花岗岩类中黑云母化—黑云母 重结晶作用的报导

刘立均 王均灿

(中南地勘局二三〇研究所)

花岗岩类中的黑云母多认为是原生成因,形成于岩石结晶的早期阶段。随着研究的深入,发现一些花岗岩类中的 某 些 黑 云 母,是 由 于 自 变 质、蚀 变 等 产 生 的。 S. S. Auqustithis (1973) 认为是形成黑云母溶液沿裂隙渗透而 产 生,张 玉 泉 等 (1982) 认为是重结晶作用的结果,与板块碰撞有关,并测定了重结晶的黑云母年龄,其值与岩体形成年龄差别很大。

笔者通过对华南一些岩体,如湘粤赣边境的诸广岩体、湘东的锡田和邓阜仙岩体, **鄂赣边**境的太阳山岩体等研究,发现次生成因的黑云母,在燕山期以前的花岗岩类中甚 **为普遍**(表 1)。而且黑云母化与黑云母重结晶作用是相互联系的,与原花岗岩类受到 **后期的变**质——再生程度有关,故称黑云母化——黑云母重结晶的作用。

表 1 一些岩体各期次的次生黑云母发育情况

岩体各称	期次	岩 性	年 龄 值	(MY)	次生黑云母	
有件任务	州公	石 性	K A r	U-Pb	发育程度	
	γ ₅ ²⁻⁴	细粒二云母花岗岩	生 K—A: U 116.5 (105~128) 単花岗岩 (144.3 (135~161) 141.2 (122~158) 171.4 (155~188) 163.5 (132~223) (202 173.4 (142~214) (204	-	无	
`	γ ₅ ²⁻³	细粒不等粒、细粒斑状黑云母花岗岩			无	
	γ ₅ ^{2→2}	中细粒、中粒二云母花岗岩		143	无	
诸广	γ ₅ ²⁻¹	中粒斑状角闪黑云二长花岗岩		161	无	
<i>f</i> = ,	γ ₅ ¹⁻²	中粒斑状二云母花岗岩		223 (202~244)	常见	
	γ ₅ ¹⁻¹	中粗粒、粗粒斑状黑云母二长花岗岩		214 (204~228)	发 育	
	Υ ₃	中粒斑状花岗闪长岩		388	发 育	
	γ_3^1	中粒斑状角闪黑云二长花岗岩	223.9 (170~288)	438 (314~501)	发育	

锡田	γ ₅ ²⁻³	细粒不等粒、细粒斑状黑云母花岗岩	128	无
99 IA	γ ₅ ¹⁻¹	中粒、中粗粒斑状黑云母花岗岩	177	常见
	γ ₅ ²⁻⁴	细粒钠长花岗岩		无
邓阜仙	γ_5^{2-3}	细粒不等粒黑云母花岗岩		无
77-1-1	γ ₅ ¹⁻²	中粒二云母花岗岩		常见
	Y ₅ ¹⁻¹	中粗粒斑状黑云母二长花岗岩	231 (230~232)	发 育
太阳山	γ ₅ ¹⁻¹	中粒粒斑状黑云母二长花岗岩		发 育

由黑云母化一黑云母重结晶作用形成的次生黑云母,呈0.0n—0.nmm 鳞片状或呈晶簇状沿裂隙分布;一般均甚新鲜,很少有后期蚀变现象;颜色为黄绿至暗红褐色,多色性强,干涉色由二级顶部至三级,折光率: Ng=1.6141—1.6240, Nm=1.6140—1.6228。经 X射线粉晶分析,确定仍为黑云母(表2)。

表 2 次生黑云母 X 射线粉 显衍射数据

I	d(kx)	hkl	I	d(kx)	hkl	I	d(kx)	hkl	1	d(kx)	hkl
10	10.00	001	3	2,28	040,132	8	1.545	060	4	1.13	
3	4.60	020	7	2,19		2	1.50		2	1.09	
5	(3.70)	003 B	2	2.11		2	1.47		4	1.065	
10	3.37	003	7	2.01	<u>-</u> [2	1,41		3	1.052 .	
5	3.18	112	2	1.915		6	1 36		4	1.008	
6	3.94	113	1	1.74		3	1,31		4	0.998	
8	2.63	130,201	7	1.675		3	1.25				
7	2.45	201	1	1.60		1	1.20				

实验条件。Fe靶, 35千伏, 12毫安, 57 3毫米相机, 未滤光。

次生黑云母的发育程度、特征、共生矿物等,随花岗岩类遭受后期变质一再生程度递增,呈规律变化(图1,表3)。在地洼物陷带中,花岗岩类基本未受变质作用影响,次生黑云母不发育,仅产于一些构造破碎带中或附近,以交代其它矿物方式形成,在地洼物陷带边缘,花岗岩类受动力变质影响较明显。次生黑云母除以交代其它矿物方式形成外,还常沿原生黑云母解理或边缘以重结晶方式产生,与磁铁矿、帘石等共生,地穹隆起带中,花岗岩类受变质作用影响变为似片麻状花岗岩类,次生黑云母十分发

育,除呈集合体沿裂隙生长外,原生黑云母均发生了不同程度的重结晶作用,个别完全 为次生黑云母所取代,共生矿物除磁铁矿外,并有褐帘石、榍石、磷灰石等,地穹隆起

花均	岩 类 变 质一再	生程度		次	生 黑	둪	母	特	征
类 型	主要特征	新生矿物含量 (体积%)	型 大小 (mm)	, 颜色 -	共生矿物	包体矿物	多色量	其	它
基本未变质	叶绿泥石、绢云母、		0.01~	黄绿				细脉状,	产于构造
花岗岩类	水云母化发育		0.05	红棕					付近,交代约 K云母等。
弱动力变质	动力影响明显, 石英	石英: 5~10	0.02~	红棕至	帘石、磁			主要沿著	以隙生长,为
花岗岩类	强烈波状消光,常活 化重结晶,但原岩结 构未受破坏,叶绿石、 绢云母化减弱。	黑元母: 1~1	.5 0.15	红褐	铁矿			母、水豆	泥 石、绢 元 云母、蠕绿》 成沿原生黑元 E长。
似片麻状花 岗岩类	变余花岗结构, 片麻 一眼球状构造。石英 活化重结晶。叶绿泥 石、绢玉母化等进一 步减弱。	石英. 10~3; 钾长石, 2~; 斜长石, 3~; 黑云母, 2~;	5 7	红褐	磁铁矿、 褐帘石、 磷灰石、 欄石。	独居石	偶见	重结晶,	好大部分发生 部分次生品 以除生长,多
原地型再生 花岗岩类	岩石结构趋向细粒等粒结构,仅留少量残死,残死常次生加大,形成珠边结构。	钾长石。 5~ 斜长石。10~	0.5 20	暗红褐	磁铁矿、褐帘石、棉石、棉石、棉石、棉石、棉石、棉石、 也 磷灰石, 少量独居石和 锆石。	锆石	常见	黑云母为	《云母。次约 为岩石中主 物,呈晶 加

表 3 次生黑云母与花岗岩类变质-再生程度的关系

带核部,变质一再生作用强烈,原花岗岩类受强烈改造,形成面貌全非新的岩石——原 地型再生花岗岩类,次生黑云母成为这类岩石中主要暗色矿物,与磁铁矿,屑石、磷灰 石、褐帘石等共生,并常见独居石和锆石包体,周围并有明显的多色晕。

通过次生黑云母的研究有助于下述问题的了解:

- 1.建立岩体形成后演化历史,确定区域构造活动性质和构造单元。
- 2.有助于黑云母K—Ar年龄的解释和应用。如构成湘、粤、赣边境诸广岩体的中粗—粗粒斑状黑云母花岗岩,次生黑云母发育,黑云母年龄多分布于 160—180My 之间,划为燕山早期岩体,据李跃松 (1981) 研究: 11个锆石和 1 个晶质铀矿 两种U-Pb 等时年龄非常一致,为210My左右,证实为印支期岩体。黑云母年龄数据偏低和分散,是由于热动变质作用及其产生的黑云母,使原生黑云母中氩部分散失或建立新的K—Ar平衡体系,以及原生、次生黑云母按不同比例混合等的结果。
- 3.从次生黑云母年龄的地区上差异,可以帮助我们建立中生代以来的构造发展史, 解决大地构造的某些问题。