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Abstract System identification with quantized observations and persistent excitations is a fundamental and

difficult problem. As the first step, this paper takes the gain system for example to investigate the identification

with quantized observations and bounded persistently exciting inputs. Firstly, the identification with single

threshold quantization is considered. A projection recursive algorithm is proposed to estimate the unknown

parameter. By use of the conditional expectation of quantized observations with respect to the estimates, the

algorithm is shown to be both mean-square and almost surely convergent. The upper bound of the convergence

rate is also obtained, which has the same order as the one of the optimal estimation in the case where the system

output is exactly known. Secondly, for the multi-threshold quantization, the identification algorithm is similarly

constructed and its asymptotic property is analyzed. Using a multi-linear transformation, the optimal scheme of

quantization values and thresholds is given. A numerical example is simulated to demonstrate the effectiveness

of the algorithms and the main results obtained.
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1 Introduction

Since Norbert Wiener published his famous book “Cybernetics: or Control and Communication in the

Animal and the Machine” [1] in 1948, the cybernetic thinking has penetrated into almost all the natural

and social sciences. A number of classic methods and techniques have been developed gradually, such as

system identification of least square [2] and maximum likelihood method [3], state estimation of Kalman

filter [4] and Bayesian filter [5], control method of self-tuning regulator [6] and so on. The generation and

application of these methods have greatly improved people’s production and living standards.

It is noteworthy that all the above methods are based on the precondition that the system data

(input, state or output) is known exactly or with a certain noise [7]. However, with the development

of modernization and informationization, a class of new systems—quantized output systems [8]—have

emerged in the practical fields. The output of such systems cannot be accurately measured, and what can
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be measured is whether or not the output belongs to some known set. Taking the neuron system [9] as an

example, though measuring its internal potential is very difficult, two states of excitation and inhibition,

from the outside of neuron, can be detected, whose decisive factor is the potential threshold. When the

potential is larger than the threshold, the neuron shows the excitation state, otherwise, the inhibition

one.

The threshold is a key factor for quantized output systems, which can be fixed or adjustable with time.

For example, the threshold of oxygen sensors [10] in industry is fixed, which depends on the physical

characteristics of sensors and cannot been changed. An example of time-varying threshold is the coding

process in communications, which is really a kind of protocol [11] that can be adjusted according to actual

needs. On the other hand, the number of thresholds is also very important, which may be one or more.

In fact, nothing supplies poorer information than the case of only one threshold. With the increasing

numbers of thresholds, the available data will be enriched gradually and the most abundant one is the

accurate data for the conventional systems.

On the practical side, quantized output systems are widely used in industrial production, technology of

biological pharmacy, informational industry and many other fields. This poses a lot of problems of how to

identify and control such types of systems. On the theoretical side, from the example of neuron system,

it can be seen that quantized output systems cannot provide the exact observation except very limited

information for identification and control, which spoils the basic precondition of classic methods. And,

directly applying these classic methods to quantized systems, one may not reach the goal of identification

and control, or even make some serious accidents. To study quantized output systems, we must start

from their essential characters, and propose new methods to identify parameters and estimate states, as

well as to design control laws to improve system performance.

Recently, the identification/state estimation of quantized output systems has attracted a lot of attention

[8, 12–17]. Based on periodic inputs and empirical measures, Refs. [8, 17] gave a strongly consistent and

asymptotically optimal parameter identification algorithm with the help of statistical properties of the

system noises, and Ref. [12] studied the optimal identification error, complexity of space and time and

impact of disturbances and unmodeled dynamics on the identification accuracy. Consequently, other

models were also investigated, such as rational models, Wiener [18] and Hammerstein [19] systems and

so on. Ref. [13] proposed a method for designing optimal periodic input to reduce the time complexity

on parameter identification. Ref. [14] discussed the linear system identification with the colored noises

and multi-sine input signal. Under the Gaussian assumption on the predicted density, Refs. [15, 16]

investigated the minimum mean quare filtering using the quantized innovations.

All these papers have coped effectively with the parameter identification for quantized output systems,

but they might not be applied to design adaptive control algorithm due to the restrictions of the periodicity

or independent and identically distributed (i.i.d.) property on inputs. How to study the adaptive control

for such systems? The following idea may be feasible. Firstly, construct the online recursive identification

algorithm with quantized information and persistent excitations or even attenuating persistently exciting

inputs. Then, prove the convergence and optimality with the correlation between quantized information

and estimations. Finally, complete the control-oriented identification algorithm and the adaptive control.

The idea of control-oriented identification algorithms might have the potential to implement the adap-

tive control of the quantized output systems, but the design and analysis of them will bring new difficulties.

On the one hand, the persistently exciting inputs usually have no periodic or i.i.d character. As a result,

the existing methods, such as the empirical measure method under periodic inputs and the kernel func-

tion one under i.i.d. inputs and so on, do not work under persistent excitations. On the other hand, the

correlation between quantized outputs and estimations is stronger under the control-oriented inputs than

periodic or i.i.d. ones, and will become stronger and stronger with the increase in the number of system

parameters, which makes it very difficult to find a general recursive equation of the estimation error, and

many classic methods for the conventional systems seem to have little reference to the quantized output

systems. As the first step towards the control-oriented identification of quantized systems, this paper

only considers the gain system identification under bounded persistent excitations.

In order to show the basic idea, we begin with the most elementary quantization form—binary-valued
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observation, where only one threshold exists and the information is about whether or not the system

output is larger than the threshold. A projection recursive algorithm is proposed to estimate the pa-

rameter that keeps the boundedness of the estimation. By use of the conditional expectation of the

estimation errors and quantization values with respect to one-step forward estimations, it is shown that

the algorithm is both mean-square and almost surely convergent. The upper bound of the convergence

rate is also obtained.

For the more general case of multi-threshold quantization, the identification algorithm is constructed

and its asymptotic property is analyzed. The thresholds and quantization values are optimized at the

same time and an optimal scheme is given using the multi-linear transformation.

This paper is organized as follows. Section 2 formulates the identification problem. Section 3 studies the

identification under single threshold quantization, including constructing the algorithm and analyzing its

convergence and convergence rate. Section 4 develops the identification of multi-threshold quantization.

The identification algorithm, its asymptotic property and the optimal scheme of quantization values and

thresholds are given. A numerical example is simulated to demonstrate the effectiveness of the algorithms

and the main results obtained in Section 5. Section 6 gives some concluding remarks. Some detailed

mathematical results and proofs are addressed in Appendix.

2 Problem formulation

Consider the gain system:

yk = φkθ + dk, qk = Q(yk), (1)

where φk ∈ R, θ ∈ R and dk are the system input, unknown but time-invariance parameter and noise,

respectively; yk is the system output, which cannot be exactly measured. What can be measured is only

the quantized information qk, which represents the comparison between yk and one or more real numbers,

namely, thresholds. Mathematically, qk can be written as

qk = Q(yk) =

N∑

i=1

βiI[cik�yk<ci+1
k ], (2)

where cik are the time-varying thresholds, which are variables to be designed in this paper with −∞ =

c1k < c2k < · · · < cNk < cN+1
k = +∞; I[cik�yk<ci+1

k ] is the indicator function, which is 1 if cik � yk < ci+1
k

and 0, otherwise; βi > 0 is called quantization value with respect to the set [cik, c
i+1
k ), i = 1, . . . , N . It can

be seen that qk is one of β1, . . . , βN and the key factors of deciding its value are the thresholds c2k, . . . , c
N
k .

The goal of this paper is to estimate the unknown parameter θ using the input φk and quantized

observation qk.

The case with quantized measurements qk, which provides very limited information, is much more

difficult than the conventional identification with accurate measurements of yk, mainly because the rela-

tionship between the available measurement and the input is not one-to-one, but essentially nonlinear.

(1) and (2) show that the values of quantization, number of thresholds and system noise all have a

great influence on the design and analysis of identification algorithms, whose detailed discussion will be

given in the following sections.

Assumption 1. The prior information of θ is that θ ∈ [−θ̄, θ̄], where θ̄ is a known positive and finite

constant.

Assumption 2. {dk, k � 1} is an independent and identically distributed (i.i.d.) stochastic sequence

and d1 is a normally distributed random variable with zero mean and known covariance σ2.

Assumption 3. The system input follows the conditions that

|φk| � M < ∞, k = 1, 2, . . . (3)
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with M known constant and

lim inf
k→∞

1

k

k∑

i=1

φ2
i > 0. (4)

Remark 1. The noise in Assumption 2 can be generalized into the symmetrically distributed one with

known covariance and continuous density function; the input given by Assumption 3 is called bounded

persistently exciting input [20], which is a typical signal used in system identification and essentially

different from the previous periodic or i.i.d. condition.

3 Identification with binary-valued observations

To investigate the identification with quantized observations, we start with the most elementary case—

binary-valued observation, where only one threshold exists. Though the binary-valued observation is

relatively simple, it possesses all the typical characters of quantized observations. In this section, qk
defined by (2) is binary-valued with the threshold ck. And then, qk can be rewritten as

qk = β
(
I[yk>ck] − I[yk�ck]

)
, (5)

where β > 0 is called quantization value.

3.1 Identification algorithm

To estimate θ, we propose the following recursive projection algorithm:

θ̂k = ΠΘ

{
θ̂k−1 +

Pk−1φk

1 + Pk−1φ2
k

qk

}
, (6)

Pk = Pk−1 − γ
P 2
k−1φ

2
k

1 + Pk−1φ2
k

, (7)

qk = β
(
I[yk>φkθ̂k−1]

− I[yk�φk θ̂k−1]

)
, (8)

where Θ � [−θ, θ]; initial value θ̂0 ∈ Θ and P0 > 0 can be arbitrarily chosen; γ is a positive real number;

ΠΘ(·) is a projection operator defined by ΠΘ(x) = argminz∈Θ|x− z| for any x ∈ R.

Remark 2. (6) provides the recursion of estimations, and (7) is relevant to the value of γ. In fact, by

selecting a suitable γ, Pk can represent the variance of the estimation error in a certain sense. Thus,

(7) can be understood as the recursion of the variance of the estimation error. (8) implies the scheme

of designing the time-varying threshold ck, i.e., ck is φkθ̂k−1, which can be seen as the prediction of the

system output yk based on the estimate θ̂k−1.

Since Pk plays an important role in algorithm (6)–(8), we first give some of its properties whose proof

is provided in Appendix. It is convenient to use “an ∼ bn” to express “ limn→∞ an/bn = 1” for two real

number sequences {an, n � 1} and {bn, n � 1}.

Proposition 1. If (3) and (4) hold, then Pk has the following properties:

i) P−1
k satisfies the recursive equation:

P−1
k = P−1

k−1 +
γφ2

k

(1− γ)Pk−1φ2
k + 1

, (9)

and, for any initial value P0 > 0, we have

0 < Pk+1 � Pk, lim
k→∞

Pk = 0. (10)
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ii) Pk can also be described as

Pk ∼
(
γ ·

k∑

i=1

φ2
i

)−1

= O

(
1

k

)
. (11)

iii) The limit below holds:
k∑

i=1

Pi−1φ
2
i → ∞, as k → ∞. (12)

Remark 3. (10) means that Pk decreases monotonously and tends zero. (11) clarifies the role of γ in

the recursion of Pk and (12) is a direct result of persistent excitation condition (4).

3.2 Properties of the identification algorithm

Denote the estimate error by θ̃k = θ̂k − θ (k = 0, 1, . . .). Noticing that Θ is a convex-compact set, by the

property of the projection operator and (6), we have

∣∣∣θ̃k
∣∣∣ �

∣∣∣∣θ̃k−1 +
Pk−1φk

1 + Pk−1φ2
k

qk

∣∣∣∣ , (13)

and qk can be rewritten in the following form:

qk = β
(
I[dk>φkθ̃k−1]

− I[dk�φkθ̃k−1]

)
, (14)

since yk > φkθ̂k−1 is equivalent to dk > φkθ̃k−1 by (1).

Theorem 1. For system (1) with binary-valued output (5), under the conditions of Assumptions 1–3,

the parameter estimate given by algorithm (6)–(8) is both mean-square convergent and almost surely

convergent, i.e.,

lim
k→∞

Eθ̃2k = 0, lim
k→∞

θ̃k = 0 a.s.. (15)

Proof. By (13) and (14) we have

θ̃2k � θ̃2k−1 +
β2P 2

k−1φ
2
k

(1 + Pk−1φ2
k)

2
+ 2

Pk−1φk

1 + Pk−1φ2
k

θ̃k−1qk,

such that

E[θ̃2k|θ̃k−1] � θ̃2k−1 +
β2P 2

k−1φ
2
k

(1 + Pk−1φ2
k)

2
+ 2

Pk−1φk

1 + Pk−1φ2
k

θ̃k−1E[qk|θ̃k−1]

= θ̃2k−1 +
β2P 2

k−1φ
2
k

(1 + Pk−1φ2
k)

2
+ 2

βPk−1φk

1 + Pk−1φ2
k

θ̃k−1

(
1− 2F (φkθ̃k−1)

)
,

where F (·) is the distribution function of d1, i.e.,

F (x) =
1√
2πσ

∫ x

−∞
e−u2/(2σ2)du.

And then, we have

Eθ̃2k � Eθ̃2k−1 +
β2P 2

k−1φ
2
k

(1 + Pk−1φ2
k)

2
− 2

βPk−1φk

1 + Pk−1φ2
k

Eθ̃k−1

(
2F (φkθ̃k−1)− 1

)
. (16)

From Assumption 1 and (6), we know |θ̃k| � 2θ̄. Let α = 2θ̄M . Then, by [21, Lemma 1], there exists

B̄1 = B̄1(α) such that φkθ̃k−1(1− 2F (φkθ̃k−1)) � −B̄1φ
2
k θ̃

2
k−1. Substituting it into (16) results in

Eθ̃2k �
(
1− 2B̄1βPk−1φk

1 + Pk−1φ2
k

)
Eθ̃2k−1 +

β2P 2
k−1φ

2
k

(1 + Pk−1φ2
k)

2
.
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Since Pk → 0 by (10), we have

β2P 2
k−1φ

2
k

(1 + Pk−1φ2
k)

2

/
2B̄1βPk−1φk

1 + Pk−1φ2
k

=
β2Pk−1φ

2
k

2(1 + Pk−1φ2
k)B̄1βφk

→ 0, as k → ∞.

Hence, [22, Theorem 1.2.22] implies limk→∞ Eθ̃2k = 0.

Noticing

x(1 − 2F (x)) =
−2x√
2πσ

∫ x

0

e−u2/(2σ2)du � 0,

for any x ∈ R, by (16) and (11) we have E[θ̃2k|θ̃k−1] � θ̃2k−1 + β2P 2
k−1φ

2
k/(1 + Pk−1φ

2
k)

2 and

∞∑

k=1

β2P 2
k−1φ

2
k

1 + Pk−1φ2
k

� β2M2
∞∑

k=1

P 2
k−1 < ∞.

Therefore, |θ̃k| converges almost surely to a bounded limit [23, Lemma 1.2.2]. Notice that limk→∞ Eθ̃2k =

0. Then, there is a subsequence of θ̃k that converges almost surely to 0. Consequently, θ̃k almost surely

converges to 0. Thus, the theorem is proved.

Remark 4. Theorem 1 not only removes the requirement for periodic or i.i.d. inputs, but also makes

the adaptive control for limited information systems possible [21].

Theorem 2. Under the condition of Theorem 1, if 2Bρ > 1, then

lim sup
k→∞

(
Eθ̃2k ·

k∑

i=1

φ2
i

)
� ρ2

2Bρ− 1
,

with ρ = β/γ and B = 2/(
√
2πσ).

Proof. Since 2Bρ > 1, by Lemma A3, there exists m such that Eθ̃2mk = o(1/k). Furthermore, by

Lemma A2, we have Eθ̃2rk = o(1/k) for r = 2, . . . ,m. Let α = 2θ̄M . By (16) and [21, Lemma 1], one can

get

Eθ̃2k � Eθ̃2k−1 +
β2P 2

k−1φ
2
k

(1 + Pk−1φ2
k)

2
+ 2

βPk−1φk

1 + Pk−1φ2
k

Eθ̃k−1

(
1− 2F (φkθ̃k−1)

)

� Eθ̃2k−1 − E

(
2βBPk−1φ

2
k

1 + Pk−1φ2
k

θ̃2k−1

)
+

P 2
k−1φ

2
kβ

2

(1 + Pk−1φ2
k)

2

+
2βPk−1φk

1 + Pk−1φ2
k

(
2

m−1∑

j=2

F (2j−1)(0)

(2j − 1)!
Eθ̃2jk−1 + B̄mEθ̃2mk−1

)

=

(
1− 2βBPk−1φ

2
k

1 + Pk−1φ2
k

)
Eθ̃2k−1 +

β2P 2
k−1φ

2
k

(1 + Pk−1φ2
k)

2

(
1 + o(1)

)
.

By 2Bρ > 1 and ρ = β/γ, we have 2Bβ > γ. Thus, Lemma A5 indicates lim supk→∞ Eθ̃2k/Pk �
β2/(2Bβ − γ), which together with Pk ∼ (γ

∑k
i=1 φ

2
i )

−1 in (11) implies this theorem.

Theorem 2 not only gives the upper bound of the convergence rate of estimation errors, but also tells

us how the threshold and quantization value influence algorithm (6)–(8). Noticing

ρ2

2Bρ− 1
=

1

B2 − (1/ρ−B)2
,

we know that ρ = 1/B can minimize ρ2/(2Bρ− 1) and the minimum value is B−2 within the range of

B > 0 and β > (2B)−1. And then, the algorithm may have the fastest convergence rate.
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Theorem 3. Under the condition of Theorem 2, ρ = 1/B can minimize the upper bound of the conver-

gence rate of Eθ̃2k and then

lim sup
k→∞

(
Eθ̃2k ·

k∑

i=1

φ2
i

)
� 1

B2
.

As we all know, the classic identification algorithm—least square (LS)—can be used to estimate the

unknown parameter θ if the output is measured exactly, which means qk = yk for system (1). Denote

the estimation error by θ̃LS
k , E(θ̃LS

k )2 ∼ Ed21/
∑k

i=1 φ
2
i [7], which is O(1/k) under the condition of

Assumption 3. Theorems 2 and 3 show that, in the case of even binary-valued observations, algorithm

(6)–(8) has the same order O(1/k) as the LS one.

Then, what will happen for the multi-threshold quantization?

4 Identification with multi-threshold quantized observations

This section will discuss the identification with multi-threshold quantized observations. Multi-threshold

quantized outputs bring us more information along with the increase of the number of thresholds than the

binary-valued ones. However, subsequent challenges and difficulties are coming. A primary problem is

how to select the thresholds and quantization values, because an irrational design of multiply thresholds

may be worse than the binary case.

We will construct the identification algorithm, analyze its properties and give the optimal scheme of

the thresholds and quantization values.

4.1 Identification algorithm

Similar to (6)–(8), we introduce the recursive identification algorithm as follows:

θ̂k = ΠΘ

{
θ̂k−1 +

Pk−1φk

1 + Pk−1φ2
k

qk

}
, (17)

Pk = Pk−1 − γ
P 2
k−1φ

2
k

1 + Pk−1φ2
k

, (18)

qk =

N∑

i=1

βi

(
I[ci+φkθ̂k−1�yk<ci+1+φkθ̂k−1]

− I[−ci+1+φkθ̂k−1<yk�−ci+φkθ̂k−1]

)
, (19)

where γ > 0 and 0 = c1 < c2 < · · · < cN < cN+1 = +∞; βi > 0, i = 1, . . . , N , are called quantization

values; initial value θ̂0 ∈ Θ and P0 > 0 can be arbitrarily selected; ΠΘ(·) is the project operator in (6).

Remark 5. A significant difference between algorithm (17)–(19) and (6)–(8) is the quantized information

of system outputs, i.e., quantization is different. qk can only take two values in (6)–(8), but 2N values

in (17)–(19). The thresholds in (19) are symmetric about φkθ̂k−1, which indicates that the difference

between each threshold and φkθ̂k−1 are constants.

4.2 Properties of the identification algorithm

Firstly, the convergence and convergence rate of algorithm (17)–(19) can be obtained using the method

for Theorems 1 and 2.

Theorem 4. For system (1), under the condition of Theorem 1, the parameter estimation error θ̃k given

by identification algorithm (17)–(19) has the convergence in the sense of

lim
k→∞

Eθ̃2k = 0, lim
k→∞

θ̃k = 0 a.s. (20)

As we might expect, θ̃k is both mean-square and almost surely convergent, which is the same as the

case of single threshold. From single threshold to multiple ones, what exact difference happens? The

following theorem may be a good explanation.
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Theorem 5. Under the condition of Theorem 4, if
∑N

i=1 ρi(f(ci)− f(ci+1)) > 1/4, then

lim sup
k→∞

(
Eθ̃2k ·

k∑

i=1

φ2
i

)
� R(N) �

2
∑N

i=1 ρ
2
i

(
F (ci+1)− F (ci)

)

4
∑N

i=1 ρi
(
f(ci)− f(ci+1)

)− 1
, (21)

where F (·) and f(·) are the distribution and density functions of d1, respectively; ρi = βi/γ, i = 1, . . . , N .

Proof. From (19), we have q2k =
∑N

i=1 β
2
i I[ci�|dk−φkθ̃k−1|<ci+1]

. Then, denoting ω = φkθ̃k−1, by (17) one

can get

E[θ̃2k|θ̃k−1] � θ̃2k−1 +
P 2
k−1φ

2
k

(1 + Pk−1φ2
k)

2
E[q2k|θ̃k−1] +

2Pk−1φk

1 + Pk−1φ2
k

θ̃k−1E[qk|θ̃k−1]

= θ̃2k−1 +
P 2
k−1φ

2
k

(1 + Pk−1φ2
k)

2

N∑

i=1

β2
i

(
F (ω + ci+1)− F (ω + ci) + F (ω − ci)− F (ω − ci+1)

)

+
2Pk−1φk

1 + Pk−1φ2
k

θ̃k−1

N∑

i=1

βi

(
F (ω + ci+1)− F (ω + ci)− F (ω − ci) + F (ω − ci+1)

)

= θ̃2k−1 +
P 2
k−1φ

2
k

(1 + Pk−1φ2
k)

2

(
2

N∑

i=1

β2
i (F (ci+1)− F (ci))

)
(
1 + o(1)

)

− Pk−1φ
2
k

1 + Pk−1φ2
k

(
4

N∑

i=1

βi(f(ci)− f(ci+1))

)
θ̃2k−1

(
1 + o(1)

)

=

(
1− Pk−1φ

2
k

1 + Pk−1φ2
k

(
4

N∑

i=1

βi(f(ci)− f(ci+1))

)
(
1 + o(1)

)
)
θ̃2k−1

+
P 2
k−1φ

2
k

(1 + Pk−1φ2
k)

2

(
2

N∑

i=1

β2
i (F (ci+1)− F (ci))

)
(
1 + o(1)

)
.

From this, the theorem can be proved by use of the method in Theorem 2.

Theorem 5 gives an upper bound of the convergence rate of (17)–(19). Consequently, two questions

need to be figured out: i) what is the limit of R(N) with the increase of N ; ii) how to choose ci and βi

to minimize R(N) for a fixed N . The subsequent discussion will concentrate on them.

The following theorem gives the limit characters of R(N).

Theorem 6. If �N = sup2�i�N (ci − ci−1) and

lim
N→∞

�N = 0, lim
N→∞

cN = +∞, ci � ρi � ci+1, i = 1, . . . , N, (22)

then limN→∞ R(N) = Ed21 = σ2.

Proof. From the definition of Lebesgue-Stieltjes integral [24, pp. 178], we have

lim
N→∞

N∑

i=1

ρi
(
f(ci)− f(ci+1)

)
= lim

cN→∞ lim
�N→0

N∑

i=1

ρi
(
f(ci)− f(ci+1)

)
= lim

cN→∞

∫ cN

0

xd
(− f(x)

)

= − lim
cN→∞ cNf(cN) + lim

cN→∞

∫ cN

0

f(x)dx =
1

2
. (23)

In the same way, one can get limN→∞
∑N

i=1 ρ
2
i (F (ci+1)−F (ci)) = σ2/2, which together with (23) implies

the theorem.

Theorem 6 shows that algorithm (17)–(19) could have the same convergence rate as LS one when N

is large enough. In fact, (22) provides a scheme of quantization values and thresholds such that R(N)

converges to Ed21. Thus, (22) is surely a better scheme in the sense of limit. But for a fixed N , it may

be not a good one. An optimal one will be given below.

 https://engine.scichina.com/doi/10.1007/s11432-012-4761-x
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4.3 Optimal scheme of the quantization values and thresholds

As was mentioned above, the quantized information may become richer with the increase in the number

of thresholds, but the designing of thresholds and selecting of quantization values are also important.

To clarify this, let us look at an example. If N = 1, then ρ1 = (2f(0))−1 generates R(1) = (2f(0))−2 =

π/2 = 1.5708; if N = 2 and c = 1, ρ1 = 20 and ρ2 = 5 make R(2) = 17.1377; meanwhile, ρ1 = 0.5211

and ρ2 = 1.7283 do R(2) = 1.1332.

This example shows that the convergence rate of (17)–(19) with two-threshold quantized observations

may be slower than the one with single threshold, but faster if suitable quantization values are selected.

Thus, the quantization values are important for the quantized information. Similar examples can also be

given to illustrate the importance of thresholds.

Next, we will prove that R(N +1) < R(N) if R(N) is minimized for any fixed N . The theorem below

implies the optimal scheme of quantization values and thresholds.

Theorem 7. Denoting cN = (c1, . . . , cN ) and ρN = (ρ1, . . . , ρN), R(N) given by (21) can reach its

minimum value in the sense of

min
cN , ρN

R(N) =
1

2

(
max
cN

N∑

i=1

(f(ci)− f(ci+1))
2

F (ci+1)− F (ci)

)−1

.

Furthermore, if (c∗1, . . . , c
∗
N) = argmaxcN

∑N
i=1(f(ci) − f(ci+1))

2/(F (ci+1) − F (ci)), ρ
∗
i =

∏N−1
j=i kjρ

∗
N ,

i = 1, . . . , N − 1, and ρ∗N =
(∑N−1

i=1

∏N−1
j=i kj(f(c

∗
i )− f(c∗i+1)) + f(c∗N )

)−1
/2 with

kj =
F (c∗j+2)− F (c∗j+1)

f(c∗j+1)− f(c∗j+2)
·
∑j

i=1 ki
(
f(c∗i )− f(c∗i+1)

)
∑j

i=1 k
2
i

(
F (c∗i+1)− F (c∗i )

) , j = 1, . . . , N − 1,

then (c∗1, . . . , c
∗
N , ρ∗1, . . . , ρ

∗
N ) = argmincN , ρN R(N).

Proof. Since ρi �= 0, i = 1, . . . , N , we can define k1, . . . , kN−1 by

ρi =

N−1∏

j=i

kjρN , i = 1, . . . , N − 1. (24)

Then, by (21) one can get

R(N) =
2ρ2N (1− F (cN ) + TN−1)

4ρN (f(cN ) + SN−1)− 1
=

2 (1− F (cN ) + TN−1)

4(f(cN ) + SN−1)2 − (ρ−1
N − 2(f(cN ) + SN−1))2

,

where TN−1 =
∑N−1

i=1

∏N−1
j=i k2j (F (ci+1)−F (ci)) and SN−1 =

∑N−1
i=1

∏N−1
j=i kj(f(ci)−f(ci+1)). Therefore,

R(N) is minimized by ρN = (f(cN ) + SN−1)
−1/2. Substituting it into R(N) we have

R(N) =
1− F (cN ) + TN−1

2(f(cN ) + SN−1)2
=

1

2

( (
f(cN) + kN−1

(
SN−2 + f(cN−1)− f(cN )

))2

1− F (cN ) + k2N−1

(
TN−2 + F (cN )− F (cN−1)

)
)−1

. (25)

Setting x1 = f(cN), x2 = SN−2 + f(cN−1)− f(cN ), x3 = 1− F (cN ), x4 = TN−2 + F (cN )− F (cN−1), by

Lemma A6 in Appendix and (25), we know that R(N) is minimized by

kN−1 =
F (cN+1)− F (cN )

f(cN )− f(cN+1)
· SN−2 + f(cN−1)− f(cN)

TN−2 + F (cN )− F (cN−1)
,

and the minimum value is
1

2

(
(f(cN )− f(cN+1))

2

F (cN+1)− F (cN )
+RN−2

)−1

, (26)

where

RN−2 =
(SN−2 + f(cN−1)− f(cN ))2

TN−2 + F (cN )− F (cN−1)
=

(
kN−2SN−3 + f(cN−1)− f(cN )

)2

k2N−2TN−3 + F (cN )− F (cN−1)
.

 https://engine.scichina.com/doi/10.1007/s11432-012-4761-x
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Table 1 Optimal scheme of thresholds

N (c∗1, c
∗
2, . . . , c

∗
N ) min(R(N))

1 0.9816 1.1331

2 0.6579, 1.4463 1.0616

3 0.5008, 1.0496, 1.7475 1.0357

4 0.4052, 0.8343, 1.3247, 1.9657 1.0234

5 0.3400, 0.6957, 1.0855, 1.5395, 2.1399 1.0166

Similarly, by use of Lemma A6, RN−2 is maximized by

kN−2 =
F (cN )− F (cN−1)

f(cN−1)− f(cN )
· SN−3 + f(cN−2)− f(cN−1)

TN−3 + F (cN−1)− F (cN−2)
,

and the maximum value is (
f(cN−1)− f(cN)

)2

F (cN )− F (cN−1)
+RN−3,

where RN−3 = (SN−3 + f(cN−2)− f(cN−1))
2
/(TN−3+F (cN−1)−F (cN−2)). Then, we can see that the

minimum value of (26) is

1

2

(
(f(cN )− f(cN+1))

2

F (cN+1)− F (cN )
+

(f(cN−1)− f(cN ))2

F (cN )− F (cN−1)
+RN−3

)−1

.

Repeating this process, R(N) is minimized by

kj =
F (cj+2)− F (cj+1)

f(cj+1)− f(cj+2)
·
∑j

i=1 ki(f(ci)− f(ci+1))∑j
i=1 k

2
i (F (ci+1)− F (ci))

, j = 1, . . . , N − 1,

and the minimum value is (
∑N

i=1(f(ci) − f(ci+1))
2/(F (ci+1)− F (ci))

−1/2, from which the theorem can

be proved.

Corollary 1. Under the condition of Theorem 7, R(N) has the strict monotonicity in the sense of

mincN+1, ρN+1 R(N + 1) < mincN , ρN R(N).

Remark 6. Corollary 1 shows that the upper bound of the convergence rate of algorithm (17)–(19) can

gradually decrease along with the increase of the number of thresholds if we select the thresholds and

quantization values according to the scheme in Theorem 7.

Remark 7. In the existing literature on the multi-threshold quantization, the quantization values are

usually fixed in advance, and then the thresholds are optimized [16]. In this paper, the thresholds

and quantization values are optimized at the same time, which brings more difficulties accordingly.

Fortunately, the multi-linear transformation given by (24) can help us to get Theorem 7 and realizes

the two terms optimization.

In the scheme of Theorem 7, quantization values can be expressed by the thresholds, which cannot be

explicitly expressed but can be solved by

argmax
cN

N∑

i=1

(
f(ci)− f(ci+1)

)2

F (ci+1)− F (ci)
.

For example, Table 1 gives the optimal cN as σ = 1. It shows that minR(N) is decreasing with the

increase of N , which is in keeping with Corollary 1.
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Figure 1 Convergence and convergence rate with identical thresholds and three sets of different quantization values.

(a) Convergence of θ̂k; (b) trajectories of θ̃2k ·∑k
i=1 φ
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Figure 2 Convergence and convergence rate with identical quantization values and three sets of different thresholds.

(a) Convergence of θ̂k; (b) trajectories of θ̃2k ·∑k
i=1 φ

2
i .

5 Simulation

Consider a gain system: yk = θφk + dk, whose quantized output is

qk = β1

(
I[θ̂k−1φk�yk<θ̂k−1φk+c] − I[θ̂k−1φk−c<yk<θ̂k−1φk]

)
+ β2

(
I[yk�θ̂k−1φk+c] − I[yk�θ̂k−1φk−c]

)
,

where βi > 0, i = 1, 2. The constant parameter θ = 3 is unknown, but its upper bound θ̄ = 10 is

known; the system noise {dk, k � 1} satisfies Assumption 1 with σ = 1; the inputs follow |φk| � 8 and

lim infk→∞
∑k

i=1 φ
2
i /k > 0.

The goal is to estimate the parameter θ based on the inputs and quantized output qk. Identification

algorithm (17)–(19) is adopted and simulated.

1) Identical thresholds and different quantization values. Let c = 1 and γ = 1, which implies that

β1 = ρ1 and β2 = ρ2. Then, ρ1 and ρ2, respectively, take three different sets of data: 0.1 and 1.1, 0.3

and 1.5, 0.5 and 1.7. Figure 1 describes the trajectories of θ̂k and
∑k

i=1 φ
2
i θ̃

2
k for these three sets of data.

Figure 1(a) shows the convergence of parameter estimates. Though there is a larger estimation error at

the beginning, the estimates eventually converge to the true value, which is in keeping with Theorem 4.

The curves in Figure 1(b) have different heights and are bounded. From this, it follows that the

convergence rate really is closely related to the quantization values and θ̃2k · ∑k
i=1 φ

2
i = O(1), which

illustrates the results in Theorem 5. On the other hand, by R(2; 0.1, 1.1) > R(2; 0.3, 1.5) > R(2; 0.5, 1.7),

the height of
∑k

i=1 φ
2
i θ̃

2
k corresponds to the size of R(2) and smaller of R(2) would be lower of θ̃2k ·∑k

i=1 φ
2
i , which inspires us to minimize R(N) for the fastest rate of algorithm (17)–(19) by selecting

proper quantization values.

2) Identical quantization values and different thresholds. Let ρ1 = 1 and ρ2 = 3. The threshold c

takes three different values: 2.10, 1.85 and 1.60. Figure 2 shows the trajectories of θ̂k and θ̃2k ·∑k
i=1 φ

2
i .

Figure 2(a) displays the convergence of parameter estimates. The curves in Figure 2(b) have different

 https://engine.scichina.com/doi/10.1007/s11432-012-4761-x
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heights and are bounded, which demonstrates that the threshold has an important influence on the

convergence rate and θ̃2k ·
∑k

i=1 φ
2
i = O(1). As mentioned above, by R(2; 2.10) > R(2; 1.85) > R(2; 1.60),

the size of R(2) decides the height of θ̃2k · ∑k
i=1 φ

2
i and smaller of R(2) would be lower of θ̃2k · ∑k

i=1 φ
2
i ,

which also inspires us to minimize R(N) for the fastest rate by choosing suitable thresholds.

6 Conclusion

System identifications with quantized observations have already obtained a lot of excellent achievements,

but these existing algorithms cannot be used to design adaptive control laws due to the restriction of

the periodic or i.i.d. inputs. This paper tried to design the control-oriented identification algorithm

and explore its difficulties. As a beginning, only single parameter system identification was studied

with quantized observations and bounded persistent excitations. In the case of both single and multiple

thresholds, the identification algorithms were constructed and proved to be both almost surely and mean

square convergent, the convergence rate was studied, and the optimal scheme of quantization values and

thresholds was given. A numerical example was simulated to support the results developed in this paper.

As we have declared, this is just a beginning work towards the control-oriented identification with quan-

tized observations. There are many meaningful and interesting related topics, such as how to construct

the most efficient identification algorithm and deal with the more general cases of system models, and

how to design the adaptive control law, based on these algorithms, to regulate the system performance

and so on.
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14 Agüero J C, Goodwin G C, Yuz J I. System identification using quantized data. In: Proceedings of 46th IEEE

Conference on Decision and Control, New Orleans, 2007. 4263–4268

15 Ribeiro A, Giannakis G B, Roumeliotis S I. SOI-KF: distributed Kalman filtering with low-cost communications using

the sign of innovations. IEEE Trans Signal Process, 2006, 54: 4782–4795

16 You K, Xie L, Sun S, et al. Multiple-level quantized innovation Kalman filter. In: Proceedings of 17th International

Federation of Automatic Control World Congress, Seoul, 2008. 1420–1425

 https://engine.scichina.com/doi/10.1007/s11432-012-4761-x



Guo J, et al. Sci China Inf Sci January 2014 Vol. 57 012205:13

17 Wang L Y, Yin G. Asymptotically efficient parameter estimation using quantized output observations. Automatica,

2007, 43: 1178–1191

18 Zhao Y L, Wang L Y, Yin G, et al. Identification of Wiener systems with binary-valued output observations. Auto-

matica, 2007, 43: 1752–1765

19 Zhao Y L, Zhang J F, Wang L Y, et al. Identification of Hammerstein systems with quantized observations. SIAM J

Control Optim, 2010, 48: 4352–4376

20 Green M, Moore J B. Persistence of excitation in linear systems. Syst Control Lett, 1986, 7: 351–360

21 Guo J, Zhang J F, Zhao Y L. Adaptive tracking control of a class of first-order systems with binary-valued observations

and time-varying thresholds. IEEE Trans Autom Control, 2011, 56: 2991–2996

22 Guo L. Time-Varying Stochastic Systems—Stability, Estimation and Control. Changchun: Jilin Science and Technolory

Press, 1993

23 Chen H F. Stochastic Approximation and Its Application. Dordrecht: Kluwer Academic Publishers, 2002

24 Chow Y S, Teicher H. Probability Theory: Independence, Interchangeability, Martingales. 3rd ed. New York: Springer-

Verlag, 1997

Appendix

Lemma A1. If the positive real number sequences {an, n � 1} and {bn, n � 1} follow
∑∞

n=1 an = ∞,
∑∞

n=1 bn =

∞ and an ∼ bn, then
∑n

i=1 ai ∼ ∑n
i=1 bi.

Proof. By Stolz theorem 1), the lemma can be proved.

Proof of Proposition 1. i) From (7), it follows that

1− γPk−1φ
2
k

1 + Pk−1φ2
k

=
Pk

Pk−1
, and

(

1 +
γPk−1φ

2
k

1 + (1− γ)Pk−1φ2
k

)(

1− γPk−1φ
2
k

1 + Pk−1φ2
k

)

= 1.

Thus, we have

1 +
γPk−1φ

2
k

1 + (1− γ)Pk−1φ2
k

=
Pk−1

Pk
,

which implies (9).

For any initial value P0 > 0, by (9), one can get 0 < Pk+1 � Pk. Furthermore, by (3) we have

γφ2
k

(1− γ)Pk−1φ2
k + 1

� γφ2
k

(1− γ)P0M2 + 1
,

which together with (9) and (4) implies

P−1
k � P−1

0 +
γ

(1− γ)P0M2 + 1

k∑

i=1

φ2
i

k→∞−−−−→ ∞.

Noticing limk→∞ Pk = 0, (10) is proved.

ii) By (9) and (10), we have

γφ2
k

1 + (1− γ)Pk−1φ2
k

∼ γφ2
k, and P−1

k = P−1
0 +

k∑

i=1

γφ2
i

1 + (1− γ)Pi−1φ2
i

.

Thus, by Lemma A1, P−1
k − P−1

0 ∼ γ
∑k

i=1 φ
2
k, which together with (3) implies (11).

iii) If
∑∞

i=1 φ
2
i /i < ∞, then by Kronecker lemma [24, pp. 114], we know

∑k
i=1 φ

2
i /k

k→∞−−−−→ 0, which is

contradictory to (4). Thus,
∑∞

i=1 φ
2
i /i = ∞. By Pk = O(1/k), we have

k∑

i=1

1

i
φ2
i = O

(
k∑

i=1

Pi−1φ
2
i

)

,

which together with
∑∞

i=1 φ
2
i /i = ∞ implies (12).

1) Chang G Z, Shi J H. Mathematical Analysis, Vol. 1. Nanjing: Jiangsu Education Press, 1998.
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Lemma A2. Under the condition of Theorem 1, if 2Bρ > 1, m � 2 and Eθ̃2mk = o(1/k), then

Eθ̃2rk = o (1/k) , r = 2, 3, . . . ,m.

Proof. By (13), (11) and [21, Lemma 1], we have

Eθ̃
2(m−1)
k � Eθ̃

2(m−1)
k−1 +

o(1)

k2
+

2(m− 1)βPk−1φk

1 + Pk−1φ2
k

Eθ̃
2(m−1)−1
k−1

(
1− 2F (φkθ̃k−1)

)

�
(

1− 2(m− 1)βBPk−1φ
2
k

1 + Pk−1φ2
k

)

Eθ̃
2(m−1)
k−1 − 2(m− 1)βB̄2Pk−1φ

2
k

1 + Pk−1φ2
k

Eθ̃2mk−1 +
o(1)

k2

�
(

1− βBPk−1φ
2
k

1 + Pk−1φ2
k

)2

Eθ̃
2(m−1)
k−1 +

o(1)

k2

=

(

1− 2βBPk−1φ
2
k

1 + Pk−1φ2
k

)

Eθ̃
2(m−1)
k−1 +

β2B2P 2
k−1φ

4
k

(1 + Pk−1φ2
k)

2
Eθ̃

2(m−1)
k−1 +

o(1)

k2
,

which together with Pk = O(1/k) and Eθ̃2k−1 = o(1) implies

Eθ̃
2(m−1)
k �

(

1− 2βBPk−1φ
2
k

1 + Pk−1φ2
k

)

Eθ̃
2(m−1)
k−1 +

o(1)

k2
.

By [21, Corollary 2], Eθ̃
2(m−1)
k = o(1/k). Similarly, repeating this process, one can get the lemma.

Lemma A3. Under the condition of Theorem 1, if m is a positive integer following m > (2βB̄1)
−1, then we have

Eθ̃2mk = o (1/k).

Proof. Similar to the proof of Lemma A2, we have

Eθ̃2mk �Eθ̃2mk−1 +
o(1)

k2
+

2mβPk−1φk

1 + Pk−1φ2
k

Eθ̃2m−1
k−1

(
1− 2F (φkθ̃k−1)

)

�
(

1− 2mβB̄1Pk−1φ
2
k

1 + Pk−1φ2
k

)

Eθ̃2mk−1 +
o(1)

k2
,

which together with Pk = O(1/k) and [21, Corollary 2] implies Eθ̃2mk = o(1/k) for m > (2βB̄1)
−1.

Lemma A4. If D > γ and (3)–(4) hold, then we have

P−1
k ·

k∏

i=1

(

1− DPi−1φ
2
i

1 + Pi−1φ2
i

)

→ 0, k → ∞.

Proof. By Pk = O(1/k), there exists k0 such that 1−DPk−1φ
2
k/(1 + Pk−1φ

2
k) > 0 for any k � k0 − 1. By (7), we

know

Pk

Pk0−1
=

k∏

i=k0

Pi

Pi−1
=

k∏

i=k0

(

1− γPi−1φ
2
i

1 + Pi−1φ2
i

)

,

which implies

P−1
k

k∏

i=k0

(

1− DPi−1φ
2
i

1 + Pi−1φ2
i

)

= P−1
k0−1

k∏

i=k0

1 + (1−D)Pi−1φ
2
i

1 + (1− γ)Pi−1φ2
i

= P−1
k0−1

k∏

i=k0

(

1 +
(γ −D)Pi−1φ

2
i

1 + (1− γ)Pi−1φ2
i

)

.

Let D̂ = (γ −D)/(1 + (1− γ)P0M
2). By D > γ, we have D̂ < 0. Then,

P−1
k ·

k∏

i=k0

(

1− DPi−1φ
2
i

1 + Pi−1φ2
i

)

� P−1
k0−1

k∏

i=k0

(
1 + D̂Pi−1φ

2
i

)
. (A1)

By Lemma A1 and (12), we have

k∑

i=k0

log
(
1 + D̂Pi−1φ

2
i

)
∼ D̂

k∑

i=k0

Pi−1φ
2
i

k→∞−−−−→ −∞,

which together with (A1) renders P−1
k · ∏k

i=k0

(
1−DPi−1φ

2
i /(1 + Pi−1φ

2
i )
) → 0. From this, the lemma can be

proved.
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Lemma A5. Let Di > 0, i = 1, 2. The sequence {Zk, k � 1} follows

Zk �
(

1− D1Pk−1φ
2
k

1 + Pk−1φ2
k

)

Zk−1 +
D2P

2
k−1φ

2
k

(1 + Pk−1φ2
k)

2
. (A2)

If D1 > γ and (3), (4) hold, then we have lim supk→∞ ZkP
−1
k � D2/(D1 − γ).

Proof. By (7), we have

D2

D1 − γ
Pk − D2

D1 − γ

(

1− D1Pk−1φ
2
k

1 + Pk−1φ2
k

)

Pk−1

=
D2

D1 − γ

(

Pk−1 − γP 2
k−1φ

2
k

1 + Pk−1φ2
k

)

− D2

D1 − γ

(

1− D1Pk−1φ
2
k

1 + Pk−1φ2
k

)

Pk−1 =
D2P

2
k−1φ

2
k

1 + Pk−1φ2
k

.

By (A2),

Zk −
(

1− D1Pk−1φ
2
k

1 + Pk−1φ2
k

)

Zk−1 � D2P
2
k−1φ

2
k

(1 + Pk−1φ2
k)

2
� D2P

2
k−1φ

2
k

1 + Pk−1φ2
k

.

Furthermore, one can get

Zk− D2

D1 − γ
Pk�

(

1− D1Pk−1φ
2
k

1 + Pk−1φ2
k

)(

Zk−1− D2

D1 − γ
Pk−1

)

�
k∏

i=1

(

1− D1Pi−1φ
2
i

1 + Pi−1φ2
i

)(

Z0− D2

D1 − γ
P0

)

,

which together with Lemma A4 implies the lemma.

Lemma A6. If g(x) = (x1 + x2x)
2/(x3 + x4x

2) with xi > 0, i = 1, . . . , 4, then maxx>0 g(x) = x2
1/x3 + x2

2/x4

and argmaxx>0 g(x) = x2x3/(x1x4).

Proof. Noticing an equivalent form of g(x) as follows

g(x) =

[
x3x

2
1 + x4x

2
2

x4
1

((
x+

x2

x1

)−1

− x1x2x4

x3x2
1 + x4x2

2

)2

+
x3x4

x3x2
1 + x4x2

2

]−1

, (A3)

we know that g(x) can reach its maximum value when (x+ x2/x1)
−1 − x1x2x4/(x3x

2
1 + x4x

2
2) = 0, which implies

that x = x2x3/(x1x4). Thus, the maximum value of g(x) is x2
1/x3 + x2

2/x4 by (A3) and the lemma is proved.
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