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Vegetation change detection using artificial neural
networks with ancillary data in Xishuangbanna,
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Timely and accurate change detection of the Earth’s surface features provides the foundation for better
planning, management and environmental studies. In this study ANN change detection was used to
perform vegetation change detection, and was compared with post-classification method. Before the
post-classification was performed the ANN classification was used to yield muititemporal vegetation
maps. ANN were also used to perform a one-pass classification for the images in 2003 and 2004. DEM
and slope were used as two extra channels. During the training stage, the training data was separated
into 82 subclasses including 36 change subclasses and 46 no change subclasses. Moreover NDVI dif-
ferencing methods were used to develop the change mask. The result showed that combining the NDVI
differencing method with visual interpretation when identifying reference areas can produce more ac-
curate change detection results for the ANN one pass change classification. Moreover, it is effective to
use elevation and siope as extra channels together with PCA components, to perform ANN-based
change detection in mountainous study areas. It is also important to separate the vegetation transition
classes into subclasses based on spectral response patterns, especially for mountainous terrains. This

processing can reduce the topographic effect and improve the change detection accuracy.

ANN change detection, elevation data, vegetation change, post-classification, NDVI differencing

Land-use/cover change is one of the major drivers of
changes in the structure, functioning, and dynamics of
most ecosystem and landscapes throughout the world.
Land-use/cover changes are caused by both natural
processes and human activities'' ., Today, the study of
causes, process, and consequences of land use/cover
change is one of the main research topics of landscape
ecologym. Timely and accurate change detection of the
Earth’s surface features provides the foundation for
studying and understanding their causes, process and
consequences. In addition, remote sensing data, because
of their temporal resolution, synoptic view and digital
format suitable for computer processing, have become
the major data source for different change detection ap-
plications during the last decades.

Since the 1970s, a number of change detection tech-

niques were developed for detecting land cover change
. 6-10 10 .

and vegetation change[ | Lu et al."” classified these

techniques into seven categories: (1) algebra, (2) trans-

formation, (3) classification, (4) advanced models, (5)

Geographical Information System (GIS) approaches, (6)

visual analysis, and (7) other approaches. These tech-

niques are characterized by their functionalities and the

data transformation procedures involved. Based on these

characteristics, the current change detection techniques

can be further grouped into two broad typesII ",
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Change Mask Development (CMD): Only change and
no-change are detected and no categorical change in-
formation can be directly provided.

Categorical Change Extraction (CCE): Complete
categorical changes are extracted.

Among all these techniques, post-classification is a
common approach used for change detection in practice,
but the difficulty in classifying historical image data
often seriously affects the change results. This method
performs pixel-by-pixel comparison of two single-date
classified images and generates a full change matrix.
The performance of this technique critically depends on
the accuracies of the individual classifications. The
problem is the propagation of error inherited from each
classification process.

The use of artificial neural networks (ANN) for
change detection has received increasing attention. ANN
have been used for land-cover change!"' ™", forest mor-
tality change“sl, forest change“ﬂ and urban change“".
These studies suggest that the ANN method can improve
the accuracy of change detection compared to post-
classification comparison methods. In general, the ANN
method is a direct multidate classification technique“”.
based on a single analysis of a combined data set of two
or more dates to identify changes. Each change combi-
nation between the two times is represented as an output
class, and the change detection process is treated as one
classification. To efficiently use this technique, it is nec-
essary to identify sufficient training data in which each

possible type of change is represented!'®!.

Although ANN change detection technique already
was used to detect land-cover change, implementing
accurate change detection for a specific mountain study
area is still a challenge. Since in mountainous areas, the
distribution of the vegetation is influenced by topog-
raphical factors, using topographic information could be
helpful to improve the classification accuracy.

The objective of this study was to obtain an accurate
vegetation change map in the study area, integrating
elevation data and using the ANN change detection
technique. These objectives raise the following research
questions:

How to obtain enough data for each vegetation class
and their transitions?

Can the accuracy of change detection be improved by
ANN change detection when elevation and slope data
are used as additional bands?

1 Study area and material

1.1 Study area

The study area in the Xishuangbanna prefecture of
China’s Yunnan Province is located at 22°00'—
23°50'00"N and 100°00'12"—102°00'E and covers about
50000 ha. It belongs to the catchment of the Lancang
River and is located in the Xishuangbanna Dai Autono-
mous Prefecture (Figure 1). Xishuangbanna is home to
the richest biological and ethnic diversity in China.
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Figure 1 The location of the study area.
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There are 14 different ethnic minorities that inhabit this
tropical region of Yunnan. It is a mountainous area. The
difference in altitude between the lowest to the highest
peak is about 2000 m. The climate of the region is
strongly seasonal with two main air masses alternating
during the year. The average temperature is between
164°C and 22.0C. Between May and October the
South-West Monsoon air mass brings about 80 % of an-
nual rainfall, whereas the dry and cold air of the South-
ern edges of the jet stream dominates the climate be-
tween November and April. Annual rainfall varies be-
tween 1200 mm in the Mekong valley and 1900 mm at
altitudes above about 1500 m. Although the rainfall is
very seasonal, the dry season is not extreme in nature.

1.2 Satellite and reference data

The data includes two Landsat TM images (path/row:

130/45), a 1:100000 scale topographic map, 20 m reso-
lution DEM data and GPS ground points. One image
was acquired on March 7th, 2003 with a sun elevation of
50.49° and solar azimuth angle of 130.05° (Landsat 7
ETM+). Another was acquired on March 1st, 2004 with
a sun elevation of 47.67° and solar azimuth angle of
130.65° (Landsat 5 TM). The images were projected into
the Universal Transverse Mercator (UTM) projection
system (zone number: 47, reference datum: WGS84).
The topographic maps and DEM data were projected
into the originally Gauss Kruger projection system, with
the reference datum respectively Beijing 54 and Xi’an
80. The topographic and DEM data as well as the GPS
data were projected into the UTM projection system.

Table1l The dominant vegetation classes and dominant species

After the topographic maps and DEM data were pro-
jected, 25 control points were selected to perform a
geometric correction using a fourth-degree polynomial.
The Root Means Square (RMS) error between the DEM
and the image was about 15 m. The Root Means Square
(RMS) error for the two images was about 15 meters.
For a more comprehensive discussion of the image data
used in this study, the reader is referred to the report on
“The accuracy assessment of the image geometric regis-
tration”.

1.3 The vegetation classes in the study area

For this work, the Landsat TM and ETM+ image data
will be used to perform vegetation change detection.
Based on the preliminary classifications of the image
data, the objective of the study and the drivers of vege-
tation change, 10 classes could be identified in the
southern study area, including clouds and shadows (Ta-
ble 1).

1.4 Validation and training data

492 GPS points, collected in March 2004, are located in
the study area. For each point, the dominant species,
canopy cover and height of the plant communities were
recorded. However, most of the 492 points are located
along riversides and roadsides. Few of them are located
in mountainous and rural areas. In order to get enough
training data for rural area, parts of the topographic map
were also used as training data because a number. of at-
tribute values were suitable as ground truth data com-
bined with the GPS points data. Even though there are
many changes of land cover between the topographic

Symbol Classes Dominant species
ORT old rubber trees Hevea brasiliensis
YRT young rubber trees Hevea brasiliensis
Castanopsis hystrix, C. mekongensis, Lithocarpus truncatus, Litsea glutinosa, Actinodaphne henryi,
EF evergreen forest Schima wallichii, Syzygium yunnanensis, Elaeocarpus austro-yunnanensis, Paramichelia baillonii, Engel-
g hardtia spp., Machilus salicina, Olea rosea, Aporusa spp., Pinus khasya var. langbianensis, Lithocarpus
sp., Quercus dentata, Betula alnoides, etc.
LDF low density forest Pinus yunanensis, Salix spp., Corylus yunnensis etc.
Ficus altissima, Toona sinensis, Nephelium chryseum, Altingia excelsa, Bischofia javanica, Colona flori-
DF deciduous forest bunda, Bombax ceiba, Erythrina stricta, and Bauhinia variegata etc. Dendrocalamus strictus, D. bran-
disii, Cephalostachyum pergracile, Indosasa sinica, Schizostachyum funghomii, and Dinochloa puberula
etc.
Trema orientalis (L.) Blume, Dalbergia obtusifolia (Baker) Prain, Docynia indica (Wall.) Decne. Eurya
SGL shrub and grass land groffii Merr., Saccharum sinense Roxb., Leucosceptrum canum Sm., Eupatorium coelestinum L. etc.
AL agriculture land
BL burned land
WwT water
CS clouds and shadows
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maps and TM image, the plant community’s types did
not change notably, especially for the remote mountain-
ous areas. The two images are only one year different.
Combining the topographic maps with TM images and
field ecological expertise, the training sites for each type
of the vegetation were selected in the study area.
Because of the topographic effect in mountainous ar-
eas, the same vegetation class can show different spec-
tral reflectance patterns in different aspects and slopes.
In the ground truth digitizing stage, it is necessary to
differentiate the ground truth data for each different sig-
nature class, even if they belong to the same vegetation
class. There exist, for example, “oak forest on shaded
slopes”, “oak forest on sunny slopes”, “old rubber trees”
and “young rubber trees”. In any case, the classification
accuracy will generally be improved if each spectral
class or subclass is treated as a separate category“ql. 48
subclasses were digitized for the image in 2003, and 46
subclasses were digitized for the image in 2004. The
ground truth polygons were converted into a raster map
with a cell size of 30m x 30m. Then, this map was ran-
domly divided into training set, test set and validation
set. The test set was used for testing the error between
the desired outputs and the actual network outputs cal-
culation. The validation data was used for the accuracy
assessment. After the classification was performed, the
subclasses were merged into 10 vegetation classes based
on the ancillary data (GPS points, topographic maps and
DEM data, etc.) and field ecological expertise (Table 1).
To obtain the training data for the change vegetation
classes, NDVI differencing was used to develop a change
mask. Based on the location of change areas, field
knowledge and visual inspection, 36 change sub-classes
were extracted (Table 2). Because the two images were
only one year different, some vegetation class transitions
were not present, as confirmed after visual inspection.
Based on field survey and visual inspection, even though
the two images were collected in the same season
(March), some changes were caused by different climate
circumstances (Table 2). 82 subclasses, including the sub-
classes for the no-change areas, were digitized on the two
images. After the ANN classification was executed, the
subclasses were merged into 24 classes (Table 3).

1.5 Change detection methods

1.5.1 NDVI differencing. Vegetation indices have
long been used in remote sensing for monitoring tempo-
ral changes associated with vegetation. Lyon et al.®

compared seven vegetation indices from three different
dates of MSS image data for land cover change detection
and concluded that the NDVI differencing technique
demonstrated the best vegetation change detection, In this
study, NDVI differencing methods were used to develop
the change mask. This mask was used to collect training
data with TM band 5, 4 and 3 composite images by vis-
ual interpretation (Table 2).

1.5.2 Post-classification, Post-classification is the
most obvious method of change detection, comparing
two independently produced classified images. By prop-
erly coding the classification results for time f, and f,,
the analyst can produce change maps showing a com-
plete matrix of changes'®. In addition, selective group-
ing of classification results allows the analyst to observe
any subset of change which may be of interest'®’. In this
post-classification change detection technique, each im-
age was classified using ANN classification, as de-
scribed above.

In this study, after the ANN classification technique

was performed for two individual images, [0 classes
were retained. Before the post-classification was per-
formed, clouds and shadows were masked. Then, 81
(9x9) classes were derived. Because the two images
only have a one year difference, some changes did not
occur. There are, for example, no “shrub and grass land
to evergreen forest”, “farm land to evergreen forest”,
“farm land to old rubber trees” and “burned land to old
rubber trees. Based on field knowledge and after visual
interpretation, the 81 classes were merged into 24
classes (Table 3).
1.5.3 ANN change detection. Artificial Neural
Networks (ANN) have been widely used in remote
sensing applications for the past decade (Figure 2).
Normally, the simple neural network consists of three
different types of layers: the units whose activations are
the problem input for the network are called input layer;
the units whose output represent the output of the net-
work are referred to as output layer; the remaining units
are called hidden layer, because they are not perceptible
from the outside'®"). One of the main advantages of neu-
ral networks for classification is that they are independ-
ent of the distribution of the class-specific data in feature
space. It is therefore possible for a single class to be
represented in feature space as a series of clusters (rather
than a single cluster)’™?). In addition, ANN change de-
tection allows easy integration with ancillary data, such
as field survey data and DEM data.
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Table 2 The training data sets for change areas extracted after CMD and visual interpretation

Class Land transition Description Number of training pixel
4 LDFto AL1 low density forest changed into agriculture land 1 623
48 EFto AL1 evergreen forest changed into agriculture land 1 950
49 LDF to BL low density forest changed into burned land 2370
SO SGLto AL shrub and grass land changed into agriculture land 1 178
51 DF to DF without leaves deciduous forest loosed leaves 1850
52 WT to AL2 water area changed into agriculture land 2 120
53 SGLto BL shrub and grass land changed into burned land 2954
54 DF to BL deciduous forest changed into burned land 2524
55 LDF to shaded SGL low density forest change into shaded shrub and grass land 518
56 LDF to SGL low density forest changed into shrub and grass land 374
57 BL to SGL burned land changed into shrub and grass land 761
58 YRT to YRT without leaves | youngest rubber trees loosed their leaves 1155
59 EFto BL evergreen forest changed into burned land 217
60 EF to shaded EF evergreen forest on shaded slopes 90
61 EF to LDF evergreen forest changed into low density forest 291
62 YRT to YRT without leaves 2 young rubber trees loosed their leaves 2187
63 ALl to BL agriculture land 1 changed into burned land 300
64 EF to AL2 evergreen forest changed into agriculture land 2 916
65 SGL to AL2 shrub and grass land changed into agriculture land 2 208
66 EF to SGL evergreen forest changed into shrub and grass land 1833
67 LDFto AL2 low density forest changed into agriculture land 2 707
68 DFto AL1 deciduous forest changed into agriculture land 1 1625
69 ORT to ORT without leaves old rubber trees loosed their leaves 1640
70 ORT to AL2 old rubber trees changed into agriculture land 2 358
71 AL1to AL2 agriculture land 1 changed into agriculture land 2 355
72 AL3to AL4 agriculture land 3 changed into agriculture land 4 446
73 BL to BM burned land changed into bamboo 538
74 AL2to SGL agriculture land 2 to shrub grass land mn
75 EF to shaded SGL evergreen forest changed into shaded shrub and grass land 1847
76 EF to YRT evergreen forest changed into young rubber trees 811
77 YRT to AL2 young rubber trees changed into agriculture land 2 578
78 BLto AL3 burned land changed into agriculture land 3 255
79 SGLto YRT shrub and grass land changed into young rubber trees 159
80 BLto AL2 burned land changed into agriculture land 2 215
81 ORTto ALl older forest changed into agriculture land 1 108
82 SGL2 to SGL2 without leaves shrub and grass land loosed leaves 121
Total 33553
Table 3 The final classes for vegetation change map between 2003 and 2004
1 2 3 4 6 7 8 9 11 12
ORT-ORT YRT-YRT EF-EF LDF-LDF DF-DF WTWT AL-AL SGL-SGL BL-SGL LDF-AL EF-AL LDF-BL
13 14 15 16 18 19 20 21 23 24
SGL-BL DF-BL LDF-SGL BL-LDF EF-BL SGL-AL YRT-AL EF-SGL ORT-AL  BL-AL  YRT-ORT BL-BL

Note: ORT-ORT, old rubber trees unchanged; YRT-YRT, young rubber trees unchanged; EF-EF, evergreen forest unchanged; LDF-LDF, low density
forest unchanged; DF-DF, deciduous forest unchanged; WT-WT, water areas unchanged; AL-AL, agriculture land unchanged; SGL-SGL, shrub and grass
land unchanged; BL-BL, burned land unchanged; BL-SGL, burned land changed into shrub and grass land; LDF-AL, low density forest changed into agri-
culture land; EF-AL, evergreen forest changed into agriculture land; LDF-BL., low density forest changed into burned land; SGL-BL, shrub and grass land
changed into bumed land; DF-BL, deciduous forest changed into burned land; LDF-SGL, low density forest changed into shrub and grass land; BL-LDF,
burned land changed into low density forest; EF-BL, evergreen forest changed into burned land; SGL-AL, shrub and grass land changed into agriculture
land; YRT-AL, young rubber trees change into agriculture land; EF-SGL, evergreen forest changed into shrub and grass land; ORT-AL, old rubber trees

changed into agriculture land; BL-AL, burned land changed into agriculture land; YRT-ORT, young rubber trees changed into old rubber trees.
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Figure 2 A simple neural network diagram (http:/www.stowa-

nn.ihe.nl/ANN.htm).

In this study three layer neural networks were con-
structed (input layer, hidden layer and output layer).
ANN were used to perform a one-pass classification for
the images in 2003 and 2004. The input layer has 16
neurons; representing 7 channels of TM image of 2004
and 7 channels of the image of 2003, DEM and slope
were used as two extra channels. The number of neurons
in the output layer is equal to the number of subclasses
(82). The 82 subclasses include 36 change subclasses
(Table 2) (and 46 no change subclasses). The number of
the hidden neurons is 20. A sigmoid activation function
was used in this neural network. The learning rate of this
network is 0.001; the parameter of the momentum is 0.2.
After the ANN classification was performed, the 82 sub-
classes were merged into 24 classes (Table 3). Addition-
ally, in order to test the added value of elevation and
slope as extra input channels, an ANN with 14 inputs
was used.

Principal component analysis (PCA) was applied to
extract the salient features from the input data and to
discard noise, which hampers the ANN’s leamingm].
The purpose of PCA is to reduce an original
n-dimension data into fewer than n “new dimensions” or
components, allowing for a smaller ANN architecture
In this study, PCA was used to reduce the 14 TM chan-
nels into 8 PCA components. Then, ANN classification
was performed with 8 PCA components, DEM and slope
as input nodes and 82 subclasses as output nodes.

The implementation of the feed-forward neural net-
works algorithm was handled by a software tool devel-
oped in the Laboratory of Forest Management and Spatial
Information Techniques (http://dfwm.ugent.be/forman).

1.6 Accuracy assessment

Accuracy assessment is very important for understand-

[25]

ing the obtained results and for interpreting results in a
decision-making context!"?, However, evaluating the
accuracy of land cover or vegetation change detection
by using multi-temporal, digital, remote sensing data is a
considerable challenge™®. In this study, the error matrix
was also used to assess the accuracy of the vegetation
change in the study area®”. Firstly, the modified error
matrix was used to evaluate the accuracy of post-classi-
fication change detection. As mentioned above, the re-
cording dates of the two images are only one year dif-
ferent and the vegetation change map with 81 classes
was merged into 24 classes. These 24 classes were used
to calculate the error matrix. The same validation data
were also used to evaluate the accuracy of the change
vegetation map derived by using ANN-based change
detection techniques. Secondly, in order to further ana-
lyze whether errors are due to misclassification or are
caused by failures in the change detection techniques,
the change detection error matrix is collapsed into a
no-change/change error matrix. A no-change/change
error matrix was also used to assess the accuracy of the
NDVI differencing change detection method.

2 Results

2.1 Results from change detection methods

Post-classification change detection was performed on
ANN classifications of the 2003 and 2004 images.
Post-classification produced a cross-classification image
and a transition matrix (Figure 3 and Table 4).

The vegetation classes were described in detail in the
report of “The definition of vegetation classes in
Xishuangbanna study area”. Table 4 and Figure 5 show
the vegetation changes occurring between 2003 and
2004. As mentioned above, some changes could not hap-
pen in one year. These are, for example, “old rubber

7 &

trees to young rubber trees”, “old rubber trees to ever-
green forest”, “evergreen forest to deciduous forest” and
“water to evergreen forest”, etc. (Table 4). After the er-
ror matrix was calculated, the overall accuracy was
found to be 65.04% and the kappa value 0.6094 (Table
5).

Table 5 presents the overall accuracies and the Kappa
values of the different change detection strategies. The
poorest accuracy was generated by change detection 1
(post-classification with 81 full set of transition classes).
The overall accuracy was 65.06%, and kappa value was
0.6096. However, after the 81 full sets of transition
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Figure 3 Vegetation transition map derived from the classified 2003 and 2004 images.

Table4 Vegetation transition matrix between 2003 and 2004

2003 Total
2004 ORT YRT EF LDF DF WT AL SGL BL (pixels)
ORT 126267 36538 24574 1926 49721 314 19839 1954 414 261547
YRT 66393 332985 63908 63849 151372 3458 120382 101413 14439 918199
EF 34332 8829 3161420 134630 108126 4543 16851 8380 4709 3481820
LDF 6820 17446 334149 470889 57982 356 62529 97282 6629 1054082
DF 22413 46538 131890 33974 308085 4672 33074 19593 4508 604747
WT 99 914 2927 1318 5826 36903 6941 715 1197 56840
AL 5098 63561 18846 69893 29388 11491 564844 143545 13689 920355
SGL 1366 23898 33736 127044 24097 290 110696 232104 11496 564727
BL 1786 18772 26192 51420 43187 992 15890 51789 16506 226534
Total (pixels) 264574 549481 3797642 954943 777784 63019 951046 656775 73587 8088851
Note: For an explanation of the symbols, see Table 1. The number underlined means that the vegetation transitions were not present.
Table 5 Summary of the change detection results
. . o Overall accuracy Kappa
Change detection number Change detection method Classification method and data used (n = 97079) (n = 97079)
1 Post-classification with 81 classes ANN w1th 7 l?ands, DEM, slope for 65.06% 0.6096
two individual images
2 ?ost-classlﬁcauon. 81 classes merged ANN wnt.h 7 I?ands. DEM, slope for 72.94% 0.6921
into 24 classes two individual images
ANN change detection with 82 sub- ANN with 8 PCA components, DEM,
3 classes, merged into 24 classes slope 1842% 0.1552
ANN change detection with 82 sub- .
4 o , merged into 24 classes ANN with 8 PCA components 75.49% 0.7215
5 AN change detection with 24 Broad NN with 14 bands, DEM, slope 76.31% 0.7312
6 ANN change detection with 82 sub-  ,\1N with 14 bands, DEM, slope 71.29% 0742

classes, merged into 24 classes

Note: n is the number of pixels.

classes were merged into 22 change and no-change
classes based on visual interpretation and field knowl-
edge, the overall accuracy was improved about 7%, and

238

the kappa value increased about 0.08.
The highest overall accuracy was found to be 78.89%,
and the highest kappa 0.7602, for the ANN change de-
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tection with 17 inputs (change detection number 4).
Compared with the vegetation change map with 81
classes produced with post-classification, the overall
accuracy increased 13.4%, and the kappa value in-
creased 0.135. The overall accuracy is increased about
2.5% and Kappa value increased about (.03 when com-
paring change detection numbers 3 and 4 (Table 5). In
addition, if the number of ANN input layer is 15 without
two extra channels (DEM and slope), the overall accu-
racy is 3.4% lower compared with the ANN change de-
tection using DEM and slope as two extra bands (change
detection number 4). The ANN change detection method
with simulate training data yielded a quite low accuracy.
The overall accuracy is 67.94%, and the kappa value is
0.6387. It is only about 3% higher than t post-classifica-
tion change detection with 81 full sets of transition
classes.

Figure 4 shows the change vegetation maps generated
from three different change detection methods. Visual
inspection suggests that using or not using slope and
elevation has very little effect on the final change map
derived with direct ANN change detection techniques.
These two maps also are similar to the map produced
using post-classification, where the 81 classes were re-
duced to 22 classes (Figure 4).

2.2 Results from change and no-change areas detec-
tion :

As mentioned in section 1.6, in order to further analyze

if the errors are due to the classification or the change
detection techniques, the change detection error matrix
can be collapsed into a no-change and change error ma-
trix (Figure 5).

For the change and no-change detection, Figure 5
shows that ANN change detection yields the highest ac-
curacy (overall accuracy = 93.78%, kappa = 0.8272).
The poorest accuracy is obtained by the NDVI differ-
encing change detection. The overall accuracy is 80.64%,
and the kappa is 0.5661. For the post-classification
change detection method, the accuracy of the map with
24 classes (overall accuracy = 89.41%, kappa = 0.6819)
is higher than the map with 81 classes (overall accuracy
= 82.67%, kappa = 0.6003).

3 Discussion and conclusions

The results show that the ANN one pass change de-
tection method can produce higher accuracy change de-
tection maps than the post-classification technique (Ta-
ble 5). After the 81 possible vegetation transitions were
reduced to 24 classes (with removal of transitions that
were not present), the overall accuracy of the
post-classification technique improved by 8%, and the
kappa improved by 0.09 (Table 5). This means that some
of the 81 vegetation transition classes were confused, as
a result of errors in the two individual classifications.
The change and no-change error matrices also show that
merging the 81 classes into 24 classes the accuracy of

Post-classification, 81 classes merge into

24 classes
ORT-ORT SGL-FL
TYRT [ DF-FL
EF LDF-SGL
LDF-LDF FL-LDF
DF EFL-FL
“WT SGL-AL
AL-AL YRT-AL
SGL-SGL EF-SGL
FL-SGL ORT-AL
LDF-AL FL-AL
-AL YRT-ORT
LDF-FL FL-FL

ANN change goge

" ANN change detection with 17 inputs

e Tl
[

th ’5 inpurs

Figure 4 Vegetation change maps éenerated using different change detection methods.
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No-change | Change Total

No-change 71224 3812 75036
Change 2225 19818 22043
Total 73449 23630 97079

Overall accuracy = 93.78%

Kappa = 0.8272
ANN change detection with 8 PCA components, elevation and

slope
No-change | Change | Total
No-change 58873 2244 61117
Change 14576 21386 | 35962
Total 73449 23630 | 97079
Overall accuracy = 82.67%
Kappa = 0.6003

Post-classification with 81 classes

No-change | Change Total
No-change 56690 2036 58726
Change 16759 21594 38353
Total 73449 23630 | 97079
Overall accuracy = 80.64%
Kappa = 0.5661
NDVI differing change detection
No-change | Change | Total
No-change 71656 8489 80145
Change 1793 15141 16934
Total 73449 23630 | 97079
Overall accuracy = 89.41%
Kappa = 0.6819

Post-classification, 81 classes merged into 24 classes

Figure 5 Error matrices for change and no-change.

Figure 6 7-year-sold rubber trees in 2004.

change and no-change areas detection was improved
about 7%, again illustrating that the post-classification
technique combines the errors of the original classifica-
tions (Figure 5).

PCA was used to reduce the 14 TM channels into 8
PCA components, slightly improving the change detec-
tion accuracy (Table 5). For the individual image classi-
fications, separating the vegetation classes into sub-
classes based on spectral response patterns improved
classification accuracy, especially for mountainous areas.

Figure 7 7-year-old rubber trees in 2003.

In this study, even for change areas, 15 vegetation
change classes were expanded into 36 subclasses (Table
2). Moreover, using DEM and slope as additional chan-
nels to PCA components or Landsat spectral bands can
also yield higher accuracies (Table 5). This improvement
of the overall accuracy is about 3% for the ANN change
detection with 8 PCA components, DEM and slope (Ta-
ble 5). The reasons were explained in detail in the report
“Mapping vegetation in a steep mountain terrain by
training vegetation subclasses and integrating ancillary
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Figure 8 NDVI for 7-year-old rubber trees in 2004. Figure 9 NDVI for 7-year-old rubber trees in 2003.
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Figure 10 Precipitation for 2002, 2003 and 2004 in the study area.

No-change | Change [ Total No-change | Change | Total
No-change 58487 3071 61558 No-change 54680 3761 58441
Change 3927 31292 | 35219 Change 7734 30602 38336
Total 62414 34363 | 96777 Total 62414 34363 96777
Overall accuracy = 92.77% Overall accuracy = 87.85%
Kappa = 0.843 Kappa = 0.7416
ANN change detection with 8 PCA components, NDVI differencing change detection
DEM, slope
No-change | Change | Total No-change | Change | Total
No-change 54016 6810 60826 No-change 58874 10471 69345
Change 8398 27553 35951 Change 3540 23892 27432
Total 62414 34363 96777 Total 62414 34363 96777
Overall accuracy = 84.29% Overall accuracy = 85.58%
Kappa = 0.6604 Kappa = 0.6689

Post-classification with 81 classes Post-classification, 81 classes merge into 29 classes

Figure 11  Error matrices for change and no-change areas, including the changes caused by different climatologic conditions.
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data” (Zhang 2005)".

Figure 5 shows that the poorest accuracy was ob-
tained with the NDVI differencing method. Even though
the two images were acquired in the same season
(March), some of changes were caused by climatologic
differences. For example, the transitions “DF to DF
without leaves”, “YRT to YRT without leaves” and
“ORT to ORT without leaves” are caused by climate
differences (Table 2). Figures 6 and 7 show that the
spectral response patterns are quite different for the
“young rubber trees” in the 2004 and 2003 images. Be-
cause of the difference in spectral response, NDVI val-
ues are also different in the 2004 and 2003 images (Fig-
ures 8 and 9). These changes can be detected by the
NDVI differencing method. Based on field knowledge,
the rubber trees are about 8 years old. This means the
changes are not vegetation transitions.

Figure 10 shows that rainfall in January, February and
March 2003 is much higher than in the same months in
2004. The rainfall at the end of 2002 (November and
December) is higher than in the same season in 2003.
This can explain why the spectral response patterns are
quite different for the same class of “young rubber trees”
between the images in 2004 and 2003 (Figures 8 and 9).
If the changes caused by climate differences also belong
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