Mf̃2

, . . .). More

precisely, let {fn}n∈N and {gn}n∈N be two sequences of functions that satisfy the conditions given in

the proposition, and put f̃n(ζ) = fn(ζn) and g̃n(ζ) = gn(ζn) (n ∈ N, ζ ∈ D∞
2 ). If the multiplication

operators (Mf̃1
,Mf̃2

, . . .) and (Mg̃1 ,Mg̃2 , . . .) are jointly unitarily equivalent, then (f1(0), f2(0), . . .) and

(g1(0), g2(0), . . .) belong to the same ∼-equivalence class, i.e.,

∞∑
n=1

∣∣∣∣ fn(0)− gn(0)

1− fn(0)gn(0)

∣∣∣∣2 < ∞.

Since the number of ∼-equivalence classes is uncountable, D∞
2 is a very “small” part in D∞. Hence,

for “almost all” choices of the sequence {fn}n∈N of functions, the defect space of (M∗
f̃1
,M∗

f̃2
, . . .) is {0}

by Proposition 3.4 and Corollary 3.1, and then (Mf̃1
,Mf̃2

, . . .) is not of Beurling type.

4 Analytic model

In this section, we prove that every sequence in the class DI is jointly unitarily equivalent to a sequence of

multiplication operators induced by operator-valued inner functions each of which involves one different

variable. We thus establish an operator-valued analytic functional model for general DC-sequences.
Theorem 4.1. Let T be a sequence in the class DC(H), and V ∈ DI(K) be the minimal regular

isometric dilation of T . Then there exist a Hilbert space E, a unitary operator U : K → H2
E(D∞

2 ) and a

sequence Θ = (θ1, θ2, . . .) of inner functions in H∞
B(E)(D), such that

(1) for each n ∈ N, UVnU
∗ = M

θ̃n
, where θ̃n(ζ) = θn(ζn) (ζ ∈ D∞

2 );

(2) Q = UH is a quotient module of H2
E(D∞

2 ).

The tuple (Q,Θ) in Theorem 4.1 is said to be an analytic model for the DC-sequence T , and the

Hilbert space E is called the underlying space of the analytic model (Q,Θ). The sequence (Mθ̃1
,Mθ̃2

, . . .)

is denoted by MΘ for simplicity. Also, for the trivial case

Θ = (z · IE , z · IE , . . .),

we simply write Q for (Q,Θ). It is clear that T is jointly unitarily equivalent to the sequence PQMΘ |Q,
the compression of the sequence MΘ on Q.

To prove Theorem 4.1, we need the following proposition.

Proposition 4.2. Suppose T ∈ DC. Then there exists a sequence (k1, k2, . . .) of positive integers, such

that (T k1
1 , T k2

2 , . . .) is of Beurling type.

Proof. Assume that T ∈ DC(H) and V ∈ DI(K) is the minimal regular isometric dilation of T . For a

sequence k = (k1, k2, . . .) of positive integers, put

Vk = (V k1
1 , V k2

2 , . . .)

and Mk = [DV ∗
k
]Vk

. It suffices to prove that there exists a sequence k of positive integers such that

K = Mk.

Note that we have made the convention that H is a separable Hilbert space in Subsection 1.2. Then

K = [H]V is also separable. Take a sequence {xn}n∈N in K that constitutes a dense subset of K and each

element appears infinitely many times in the sequence. It follows from Lemma 2.12 that for each n ∈ N,
there exists a sequence k(n) = (k

(n)
1 , k

(n)
2 , . . .) of positive integers, such that

∥DV ∗
k(n)

xn∥ >
(
1− 1

2n

)
∥xn∥. (4.1)

Set kn = max{k(1)n , . . . , k
(n)
n } (n ∈ N) and put k = (k1, k2, . . .). Note that

[DV ∗
k
]
V

k1
1

= [(I − V k1
1 V ∗k1

1 )DV ∗
(0,k′)

]
V

k1
1

= DV ∗
(0,k′)

,
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where k′ = (k2, k3, . . .). It follows that

Mk = [DV ∗
k
]Vk

= [DV ∗
(0,k′)

]V(0,k′) = M(0,k′),

and thus by induction,

Mk = M(0,k′) = · · · = M(0,...,0,kn,kn+1,...)

⊇ DV ∗
(0,...,0,kn,kn+1,...)

⊇ DV ∗
(0,...,0,k

(n)
n ,k

(n)
n+1

,...)

⊇ DV ∗
k(n)

for each n ∈ N. By (4.1), one obtains

∥PMk
xn∥ > ∥DV ∗

k(n)
xn∥ >

(
1− 1

2n

)
∥xn∥, n ∈ N,

forcing ∥PMk
x∥ = ∥x∥ for every x ∈ K, where PMk

is the orthogonal projection from K onto Mk. This

completes the proof.

Proof of Theorem 4.1. Assume that T ∈ DC(H) and V ∈ DI(K) is the minimal regular isometric

dilation of T . It follows from Proposition 4.2 that there exists a sequence (k1, k2, . . .) of positive integers,

such that (T k1
1 , T k2

2 , . . .) is of Beurling type. Then by Corollary 1.4, the sequence (V k1
1 , V k2

2 , . . .) is jointly

unitarily equivalent to the tuple Mζ = (Mζ1 ,Mζ2 , . . .) of coordinate multiplication operators on a vector-

valued Hardy space H2
E(D∞

2 ) via a unitary operator U : K → H2
E(D∞

2 ). This implies that for each

n ∈ N,
Mζn = UV kn

n U∗ = (UVnU
∗)kn ,

and hence Ṽn = UVnU
∗ commutes with Mζn and doubly commutes with Mζm for every m ̸= n.

It remains to show that Ṽn (n ∈ N) is a multiplication operator induced by an operator-valued inner

function θ̃n ∈ H∞
B(E)(D

∞
2 ), which depends only on the n-th variable ζn. We first prove the case for n = 1.

Put M ′
ζ = (Mζ2 ,Mζ3 , . . .) and set

L = span{ζα : α = (α1, α2, . . .) ∈ Z(∞)
+ with α1 = 0}.

Then we have H2
E(D∞

2 ) = H2
E(D) ⊗ L (see Subsection 2.2), Mζ1 = Mz ⊗ IL and M ′

ζ has the form

(IH2
E(D) ⊗ T1, IH2

E(D) ⊗ T2, . . .) for a sequence (T1, T2, . . .) of operators on L jointly unitarily equivalent

to the tuple of coordinate multiplication operators on H2(D∞
2 ). Since Ṽ1 doubly commutes with M ′

ζ , it

follows from Lemmas 2.10 and 2.11 that Ṽ1 = S ⊗ IL for some isometry S on H2
E(D). Therefore,

Mz ⊗ IL = Mζ1 = Ṽ1

k1

= Sk1 ⊗ IL,

forcing Mz = Sk1 . In particular, S commutes with Mz. Then there is a B(E)-valued inner function θ1 in

the single variable z ∈ D, such that S = Mθ1 (see, for example, [50, pp. 200–201]), which gives

Ṽ1 = Mθ1 ⊗ IL = Mθ̃1
,

where θ̃1(ζ) = θ1(ζ1) (ζ ∈ D∞
2 ). Similarly, for each n > 2, Ṽn = M

θ̃n
, where θ̃n(ζ) = θn(ζn) (ζ ∈ D∞

2 ) for

some inner function θn ∈ H∞
B(E)(D). The proof is completed.

Combining Proposition 4.2 with Corollary 3.3, we have the following corollary.

Corollary 4.3. Suppose T ∈ DC. Then there exists a sequence {Bn}n∈N of finite Blaschke products,

such that {
∏n

i=1 Bi(Ti)}n∈N converges in the strong operator topology.

Now we establish an analytic model for sequences in the class DC with a decomposition of quasi-

Beurling type.

Suppose that T ∈ DC(H) is of Beurling type, and V ∈ DI(K) is the minimal regular isometric dilation

of T . By Corollary 3.1(1), V is jointly unitarily equivalent to the tuple Mζ of coordinate multiplication

operators on a vector-valued Hardy space H2
DV ∗ (D∞

2 ). We claim that the map

DV ∗x 7→ DT ∗x, x ∈ H (4.2)
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can be extended to a unitary operator from DV ∗ onto DT ∗ . By Lemma 2.6, it remains to prove that

DV ∗H is dense in DV ∗ . Assume that x ∈ DV ∗ is orthogonal to DV ∗H. Then x is orthogonal to H and

RanVn for all n ∈ N. In particular, x is orthogonal to [H]V = K, forcing x = 0. This proves the claim.

Therefore, the above unitary operator from DV ∗ onto DT ∗ naturally induces a unitary operator UT from

K onto H2
DT∗ (D∞

2 ). It is easy to see that QT = UTH is an analytic model for the sequence T . We call

QT the canonical analytic model for T .

As a consequence, for a sequence T ∈ DC(H) which is of quasi-Beurling type, one can find some

λ = (λ1, λ2, . . .) ∈ D∞ so that Φλ(T ) is of Beurling type, and then (QΦλ(T ), (φλ1 · I, φλ2 · I, . . .)) is an

analytic model for the sequence T .

Suppose that {Eγ}γ is a family of Hilbert spaces, and for each index γ, Θγ is a sequence in H∞
B(Eγ)

(D).
In a natural way, we can define the direct sum

⊕
γ Θγ of {Θγ}γ , which is then a sequence inH∞

B(
⊕

γ Eγ)
(D).

Now let T =
⊕

γ Tγ be the direct sum of DC-sequences of quasi-Beurling type. For each index γ, we

have previously established an analytic model (Qγ ,Θγ) for Tγ . Put Q =
⊕

γ Qγ and Θ =
⊕

γ Θγ . Then

(Q,Θ) is an analytic model for T .

In fact, we have the following theorem.

Theorem 4.4. Suppose T ∈ DC. Then T has a decomposition of quasi-Beurling type if and only if

T has an analytic model (Q,Θ) so that all θn(z)’s (n ∈ N, z ∈ D) are simultaneously diagonalizable with

respect to some orthonormal basis of the underlying space E of (Q,Θ).

Proof. The necessity follows from the construction in the previous paragraphs. Now assume that

T ∈ DC(H) has an analytic model (Q,Θ) so that all θn(z)’s (n ∈ N, z ∈ D) are simultaneously

diagonalizable with respect to some orthonormal basis {ei}i∈Λ of the underlying space E of (Q,Θ).

We prove that T has a decomposition of quasi-Beurling type. By assumption, we have

θn =
∑
i∈Λ

ηni · ei⊗̂ei, n ∈ N,

where each ηni is an H∞(D)-inner function, and ei ⊗̂ ei denotes the 1-rank projection

ei ⊗̂ ei(x) = ⟨x, ei⟩ei, x ∈ E .

Then for each i ∈ Λ, H2
Cei(D

∞
2 ), as a subspace of H2

E(D∞
2 ), is joint reducing for MΘ, and the restriction

of MΘ on H2
Cei(D

∞
2 ) is jointly unitarily equivalent to the sequence (Mη̃1i

,Mη̃2i
, . . .) of multiplication

operators on the Hardy space H2(D∞
2 ), where η̃ni(ζ) = ηni(ζn) (n ∈ N, ζ ∈ D∞

2 ). It follows from

Proposition 3.4 that the sequence MΘ has a decomposition of quasi-Beurling type, and therefore so does

the minimal isometric dilation V of T by the definition of the analytic model. Then Theorem 1.3 together

with Corollary 3.1(3) implies that T also has a decomposition of quasi-Beurling type.

To conclude this section, we give a characterization of the canonical analytic model QT for a sequence

T ∈ DC which is of Beurling type. One approach, inspired by the single C.0-contraction case, is utilizing

the characteristic functions of contractions.

Recall that the characteristic function θT of a contraction T ∈ B(H) is a B(DT ,DT∗)-valued function

defined by

θT (z) = [−T + zDT∗(1− zT ∗)−1DT ] |DT
, z ∈ D.

Suppose in addition that T ∈ C.0, and θT is further an inner function (see [50]). Then the multiplication

operator MθT is an isometry from H2
DT

(D) to H2
DT∗ (D), and thus

M∗
θTH

2
DT∗ (D) = H2

DT
(D).

Since the minimal isometric dilation V ∈ B(K) of T is pure, K has a decomposition as K =
⊕∞

k=0 V
kDV ∗ ,

and therefore can be identified with the vector-valued Hardy space H2
DV ∗ (D). Similar to (4.2), the map

DV ∗x 7→ DT∗x, x ∈ H
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can be extended to a unitary operator from DV ∗ onto DT∗ , and then induces a unitary operator UT from

K onto H2
DT∗ (D). It is easy to see that UT is actually an extension of the isometry

V : H → H2
DT∗ (D),

x 7→
∞∑
k=1

zk ·DT∗T ∗kx.

It follows from [50, pp. 244–245] that for a, b ∈ D,

IDT∗ − θT (b)θT (a)
∗ = (1− āb)[DT∗(1− bT ∗)−1(1− āT )−1DT∗ ] |DT∗ . (4.3)

This gives

UTPHU∗
T = V V ∗ = I −MθTM

∗
θT (4.4)

(see [9] or [10]), i.e.,

H2
DT∗ (D)⊖ UTH = MθTM

∗
θTH

2
DT∗ (D).

Let us return to the characterization of the canonical analytic model QT for the sequence T =

(T1, T2, . . .). Now consider the following spaces:

MθTn
M∗

θTn
H2

DT∗ (D), n ∈ N.

By (4.3), for a, b ∈ D,

θT1
(b)θT1

(a)∗DT ∗x = DT ′∗θT1
(b)θT1

(a)∗DT∗
1
x

= DT ∗x− (1− āb)[DT ∗(1− bT ∗)−1(1− āT )−1D2
T∗
1
]x

= DT ∗ [1− (1− āb)(1− bT ∗
1 )

−1(1− āT1)
−1D2

T∗
1
]x,

where T ′ = (T2, T3, . . .). Similarly, for every n ∈ N and a, b ∈ D,

θTn(b)θTn(a)
∗DT ∗x = DT ∗ [1− (1− āb)(1− bT ∗

n)
−1(1− āTn)

−1D2
T∗
n
]x, (4.5)

and then by Lemma 2.5 (1), H2
DT∗ (D) is reducing for MθTn

M∗
θTn

, and

M∗
θTn

H2
DT∗ (D) = H2

Fn
(D), (4.6)

where Fn is the defect space of the sequence (T ∗
1 , . . . , T

∗
n−1, Tn, T

∗
n+1, . . .). In particular,

MθTn
M∗

θTn
H2

DT∗ (D) = θTnH
2
Fn

(D), n ∈ N

is an Mz-invariant subspace of H2
DT∗ (D).

Put θ̃Tn(ζ) = θTn(ζn) (n ∈ N, ζ ∈ D∞
2 ). Then M

θ̃Tn
M∗

θ̃Tn

H2
DT∗ (D∞

2 ) (n ∈ N) is of the form

H2(D)⊗ · · · ⊗H2(D)︸ ︷︷ ︸
n−1 times

⊗MθTn
M∗

θTn
H2

DT∗ (D)⊗H2(D)⊗H2(D)⊗ · · · , (4.7)

forcing it to be a joint invariant subspace of H2
DT∗ (D∞

2 ) for the tuple of coordinate multiplication

operators.

Our result presented below looks somehow similar to the above single C.0-contraction case, or the

finite-tuple case considered in [10]. However, instead of following the proof in [10], we give an original

proof.

Theorem 4.5. Let T = (T1, T2, . . .) ∈ DC be of Beurling type, and QT be the canonical analytic model

for T . Then

H2
DT∗ (D∞

2 )⊖QT =

∞∨
n=1

M
θ̃Tn

M∗
θ̃Tn

H2
DT∗ (D∞

2 ),

where θ̃Tn(ζ) = θTn(ζn) (n ∈ N, ζ ∈ D∞
2 ).
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Proof. Let V ∈ DI(K) be the minimal regular isometric dilation of T ∈ DC(H), and put

Hn =
∨

α∈Z(∞)
+

αn=0

V αH, n ∈ N.

By Lemma 2.2(3), one has

QT = UTH =
∞∩

n=1

UTHn.

It thus suffices to prove that for each n ∈ N,

H2
DT∗ (D∞

2 )⊖ UTHn = M
θ̃Tn

M∗
θ̃Tn

H2
DT∗ (D∞

2 );

equivalently,

I − UTPHnU
∗
T = M

θ̃Tn
M∗

θ̃Tn

|H2
DT∗ (D∞

2 ). (4.8)

Assume n = 1 without loss of generality, and put S = (S1, S2, . . .) = PH1V |H1 , the compression of the

sequence V on the subspace H1. Rewrite T = T1 and S = S1 for simplicity. One can define the unitary

operators US : K → H2
DS∗ (D∞

2 ) and US : K → H2
DS∗ (D) as done previously in this section. Since (4.4)

remains valid for S, and (4.5) and (4.6) remain valid for S, it follows that

PH1 = I − U∗
SMθSM

∗
θSUS , (4.9)

H2
DS∗ (D) is reducing for MθSM

∗
θS

and

M∗
θSH

2
DS∗ (D) = H2

F (D), (4.10)

where F is the defect space of the sequence (S, S∗
2 , S

∗
3 , . . .).

We now claim that

U∗
SMθSM

∗
θSUS = U∗

S(MθSM
∗
θS |H2

DS∗ (D) ⊗ IL)US , (4.11)

where

L = span{ζα : α = (α1, α2, . . .) ∈ Z(∞)
+ with α1 = 0}.

Since operators on both sides of (4.11) are orthogonal projections, the claim is equivalent to

U∗
SMθSM

∗
θSH

2
DS∗ (D) = U∗

S(MθSM
∗
θS |H2

DS∗ (D) ⊗ IL)(H
2
DS∗ (D)⊗ L). (4.12)

The left-hand side of (4.12) is

U∗
SMθSH

2
DS

(D),

and by (4.10), the right-hand side of (4.12) is

U∗
S(MθSH

2
F (D)⊗ L).

Put V ′ = (V2, V3, . . .) and S′ = (S2, S3, . . .). Then by Lemma 2.2(1), H1 is reducing for V ′, and hence

S′ = V ′ |H1 is a DI-sequence of Beurling type, and so is S′ |DS
, the restriction of S′ on the joint reducing

subspace DS . This together with Corollary 3.1(1) gives

DS =
⊕

α∈Z(∞)
+

S′αD(S′ |DS
)∗ =

⊕
α∈Z(∞)

+

S′αDSDS′∗ =
⊕

α∈Z(∞)
+

S′αF =
⊕
α1=0

SαF ,

forcing

H2
DS

(D) =
⊕
α1=0

H2
SαF (D) =

⊕
α1=0

(IH2(D) ⊗ Sα)H2
F (D).
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Then for each f ∈ H2
DS

(D), there exists a unique sequence {fα}α1=0 in H2
F (D), such that∑

α1=0

∥fα∥2 < ∞

and

f(z) =
∑
α1=0

Sα(fα(z)), z ∈ D.

Since S doubly commutes with Sn (n > 2), one has

(MθSf)(z) = θS(z)f(z) =
∑
α1=0

Sα(θS(z)fα(z)) =
∑
α1=0

Sα((MθSfα)(z)).

That is to say,

MθSH
2
DS

(D) =
⊕
α1=0

(IH2(D) ⊗ Sα)MθSH
2
F (D).

On the other hand, it is easy to see that

MθSH
2
F (D)⊗ L =

⊕
α1=0

MθSH
2
F (D)⊗ Cζα.

Thus we can further reduce (4.12) to proving the following:

USU
∗
S(MθSH

2
F (D)⊗ Cζα) = (IH2(D) ⊗ Sα)MθSH

2
F (D), α1 = 0.

A calculation gives that for every α = (α1, α2, . . .) ∈ Z(∞)
+ and x ∈ H1,

USU
∗
S(ζ

α ·DS∗x) = USV
αDV ∗x = USV

α1
1 DV ∗

1
V ′α′

DV ′∗x = zα1 ·DS∗V ′α′
DV ′∗x,

where α′ = (α2, α3, . . .). Here, we used the fact that the restriction of V ′α′
DV ′∗ on H1 is S′α′

DS′∗ , which

implies

V ′αDV ′∗x = S′αDS′∗x ∈ H1.

Moreover, since S doubly commutes with Sn (n > 2), we further have

USU
∗
S(ζ

α ·DS∗x) = zα1 ·DS∗V ′α′
DV ′∗x = zα1 ·DS∗S′αDS′∗x = zα1 · S′αDS∗x.

Note that

MθSH
2
F (D) = MθSM

∗
θSH

2
DS∗ (D) ⊆ H2

DS∗ (D),

and each f ∈ MθSH
2
F (D) can be written as f =

∑∞
k=0 z

k · xk for some sequence {xk}k∈N in DS∗ . Then

for any α = (α1, α2, . . .) ∈ Z(∞)
+ with α1 = 0,

f ⊗ ζα ∈ H2
DS∗ (D)⊗ L = H2

DS∗ (D∞
2 )

can also be written as

f ⊗ ζα =

∞∑
k=0

ζk1
1 ζα · xk,

and hence,

USU
∗
S(f ⊗ ζα) =

∞∑
k=0

USU
∗
S(ζ

k1
1 ζα · xk) =

∞∑
k=0

zk · Sαxk = (IH2(D) ⊗ Sα)f.

This proves the claim.

The operator UTU
∗
S has the form IH2(D) ⊗Π⊗ IL with respect to the representation

H2
DS∗ (D∞

2 ) = H2(D)⊗DS∗ ⊗ L,
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where Π : DS∗ → DT ∗ is a unitary operator satisfying

Π(DS∗x) = DT ∗x, x ∈ H1. (4.13)

Let Π · θS denote the operator-valued function defined by z 7→ Π(θS(z)) (z ∈ D). Then

M∗
Π·θS |H2

DT∗ (D) = M∗
θS |H2

DS∗ (D)(IH2(D) ⊗Π∗),

since two operators coincide on the set {Ka · x : a ∈ D, x ∈ DT ∗}, and thus,

MΠ·θSM
∗
Π·θS |H2

DT∗ (D) = (M∗
Π·θS |H2

DT∗ (D))
∗M∗

Π·θS |H2
DT∗ (D)

= (IH2(D) ⊗Π)(M∗
θS |H2

DS∗ (D))
∗M∗

θS |H2
DS∗ (D)(IH2(D) ⊗Π∗)

= (IH2(D) ⊗Π)MθSM
∗
θS |H2

DS∗ (D)(IH2(D) ⊗Π∗). (4.14)

Therefore, we have

I − UTPH1U
∗
T = I − UT (I − U∗

SMθSM
∗
θSUS)U

∗
T

= UTU
∗
SMθSM

∗
θSUSU

∗
T

= UTU
∗
S(MθSM

∗
θS |H2

DS∗ (D) ⊗ IL)USU
∗
T

= (IH2(D) ⊗Π⊗ IL)(MθSM
∗
θS |H2

DS∗ (D) ⊗ IL)(IH2(D) ⊗Π∗ ⊗ IL)

= ((IH2(D) ⊗Π)MθSM
∗
θS |H2

DS∗ (D)(IH2(D) ⊗Π∗))⊗ IL

= (MΠ·θSM
∗
Π·θS |H2

DT∗ (D))⊗ IL,

where the first identity follows from (4.9), the third identity follows from (4.11), and the fifth identity

follows from (4.14). On the other hand, (4.7) gives

M
θ̃T
M∗

θ̃T
|H2

DT∗ (D∞
2 ) = MθTM

∗
θT |H2

DT∗ (D) ⊗ IL,

which reduces (4.8) to

MΠ·θSM
∗
Π·θS |H2

DT∗ (D) = MθTM
∗
θT |H2

DT∗ (D).

By Lemma 2.5(2), it remains to prove that for any fixed a, b ∈ D and any fixed x ∈ H ⊆ H1,

(Π · θS)(b)(Π · θS)(a)∗DT ∗x = ΠθS(b)θS(a)
∗Π∗DT ∗x = θT (b)θT (a)

∗DT ∗x.

Note that Lemma 2.2(2) implies that H is reducing for S and T = S |H. By (4.5), we have

θS(b)θS(a)
∗DS∗x = DS∗y

and

θT (b)θT (a)
∗DT ∗x = DT ∗y,

where

y = [1− (1− āb)(1− bS∗)−1(1− āS)−1D2
S∗ ]x

= [1− (1− āb)(1− bT ∗)−1(1− āT )−1D2
T∗ ]x ∈ H.

It follows from (4.13) that

ΠθS(b)θS(a)
∗Π∗DT ∗x = ΠθS(b)θS(a)

∗DS∗x = ΠDS∗y = DT ∗y.

This completes the proof.
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Now we are ready to refine the representation (1.2) in Subsection 1.2. Note that for each index γ,

Sγ = (Sγ1, Sγ2, . . .) = Φλγ (Tγ) is of Beurling type. Without loss of generality, we may assume that

Eγ = DS∗
γ
and Qγ is the canonical analytic model for Sγ in (1.2). Put λγ = (λγ1, λγ2, . . .) and let θγn

and ϑγn (n ∈ N) denote the characteristic functions of Tγn and Sγn, respectively. Then for each γ, ϑγn

coincides with θγn ◦ φλγn (see [50, pp. 246–247]), and it follows from Theorem 4.5 that

H2
Eγ
(D∞

2 )⊖Qγ =
∞∨

n=1

M
ϑ̃γn

M∗
ϑ̃γn

H2
Eγ
(D∞

2 ),

where ϑ̃γn(ζ) = ϑγn(ζn) (n ∈ N, ζ ∈ D∞
2 ).

5 Doubly commuting submodules and quotient modules of H2
E(D

∞
2 )

For submodules and quotient modules of the Hardy module, we are interested in the module actions on

them, i.e., the restrictions of the tuple of coordinate multiplication operators on submodules and the

compressions of the tuple of coordinate multiplication operators on quotient modules. In this section, we

mainly consider such restrictions and compressions that are doubly commuting.

Recall that a submodule S of H2
E(D∞

2 ) is said to be doubly commuting if the restriction

(Mζ1 |S ,Mζ2 |S , . . .)

of Mζ on S is doubly commuting.

Theorem 5.1. Let Mζ be the tuple of coordinate multiplication operators on the vector-valued Hardy

space H2
E(D∞

2 ). Then the restriction of Mζ on a doubly commuting submodule of H2
E(D∞

2 ) is of Beurling

type.

Before giving the proof, we introduce the notion of homogeneous components of functions in H2
E(D∞

2 ).

Suppose F ∈ H2
E(D∞

2 ), and let F =
∑

α∈Z(∞)
+

ζα · xα be the power series expansion of F . The sum∑
|α|=k ζ

α ·xα (k = 0, 1, 2, . . .) is called the k-th homogeneous component of F , where |α| = α1+α2+ · · · .
It is clear that ∥F∥2 is equal to the quadratic sum of norms of all the homogeneous components of F .

Proof of Theorem 5.1. Let S be a doubly commuting submodule of H2
E(D∞

2 ), and set R = Mζ |S , the
restriction of Mζ on S. Assume conversely that R is not of Beurling type to reach a contradiction. Then

by Corollaries 1.4 and 3.1(3),

S̃ = S ⊖
∨

λ∈D∞
2

DΦλ(R)∗

is a nonzero R-joint reducing subspace of S. Moreover, since DR∗ is self-adjoint, we have

DR̃∗ = DR∗ |S̃ = 0,

where R̃ = R |S̃ . So without loss of generality, we may assume DR∗ = {0}.
Set k0 to the minimal nonnegative integer among those k’s such that a nonzero k-th homogeneous

component appears in some functions belonging to S. Now choose a function F ∈ S so that the norm of

the k0-th homogeneous component of F is 1. Since DR∗ = {0}, one has

S =

∞∨
n=1

RanRn =

∞∨
n=1

ζnS,

and then there exist n ∈ N and n functions F1, . . . , Fn ∈ S, such that∥∥∥∥F −
n∑

i=1

ζiFi

∥∥∥∥ < 1.

This implies that the norm of the k0-th homogeneous component of the function F −
∑n

i=1 ζiFi is less

than 1. However, it is clear that the k0-th homogeneous component of
∑n

i=1 ζiFi is 0, which contradicts

the choice of F . The proof is completed.
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We also recall that a function Ψ ∈ H∞
B(F,E)(D

∞
2 ) is inner if the multiplication operator MΨ induced

by Ψ is an isometry. It is clear that for any inner function Ψ ∈ H∞
B(F,E)(D

∞
2 ), ΨH2

F (D∞
2 ) is a doubly

commuting submodule of H2
E(D∞

2 ). The following is a Beurling-Lax type theorem for the vector-valued

Hardy space in infinitely many variables.

Corollary 5.2. Let S be a submodule of the vector-valued Hardy module H2
E(D∞

2 ). Then S is doubly

commuting if and only if there exist a Hilbert space F and an inner function Ψ ∈ H∞
B(F,E)(D

∞
2 ), such that

S = ΨH2
F (D∞

2 ). (5.1)

Proof. LetMζ be the tuple of coordinate multiplication operators onH2
E(D∞

2 ), andR be the restriction

of Mζ on S. It follows from Theorem 5.1 and Corollary 1.4 that R is jointly unitarily equivalent to the

tuple Mξ of coordinate multiplication operators on a vector-valued Hardy space H2
F (D∞

2 ). This naturally

induces an isometry

V : H2
F (D∞

2 ) → H2
E(D∞

2 )

satisfying RanV = S and

VMξn = RnV = MζnV, n ∈ N.

Then by Proposition 2.4, V = MΨ for some operator-valued inner function Ψ ∈ H∞
B(F,E)(D

∞
2 ), where MΨ

is the multiplication operator induced by Ψ. This completes the proof.

In particular, we reprove the known result that every doubly commuting submodule of H2(D∞
2 ) is

generated by a single function (see [36]).

Corollary 5.3. Let S be a nonzero submodule of H2(D∞
2 ). Then the following are equivalent:

(1) S is doubly commuting;

(2) S is generated by a single inner function in H∞(D∞
2 );

(3) S as a P∞-module is unitarily equivalent to H2(D∞
2 ).

We say that two P∞-modules (H,T ) and (K,S) are unitarily equivalent if T and S are jointly unitarily

equivalent, and the unitary operator U : H → K intertwining T and S is called a unitary module map.

The classification of doubly commuting Hardy submodules up to unitary equivalence of P∞-

modules is trivial, since by Corollary 5.2, it is completely determined by the dimension of F in the

representation (5.1).

Now we turn to the situation of quotient modules. Recall that a quotient module Q of H2
E(D∞

2 ) is said

to be doubly commuting if the compression

(PQMζ1 |Q, PQMζ2 |Q, . . .)

of Mζ on Q is doubly commuting.

Theorem 5.4. Let Mζ be the tuple of coordinate multiplication operators on the vector-valued Hardy

module H2
E(D∞

2 ). Then the compression of Mζ on a doubly commuting quotient module of H2
E(D∞

2 ) is of

Beurling type.

Proof. Let Q be a doubly commuting quotient module of H2
E(D∞

2 ), and set C = PQMζ |Q, the

compression of Mζ on Q. Since both sequences Mζ and C are doubly commuting, for α, β ∈ Z(∞)
+

satisfying α ∧ β = (0, 0, . . .), we have

PQM
∗α
ζ Mβ

ζ |Q = PQM
β
ζ M

∗α
ζ |Q = PQM

β
ζ PQM

∗α
ζ |Q = CβC∗α = C∗αCβ ,

where α ∧ β = (min{α1, β1},min{α2, β2}, . . .). That is to say, Mζ is a regular isometric dilation of C.

So the minimal regular isometric dilation of C is the restriction of Mζ on the subspace [Q]Mζ
. It follows

from Lemma 2.2(1) that [Q]Mζ
is joint reducing for Mζ , and then by Lemma 2.11, one has

[Q]Mζ
= H2

E0
(D∞

2 )

for some closed subspace E0 of E . Therefore, Corollary 1.4 gives that C is of Beurling type.



Dan H et al. Sci China Math February 2023 Vol. 66 No. 2 337

Follow the notations in the proof of Theorem 5.4. Now we can use the characterization of the canonical

analytic model QC for C (see Theorem 4.5) to study the structure of the doubly commuting quotient

module Q since as P∞-modules, Q and QC are unitarily equivalent. The unitary module map is of the

form IH2(D∞
2 ) ⊗ U , where U : E0 → DC∗ is given as in (4.2). Then there exists a sequence of quotient

modules {Jn}n∈N of H2
E0
(D), such that

Q =

∞∩
n=1

H2(D)⊗ · · · ⊗H2(D)︸ ︷︷ ︸
n−1 times

⊗Jn ⊗H2(D)⊗H2(D)⊗ · · · . (5.2)

Note that the joint unitary equivalence is an equivalence relation on the class DC. We can establish a

one-to-one correspondence between the equivalence classes of doubly commuting quotient Hardy modules

and the equivalence classes of DC-sequences of Beurling type as illustrated below:

In another word, the classification of doubly commuting Hardy quotient modules is equivalent to the

classification of DC-sequences of Beurling type.

Finally, we consider the particular case E = C. By (5.2), we have

Q =
∞∩

n=1

J1 ⊗ · · · ⊗ Jn ⊗H2(D)⊗H2(D)⊗ · · · . (5.3)

It follows that Q = J1 ⊗Q′ for some closed subspace Q′ of

L = span{ζα : α = (α1, α2, . . .) ∈ Z(∞)
+ with α1 = 0},

and thus,

PQMζ1 |Q = PJ1Mz |J1 ⊗ IQ′ .

Similarly, PQMζn |Q is the tensor product of PJnMz |Jn and an identity operator for each n ∈ N. Recall
that a model space is a proper quotient module of H2(D), and the compression of the Hardy shift Mz

on a model space is called a Jordan block. Then for every n ∈ N so that Jn ̸= H2(D), the compression

PQMζn |Q is the tensor product of a Jordan block and an identity operator. So the compression of the

tuple Mζ on Q can be considered as a Jordan block in the infinite-variable setting.

Recall that C0 is the class of those completely nonunitary contractions T for which there exists a

nonzero function f ∈ H∞(D) such that f(T ) = 0 [50]. The following application to the operator theory

is motivated by [23, Proposition 4.1].

Corollary 5.5. Suppose T ∈ DC. If there exists a cyclic vector x for T such that T ∗
nx = λnx (n ∈ N)

for some λ ∈ D∞, then for each n ∈ N, Tn is either a C0-contraction or a pure isometry.

Proof. Assume T ∈ DC(H). Since for each n ∈ N, Tn is a C0-contraction (pure isometry) if and only

if φλn(Tn) is a C0-contraction (pure isometry), we may assume λ = 0 without loss of generality.

Put

H̃ =
∨

µ∈D∞
2

DΦµ(T )∗ .

Then by Corollary 3.1(3), H̃ is joint reducing for T . Therefore,

H̃ = [H̃]T ⊇ [DT ∗ ]T ⊇ [x]T = H,

forcing H̃ = H. This together with Corollary 1.4 implies that T is of Beurling type. Since dimDT ∗ = 1

(otherwise x is not cyclic for T ), the canonical analytic model QT for T can be viewed as a doubly



338 Dan H et al. Sci China Math February 2023 Vol. 66 No. 2

commuting quotient module Q of H2(D∞
2 ), and then T is jointly unitarily equivalent to the compression

PQMζ |Q of Mζ on Q, where Mζ is the tuple of coordinate multiplication operators on H2(D∞
2 ). This

completes the proof.

Also from (5.3), it seems plausible to view every doubly commuting quotient module of H2(D∞
2 ) as

the tensor product of infinitely many model spaces or H2(D)’s. This can be realized after giving an

appropriate definition for the infinite tensor product.

Let {Mn}n∈N be a sequence of closed subspaces of H2(D). The tensor product of {Mn}n∈N in H2(D∞
2 ),

denoted by
⊗∞

n=1 Mn, is defined to be the closed subspace ofH2(D∞
2 ) spanned by the functions inH2(D∞

2 )

of the form
∏∞

n=1 fn(ζn) (in pointwise convergence for ζ ∈ D∞
2 ) with fn ∈ Mn for each n ∈ N. Note that

for infinite tensor products of the form

M1 ⊗ · · · ⊗Mn ⊗H2(D)⊗H2(D)⊗ · · · ,

this new definition coincides with the original one (see Subsection 2.2).

Corollary 5.6. Every doubly commuting quotient module of H2(D∞
2 ) is the tensor product of some

sequence of quotient modules of H2(D).
Proof. Let Q be a doubly commuting quotient module of H2(D∞

2 ). Then there exists a sequence

{Jn}n∈N of quotient modules of H2(D), such that

Q =
∞∩

n=1

J1 ⊗ · · · ⊗ Jn ⊗H2(D)⊗H2(D)⊗ · · · .

Now we prove

Q =
∞⊗

n=1

Jn.

For simplicity, rewrite

Qn = J1 ⊗ · · · ⊗ Jn ⊗H2(D)⊗H2(D)⊗ · · · .

The inclusion
∞⊗

n=1

Jn ⊆
∞∩

n=1

Qn = Q

is trivial to see. For the reverse inclusion, note that the set {PQζ
α : α ∈ Z(∞)

+ } is complete in Q,

where PQ is the orthogonal projection from H2(D∞
2 ) onto Q. It suffices to show that for any fixed

α = (α1, α2, . . .) ∈ Z(∞)
+ , PQζ

α belongs to the infinite tensor product
⊗∞

n=1 Jn. Let PQn (n ∈ N) denote
the orthogonal projection from H2(D∞

2 ) onto Qn, and PJn denote the orthogonal projection from H2(D)
onto Jn. Then for each n ∈ N,

PQn = PJ1 ⊗ · · · ⊗ PJn ⊗ IH2(D) ⊗ IH2(D) ⊗ · · · .

Taking m ∈ N so that αm+1 = αm+2 = · · · = 0 and setting fn = PJn1 (n ∈ N), we further have

(PQnζ
α)(ζ) = (PJ1z

α1)(ζ1) · · · (PJmzαm)(ζm)fm+1(ζm+1) · · · fn(ζn)

for every n > m + 1. On the other hand, since {PQn}n∈N converges to PQ (n → ∞) in the strong

operator topology, PQnζ
α converges to PQζ

α (n → ∞) in the H2(D∞
2 )-norm. In particular, PQnζ

α

converges pointwisely to PQζ
α as n → ∞, and then PQζ

α is of form

(PJ1z
α1)(ζ1) · · · (PJmzαm)(ζm)

∞∏
n=m+1

fn(ζn), ζ ∈ D∞
2 .

This gives PQζ
α ∈

⊗∞
n=1 Jn, and the proof is completed.
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