DOI: 10.7524/j.issn.0254-6108.2017.04.2016072202

徐童, 陈景文, 李超,等.气相有机化学品与羟基自由基反应速率常数的 QSAR 模型[J].环境化学,2017,36(4):703-709.

XU Tong, CHEN Jingwen, LI Chao, et al. QSAR models for predicting hydroxyl radical reaction rate constants with organic chemicals in the atmosphere [J]. Environmental Chemistry, 2017, 36(4):703-709.

气相有机化学品与羟基自由基反应速率 常数的 **QSAR** 模型 *

徐 童 陈景文 李 超 李雪花 1***

(1. 工业生态与环境工程教育部重点实验室,大连理工大学环境学院,大连,116024; 2. 国家环境保护湿地生态与植被恢复重点实验室,东北师范大学环境学院,长春,130024)

摘 要 气相中有机化学品与羟基自由基(·OH)反应速率常数(k_{OH})是评价化学品大气持久性的重要参数. 而化学品种类繁多,现有的 k_{OH} 实验数据不能满足其生态风险评估的需求.因此,需要建立一种能够快速预测有机化学品 k_{OH} 的方法,填补现有数据的缺失.本研究搜集整理了 917 种有机化合物的 k_{OH} 实验值,采用逐步多元线性回归法(MLR)和支持向量机法(SVM)分别构建了用于预测多种类化合物 $\mathrm{lg}k_{\mathrm{OH}}$ 的线性和非线性定量结构-活性关系(QSAR)模型.基于 MLR 的预测模型具有良好的拟合度(经校正的相关系数的平方 $R_{\mathrm{adj,tr}}^2=0.862$ 、均方根误差 RMSE $_{\mathrm{tr}}=0.455$)、稳健性(交叉验证系数 $Q_{\mathrm{LOO}}^2=0.856$)和预测能力(外部验证系数 $Q_{\mathrm{ext}}^2=0.850$).基于 SVM 的预测模型也具有良好的拟合度($R_{\mathrm{adj,tr}}^2=0.915$, RMSE $_{\mathrm{tr}}=0.358$)和预测能力($Q_{\mathrm{ext}}^2=0.860$). 机理分析表明,最高占据分子轨道能(E_{HOMO})、卤素原子在分子中所占的百分比(X%)和分子中具有一CH—结构的数目(NdsCH)是最重要的 3 个描述符,解释了数据集 78.3%的方差.采用 Williams 法表征模型的应用域.所建立的模型可用于预测烷烃、烯烃、炔烃、芳香族化合物、醇类、酮类、醚类、醛类、酸类、酯类、卤代化合物、含氮化合物、含硫化合物等室温下的 k_{OH} .

关键词 有机化学品, 羟基自由基反应速率常数, 定量结构-活性关系(QSAR).

QSAR models for predicting hydroxyl radical reaction rate constants with organic chemicals in the atmosphere

XU Tong¹ CHEN Jingwen¹ LI Chao² LI Xuehua^{1**}

(1. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; 2. Key Laboratory for Wetland Ecology and Vegetation Restoration of National Environmental Protection, School of Environment, Northeast Normal University, Changchun, 130024, China)

Abstract: Reaction rate constant of hydroxyl radical with organic chemicals ($k_{\rm OH}$) is an important parameter for assessing the atmospheric persistence. However, for the large number of chemicals, it is difficult to meet the demand of ecological risk assessment with existing experimental $k_{\rm OH}$ values. Thus, it is significant to develop an effective prediction method for $k_{\rm OH}$. In this study, we collected $k_{\rm OH}$ values of 917 chemicals, and used Multiple Linear Regression (MLR) and Support Vector

²⁰¹⁶年7月22日收稿 (Received: July 22,2016).

^{*}国家自然科学基金(21477016)和中央高校基本科研业务费专项资金(DUT16LK13)资助.

Supported by the National Natural Science Foundation (21477016) of China and the Fundamental Research Funds for the Central Universities (DUT15TD09).

^{* *} 通讯联系人,Tel: 0411-84707844,E-mail: lixuehua@dlut.edu.cn

Machine (SVM) to develop linear and non-linear QSAR model for $\lg k_{\rm OH}$ prediction. Results of linear QSAR model show that it has satisfactory goodness-of-fit ($R_{\rm adj,tr}^2=0.862$, RMSE $_{\rm tr}=0.455$), robustness ($Q_{\rm L00}^2=0.856$) and good predictability ($Q_{\rm ext}^2=0.850$). Results of non-linear QSAR model show that it also has good fitness ($R_{\rm adj,tr}^2=0.915$, RMSE $_{\rm tr}=0.358$) and predictability ($Q_{\rm ext}^2=0.860$). Mechanistic analysis reveals that the energy of the highest occupied molecular orbital ($E_{\rm HOMO}$), the percentage of halogen atoms in a molecule (X%), and the number of =CH— structure in a molecule (NdsCH) are the most important descriptors in the model, which explain the 78.3% variance of data set. The applicability domain of the models was characterized by the Williams plot. The developed models can be used to predict $k_{\rm OH}$ values (298 K) of alkanes, alkenes, alkynes, ketones, ethers, aromatic compounds, alcohols, acids, esters, halogenated compounds, nitrogen compounds, sulfur compounds.

Keywords: organic chemicals, hydroxyl radical reaction rate constants, quantitative structure-activity relationship.

据美国化学文摘社统计,全世界注册的化学品已达 1.11 亿多种,每天新增约 15000 种[1].化学品种类繁多,有机化学品的污染已成为重要的环境问题之一^[2].污染物进入大气环境后,会发生一系列的迁移转化过程^[3].因此,有必要评价这些化学品在大气中的持久性,为预防和控制其污染提供依据.

羟基自由基(•OH)是大气中最重要的氧化剂,与•OH反应是多种有机化学品在大气环境中的主要去除途径.有机污染物与•OH反应的速率常数($k_{\rm OH}$)可用于评价其大气持久性,也是对其进行生态风险评价的重要参数.然而,在种类繁多的化学品中仅有少部分(约 1000 种)具有 $k_{\rm OH}$ 数据.近年来,氟代烯烃^[4-5]和不饱和醇^[6-9]在大气中被检出,且浓度呈升高趋势^[10-13],但这两类化合物中仅有少数通过实验和计算方法得到了 $k_{\rm OH}$ ^[14-22].通过实验方法测定化学品 $k_{\rm OH}$ 数据耗时且成本高,为了弥补大量数据的缺失,克服实验测定的瓶颈,有必要发展预测 $k_{\rm OH}$ 的模型.

定量结构-活性关系(QSAR)可以有效地预测化合物的 $k_{OH}^{[23-24]}$.多元线性回归(MLR)是简洁并最具透明度的一种建模方法^[25],支持向量机(SVM)方法有较高的泛化能力^[26-27],可有效避免过拟合^[28].目前,已经报道了用于预测室温下多种类有机化合物 k_{OH} 的模型^[29-31],但是,现有模型很少覆盖氟代烯烃和不饱和醇这两类化合物,用现有模型对这两类化合物的 k_{OH} 进行预测,结果与实验值相差较大.

本研究搜集了包含氟代烯烃和不饱和醇这两类化合物在内的 917 个化合物室温下的 k_{OH} 实验值,采用 $MLR^{[32-33]}$ 和 $SVM^{[28,32]}$ 方法,根据经济合作与发展组织(OECD)有关 QSAR 的构建和验证导则^[25],构建了用于预测多种类化合物的线性和非线性 QSAR 模型,采用 Williams 法表征了模型的应用域.

1 材料与方法 (Materials and methods)

1.1 数据收集

基于 Li 等^[29]的数据,补充搜集了氟代烯烃和不饱和醇的 45 个 lg k_{OH} 实验值,数据集中共包含917 个化合物的 lg k_{OH} (298 K),图 1 为数据分布图.涵盖了烷烃、烯烃、炔烃、芳香族化合物、醇类、酮类、醚类、醛类、酸类、酯类、卤代化合物、含氮化合物、含硫化合物等多种类化合物.按 4:1 的比例随机划分数据集,734 个化合物用于模型的建立,183 个化合物用于模型的外部验证.

1.2 结构优化及分子描述符计算

模型建立所用的分子结构描述符包括量子化学描述符和 DRAGON 描述符.对分子结构进行优化和 频率分析,含有 H、C、N、O、F、P、S、Cl、Se、Br 原子的分子在 B3LYP-6-311+G(d,p)水平下进行优化,含有 I、Si、Hg、Pb 原子的分子在 B3LYP-LANL2DZ 水平下进行优化.计算量子化学描述符:最高占据分子轨道能(E_{HOMO})、最低未占据分子轨道能(E_{LUMO})、分子的极化率(α)、偶极矩(μ)、氢键酸度(Q_{HMAX}).基于优化好的分子结构使用 DRAGON 软件(6.0)计算描述符,去掉常数项和近常数项,共得到 3138 个描述符.

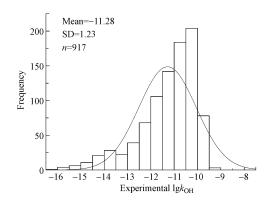


图 1 lgk_{OH} 实验值数据分布图

Fig.1 Distribution of experimental $\lg k_{OH}$ in the data set

1.3 模型建立和评价

使用 SPSS 19.0 软件中的逐步 MLR 方法,对变量进行筛选,构建预测模型.SVM 模型的建立使用 MATLAB 2014 软件,由 http://www.ilovematlab.cn 获得 SVM 开源程序.将由 MLR 模型筛选出来的描述符引入 SVM 模型,基于遗传算法优化模型参数,设置种群个数为 20(每次优化生成 20 个模型),终止代数为 100(截止条件),最终选取均方差最小的模型.SVM 模型由容量参数(C)、可影响模型预测能力的参数(γ)、不敏感损失函数(ε)等 3 个参数确定 $^{[26-27]}$.C 是控制最大化边界和最小化误差平衡的规则化参数,C 太小将对训练集产生欠拟合,C 太大则会出现过拟合. ε 选小,回归估计精度要求高,但支持向量机数量增多; ε 选大,回归估计精度降低,支持向量机数量少,支持向量机的稀疏性大.核函数影响 SVM的泛化能力, γ 为核函数中的参数,通过优化 γ 并找到最优解 $^{[34-35]}$.SVM 模型构建中采用的核函数为径向基函数;K (u,v) = exp ($-\gamma | u-v |^2$),其中 u 和 v 是自变量.

模型的建立遵循以下原则:模型自变量即描述符的数量少;模型的统计学参数中,校正的相关系数的平方($R_{\rm adj}^2$)、内部验证的交叉验证系数($Q_{\rm Loo}^2$)和 bootstrapping 计算的 $Q_{\rm Boot}^2$ 高,均方根误差(RMSE)较低;模型中各描述符的方差膨胀因子(VIF)小于 10;自变量矩阵 $M_{\rm X}$ 的 K 相关系数($K_{\rm XX}$)小于自变量与因变量矩阵 $M_{\rm XY}$ 的 K 相关系数($K_{\rm XY}$).模型建立后用去一法和 bootstrapping 法进行内部验证,未参与建模的 183 个化合物用于外部验证.模型评价的统计学参数包括:校正的相关系数的平方($R_{\rm adj}^2$)、均方根误差(RMSE)、内部验证的交叉验证系数($Q_{\rm Loo}^2$)、bootstrapping 计算的 $Q_{\rm Boot}^2$.

模型应用域的表征采用 Williams 法,计算训练集和验证集中每个化合物的杠杆值(h)和标准残差(δ)作图.标准残差(δ)的绝对值大于 3 认为是离群点.杠杆值(h)和其警戒值(h^*)计算如下:

$$h^{i} = x_{i}^{T} (X^{T} X)^{-1} x_{i} \tag{1}$$

$$h^* = 3(k+1)/n (2)$$

其中 $,x_i$ 是第i个化合物的分子结构描述符的变量;X是分子结构描述符所构成的矩阵;k是模型中包含的描述符的个数.

训练集中化合物的 h 值大于 h^* 时,说明在数据集中该分子的子结构出现较少,对模型有影响;验证集中化合物的 h 值大于 h^* 但在标准残差范围内时,说明其预测结果是该模型的外推结果,模型也适用于该化合物,但不确定性较大;化合物 h 值大于 h^* 同时又在标准残差范围外时,该化合物为离群点.

2 结果与讨论 (Results and discussion)

2.1 lgk_{OH}预测模型

基于 MLR 的 OSAR 模型为:

$$\begin{split} \lg k_{\rm OH} &= -8.934 \, + \, 13.15 \, E_{\rm HOMO} - \, 0.02400 \, \, X\% \, + \, 0.2430 \, \, {\rm NdsCH} \, + \, 0.3310 \, \, nR = Cp \, + \, 0.3960 \, \, {\rm CICO} \, + \\ & 0.9330 \, \, nP \, - \, 0.004000 \, \, \alpha \, + \, 2.918 \, \, Q_{\rm HMAX} + \, 0.7250 \, \left(\, C\text{-}020 \right) \, + \, 0.1040 \, \, Mor14i \, - \, 0.03900 \, \, \mu \\ n_{\rm tr} &= 734 \, , \, \, R_{\rm adi}^2 = 0.862 \, , \, \, {\rm RMSE} = 0.455 \, , \, \, K_{\rm XX} = 0.323 \, , \, \, K_{\rm XX} = 0.372 \, , \, \, Q_{\rm LOO}^2 = 0.856 \, , \, \, Q_{\rm BOOT}^2 = 0.797 \, , \, \, n_{\rm ext} = 183 \, , \end{split}$$

$R_{\text{adj,ext}}^2 = 0.840$, RMSE_{ext} = 0.468, $Q_{\text{ext}}^2 = 0.850$

MLR 模型具有良好的拟合度和稳健性.模型进行外部验证,有良好的外部预测能力. K_{XX} 小于 K_{XY} ,各变量之间相关系数均小于 0.8,11 个描述符的 VIF 值均小于 10,说明了模型并不存在多重共线性. Y-scrambling检验得出的 R_{YS}^2 (0.0143)和 Q_{YS}^2 (-0.0190)说明模型没有偶然相关性.描述符的含义和 VIF值、t检验值见表 1.

最终选取的 SVM 模型中 C=50.09、 $\gamma=0.2318$ 、 $\varepsilon=0.03106$. 统计学参数分别为 $n_{\rm tr}=734$, $R_{\rm adj.tr}^2=0.915$, RMSE_{tr}=0.358; $n_{\rm ext}=183$, $R_{\rm adj.ext}^2=0.860$, RMSE_{ext}=0.454, $Q_{\rm ext}^2=0.860$.SVM 模型同样具有良好的拟合能力和预测能力.图 2 为 MLR 模型和 SVM 模型对化合物的 $\log k_{\rm OH}$ 的预测值和实验值的拟合图.

表 1	QSAR 柞	莫型中	描述	符含义	. VIF	值、	t 值	

Table 1	Meanings,	VIF,	and t	values	of	descriptors	in	the	QSAR	model
---------	-----------	------	---------	--------	----	-------------	----	-----	-------------	-------

描述符 Descriptor	含义 Meaning	VIF	t(p)
$E_{ m HOMO}$	最高占据分子轨道能量	2.165	21.24 (<0.001)
X%	卤素原子在分子中所占的百分比	2.876	-14.96 (<0.001)
NdsCH	分子中具有==CH-结构的数目	1.154	12.52 (<0.001)
nR = Cp	末端 sp ² 杂化 C(sp ²) 主碳的个数	1.298	8.185 (<0.001)
CIC0	补偿信息论指数	4.662	9.364 (<0.001)
nP	分子中磷原子的个数	1.063	7.796 (<0.001)
α	分子的极化率	2.822	-5.623 (<0.001)
$Q_{ m HMAX}$	氢原子作为氢键给体的能力(氢键酸度)	1.198	7.484 (<0.001)
C-020	分子中==CX2 结构信息	1.400	6.362 (<0.001)
Mor14i	离子化势加权的 3D 分子结构描述符	2.168	3.250 (<0.001)
μ	分子偶极矩	1.275	-2.771 (<0.001)

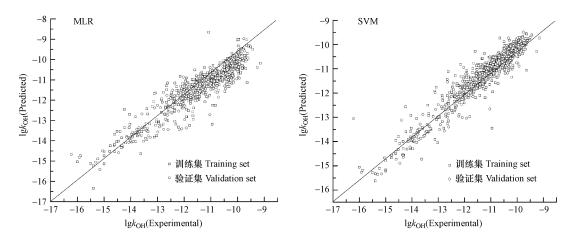


图 2 基于 MLR 和 SVM 的 QSAR 模型的 $\lg k_{\mathrm{OH}}$ 实验值与预测值的拟合图

 $\textbf{Fig.2} \quad \text{Plots of the predicted versus experimental } \lg k_{\text{OH}} \text{ values for the QSAR models based on MLR and SVM}$

2.2 应用域表征

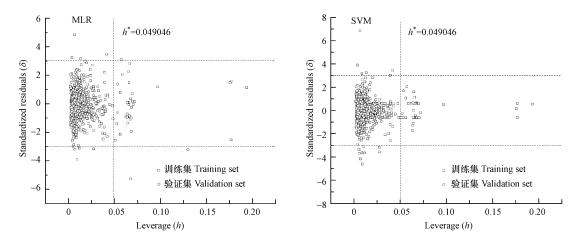


图 3 基于 MLR 和 SVM 的 QSAR 模型的 Williams 图

Fig.3 Williams plots of the QSAR models based on MLR and SVM

剔除离群点后基于 MLR 的 QSAR 模型为:

$$\begin{split} \lg k_{\text{OH}} = -8.632 \ + \ 14.18 \ E_{\text{HOMO}} - \ 0.02300 \ X\% \ + \ 0.2320 \ \text{NdsCH} \ + \ 0.3250 \ nR = C_p \ + \ 0.4110 \ CIC0 \ + \ 0.9220 \ nP \\ -0.005000 \ \alpha \ + \ 2.932 \ Q_{HMAX} + \ 0.7180 \ (C-020) \ + \ 0.1220 \ Mor 14i \ - \ 0.02800 \ \mu \end{split}$$

 $n_{\rm tr} = 725 \;,\; R_{\rm adj}^2 = 0.885 \;,\; {\rm RMSE} = 0.415 \;,\; K_{\rm XX} = 0.327 \;,\; K_{\rm XY} = 0.377 \;,\; Q_{\rm LOO}^2 = 0.881 \;,\; Q_{\rm BOOT}^2 = 0.795 \;,\; n_{\rm ext} = 181 \;,\; R_{\rm adj,ext}^2 = 0.851 \;,\; {\rm RMSE}_{\rm ext} = 0.434 \;,\; Q_{\rm ext}^2 = 0.860 \;,\; R_{\rm Adj,ext} = 0.86$

2.3 模型机理分析

由表 1 可得 E_{HOMO} 、X%、NdsCH 等 3 个描述符的 t 值明显高于其它描述符,可以解释数据集 78.3% 的方差.因此, E_{HOMO} 、X% NdsCH 是模型中最重要的 3 个描述符. E_{HOMO} 是指最高占据分子轨道,是与能量相关的量子化学描述符,可以表示分子的亲核性. ·OH是亲电试剂,高 E_{HOMO} 值的化合物更容易与·OH发生反应.X%代表卤素原子在分子中所占的百分比,模型表示化合物中含有越多的卤素原子则与·OH的反应活性越低.NdsCH 表示分子中具有—CH—结构的数目,化合物中含—CH—结构越多,越容易与·OH反应.模型中描述符 nR = Cp、CICO、nP、 Q_{HMAX} 、C-O2O分别表示末端 sp^2 杂化 $C(sp^2)$ 主碳的个数、补偿信息论指数、分子中磷原子的个数、氢原子作为氢键给体的能力(氢键酸度)、分子中—CX2 结构信息.这些描述符的值与 lgk_{OH} 呈正相关.描述符 Mor14i 是 3D-Morse 描述符,是基于电子衍射建立的表征分子结构特征的描述符,与 lgk_{OH} 呈正相关.描述符 α 和 μ 分别为分子的极化率和偶极矩,为量子化学描述符,分子的极化率和偶极矩越大,其 lgk_{OH} 越小. α 主要表示分子的体积性质和分子电荷变形性,其数值越大,分子的电荷变形性就大,不利于与·OH发生反应. μ 与 α 呈正比,分子的极性越大,偶极矩也越大.

2.4 模型比较

表 2 列出了前人模型^[29-31]和本研究模型的评价参数.与 Li 等^[29]的模型相比,对氟代烯烃和不饱和醇两类化合物预测效果更好(Li 等^[29]所建模型的 RMSE=0.419.本研究建立的基于 MLR 模型的RMSE=0.455,基于 SVM 模型的 RMSE=0.358),其中,非线性模型比线性模型预测效果更好.本研究建立的模型包含的描述符中量子化学描述符物理意义明确,易于机理分析.

表 2 模型的统计学参数比对

Table 2	Comparison	of statistical	parameters fo	r different	k_{OH} prediction models
---------	------------	----------------	---------------	-------------	-------------------------------------

模型	算法	4	训练集 Training set			验证集 Validation set			
Models	Methods	А	$n_{ m tr}$	R^2	RMSE	$n_{ m ext}$	$R_{ m ext}^2$	$\mathrm{RMSE}_{\mathrm{ext}}$	$Q_{\rm ext}^2$
Li 等 ^[29]	MLR	12	696	0.883	0.419	176	0.858	0.489	0.851
Roy 等 ^[30]	MLR	4	460	0.824	0.430	_	_	_	_
Roy 等 ^[30]	MLR	4	460	0.806	0.450	_	_	_	_
Wang 等 ^[31]	PLS	22	576	0.878	0.391	146	_	0.430	0.872
本研究	MLR	11	734	0.862	0.455	183	0.852	0.468	0.850
本研究	SVM	11	734	0.915	0.358	183	0.860	0.454	0.860

注: A 表示模型中描述符的个数.The number of descriptors in the model.

3 结论 (Conclusion)

本研究采用 MLR 和 SVM 两种方法,分别建立了用于预测气相中有机化学品的 lgk_{oH} 的线性和非线性 QSAR 模型,所构建模型均具有良好的预测能力和稳健性,对评价有机化学品的大气持久性和生态风险评价有重要意义.机理分析表明,最高占据分子轨道能(E_{HOMO})、卤素原子在分子中所占的百分比(X%)和分子中具有—CH—结构的数目(NdsCH)等3个描述符对化合物的 lgk_{oH} 影响较大.所建立的模型可用于预测烷烃、烯烃、炔烃、芳香族化合物、醇类、酮类、醚类、醛类、酸类、酯类、卤代化合物、含氮化合物、含硫化合物等室温下的 k_{OH} 值.

参考文献(References)

- [1] Chemical Abstracts Service [EB/OL]. [2016-5-10]. https://www.cas.org/content/chemical-substances.
- [2] 秦红. 有机污染物生物富集因子定量结构-活性关系的研究[D]. 大连:大连理工大学学位论文,2008.

 QIN H. Study of quantitative structure-activity relationship models for bioconcentration factors of organic pollutants[D]. Dalian: Dalian University of Technology, 2008(in Chinese).
- [3] MACLEOD M, MCKONE T E, FOSTER K L, et al. Applications of contaminant fate and bioaccumulation models in assessing ecological risks of chemicals: A case study for gasoline hydrocarbons [J]. Environmental Science & Technology, 2004, 38(23):6225-6233.
- [4] BROWN J S. Introduction to hydrofluoro-olefin alternatives for high global warming potential hydrofluorocarbon refrigerants [J]. Hvac & Research, 2013, 19(6):693-704.
- [5] WUEBBLES D J, WANG D, PATTEN K O, et al. Analyses of new short-lived replacements for HFCs with large GWPs [J]. Geophysical Research Letters, 2013, 40(17):4767-4771.
- [6] WILDT J, KOBEL K, SCHUH-THOMAS G, et al. Emissions of oxygenated volatile organic compounds from plants part I: Emissions from lipoxygenase activity [J]. Journal of Atmospheric Chemistry, 2003, 45(2):143-172.
- [7] FALL R, KARL T, HANSEL A, et al. Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectrometry [J]. Journal of Geophysical Research Atmoshperes, 1999, 104(D13):15963-15974.
- [8] ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds [J]. Cheminform, 2003, 35(103):4605-4638.
- [9] DALAI A, SCHOENAU G, DAS D, et al. Volatile organic compounds emitted during high-temperature alfalfa drying [J]. Biosystems Engineering, 2006, 94(1):57-66.
- [10] BAASANDORJ M, RAVISHANKARA A R, BURKHOLDER J B, Atmospheric chemistry of (Z)-CF₃CH=CHCF₃: OH radical reaction rate coefficient and global warming potential [J]. The Journal of Physical Chemistry A, 2011, 115(38):10539-10549.
- [11] GIERCZAK T, BAASANDORJ M, BURKHOLDER J B, OH + (E)- and (Z)-1-chloro-3, 3, 3-trifluoropropene-1 $(CF_3CH = CHCI)$ reaction rate coefficients: Stereoisomer-dependent reactivity [J]. The Journal of Physical Chemistry A, 2014, 118(46):11015-11025.
- [12] VOLLMER M K, REIMANN S, HILL M, et al. First observations of the fourth generation synthetic halocarbons HFC-1234yf, HFC-1234ze (E), and HCFC-1233zd(E) in the tmosphere [J]. Environmental Science & Technology, 2015, 49(5):2703-2708.
- [13] PAPASAVVA S, LUECKEN D J, WATERLAND R L, et al. Estimated 2017 refrigerant emissions of 2,3,3,3-tetrafluoropropene (HFC-1234yf) in the United States resulting from automobile air conditioning [J]. Environmental Science & Technology, 2009, 43 (24): 9252-9259.
- [14] HENNE S, SHALLCROSS D E, REIMANN S, et al. Future emissions and atmospheric fate of HFC-1234yf from mobile air conditioners in Europe [J]. Environmental Science & Technology, 2012, 46(3):1650-1658.
- [15] RUSSELL M H, HOOGEWEG G, WEBSTER E M, et al. TFA from HFO-1234yf: Accumulation and aquatic risk in terminal water bodies [J]. Environmental Toxicology and Chemistry, 2012, 31(9):1957-1965.
- [16] TOVAR C M, BLANCO M B, BARNES I, Gas-phase reactivity study of a series of hydrofluoroolefins (HFOs) toward OH radicals and Cl atoms at atmospheric pressure and 298 K [J]. Atmospheric Environment, 2014, 88:107-114.
- [17] PERKINS R A, HUBER M L, Measurement and correlation of the thermal conductivity of 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) [J]. Journal of Chemical & Engineering Data, 2011, 56(12):4868-4874.
- [18] ORKIN V L, MARTYNOVA L E, ILICHEV A N, High-accuracy measurements of OH reaction rate constants and IR absorption spectra: CH₂ = CFCF₃ and trans-CHF = CHCF₃[J]. The Journal of Physical Chemistry A, 2010, 114(19):5967-5979.
- [19] RAMANJANEYULU C, RAJAKUMAR B, Kinetic parameters for the reaction of OH radical with cis-CHF = CHCHF₂, trans-CHF = CHCHF₂, CF₂ = CHCHF₂ and CF₂ = C = CHF: Hybrid meta DFT and CVT/SCT/ISPE calculations [J]. Journal of Fluorine Chemistry, 2015, 178;266-278.
- [20] HURLEY M D, BALL J C, WALLINGTON T J, et al. Atmospheric chemistry of the Z and E isomers of CF₃ CF = CHF: Kinetics, mechanisms, and products of gas-phase reactions with Cl atmos, OH radicals, and O₃[J]. Journal of Physical Chemistry A, 2007, 111

- (39):9789-9795.
- [21] GONZALEZ S, JIMENEZ E, BALLESTEROS B, et al. Hydroxyl radical reaction rate coefficients as a function of temperature and IR absorption cross sections for CF₃CH=CH₂(HFO-1243zf), potential replacement of CF₃CH₂F (HFC-134a) [J]. Environmental Science and Pollution Research, 2015, 22(7);4793-4805.
- [22] BALAGANESH M, RAJAKUMAR B. Rate coefficients and reaction mechanism for the reaction of OH radicals with (E)-CF₃CH=CHF, (Z)-CF₃CH=CHF, (E)-CF₃CF=CHF, and (Z)-CF₃CF=CHF between 200 and 400 K; Hybrid density functional theory and canonical variational transition state theory calculations [J]. Journal of Physical Chemistry A, 2012, 116(40):9832-9842.
- [23] OBERG T. A QSAR for the hydroxyl radical reaction rate constant; validation, domain of application, and prediction [J]. Atmospheric Environment, 2005, 39(12):2189-2200.
- [24] KWOK E S C, ATKINSON R. Estimation of hydroxyl radical reaction rate constants for gas-phase organic compunds using a structure-reactivity relationship; An update [J]. Atmospheric Environment, 1995, 29(14);1685-1695.
- [25] OECD. Guidance document on the validation of (Quantitative) structure-activity relationship [(Q)SAR] models[M]. 2007. Available: http://www.oecd-ilibrary.org.
- [26] LIU H X, XUE C X, ZHANG R S, et al. Quantitative prediction of logk of peptides in high-performance liquid chromatography based on molecular descriptors by using the heuristic method and support vector machine [J]. Journal of Chemical Information and Computer Science, 2004, 44(6):1979-1986.
- [27] LIU H X, YAO X J, ZHANG R S, et al. Accurate quantitative structure-property relationship model to predict the solubility of C₆₀ in various solvents based on a novel approach using a least-squares support vector machine [J]. The Journal of Physical Chemistry B, 2005, 109(43):20565-20571.
- [28] LI F, LIU J L, CAO L L. A comparative QSAR study on the estrogenic activities of persistent organic pollutants by PLS and SVM [J]. Emerging Contaminants, 2015, 1;8-13.
- [29] LIC, YANG XH, LIXH, et al. Development of a model for predicting hydroxyl radical reactor rate constants of organic chemicals at different temperatures [J]. Chemosphere, 2014, 95:613-618.
- [30] ROY P P, KOVARICH S, GRAMATICA P. QSAR model reproducibility and applicability: A case study of rate constnats of hydroxyl radical reaction models applied to polybrominated diphenyl ethers and (benzo-) triazoles [J]. Journal of Computational Chemistry, 2011, 32(11):2386-2396.
- [31] WANG Y N, CHEN J W, LI X H, et al. Predicting rate constants of hydroxyl radical reactions with organic pollutants: Algorithm, validation, applicability domain, and mechanistic interpretation [J]. Atmospheric Environment, 2009, 43;1131-1135.
- [32] VAPNIK V N. Statistical Learning Theory[M]. New York: John Wiley & Sons, 1998.
- [33] LI X H, ZHAO W, LI J, et al. Development of a model for predicting reaction rate constants of organic chemicals with ozone at different temperatures [J]. Chemosphere, 2013, 92:1029-1034.
- [34] REN Y R, LIU H X, YAO X J, et al. Prediction of ozone tropospheric degradation rate constants by projection pursuit regression [J]. Analytica Chimica Acta, 2007, 589:150-158.
- [35] YAO X J, PANAYE A, DOUCET J P, et al. Comparative study of QSAR/QSPR correlations using support vector machines, radical basis function neural networks, and multiple linear regression [J]. Journal of Chemical Information and Computer Sciences, 2004, 44(4): 1257-1266.