
SCIENCE CHINA
Mathematics

. ARTICLES . July 2014 Vol. 57 No. 7: 1435–1442

doi: 10.1007/s11425-014-4776-4

c© Science China Press and Springer-Verlag Berlin Heidelberg 2014 math.scichina.com link.springer.com

Induced orbit data and induced unitary

representations for complex groups

ZHANG MingJing1,2 & LIANG Ke1,∗

1School of Mathematical Sciences, Nankai University, Tianjin 300071, China;
2The Key Laboratory of Pure Mathematics and Combinatorics, Nankai University, Tianjin 300071, China

Email: 0310030@mail.nankai.edu.cn, liangke@nankai.edu.cn

Received January 16, 2012; accepted April 19, 2013; published online February 12, 2014

Abstract We use induced orbit covers to define induced orbit data. By studying the space of regular functions

on orbit cover, we know that the induced representation has close connection with the induced orbit datum under

the meaning of Vogan’s conjecture. Therefore, when verifying Vogan’s conjecture, many cases can be reduced

to the case of rigid orbit data.

Keywords Vogan’s conjecture on quantization, induced orbit covers, induced orbit data, unitary represen-

tations

MSC(2010) 22E10, 22E46, 20G05

Citation: Zhang M J, Liang K. Induced orbit data and induced unitary representations for complex groups. Sci

China Math, 2014, 57: 1435–1442, doi: 10.1007/s11425-014-4776-4

1 Introduction

One intriguing and difficult problem in the representation theory of reductive Lie groups is this: How

to attach unitary representations to nilpotent coadjoint orbits? The orbit method (due to Kirillov and

Kostant [11]) can sometimes predict how the representation is “attached” to an orbit should restrict to

a maximal compact subgroup. About this, Vogan has given a conjecture.

Conjecture 1.1 (Vogan’s conjecture on quantization, see also Conjecture 2.4). Let G be a complex

reductive Lie group, and X = G · λ ≃ G/G(λ) a nilpotent coadjoint orbit. Suppose that we are given

an irreducible G-equivariant local system on X ; equicalently, an irreducible representation (χ, Vχ) of the

finite groupG(λ)/G(λ)0 , or an indecomposableG-equivariant holomorphic vector bundle Vχ
∼= G×G(λ)Vχ

on X with a flat connection. Then there is attached to χ an irreducible unitary representation π(λ, χ) of

G. The space of K-finite vectors of π(λ, χ) is isomorphic to the space of algebraic sections of the bundle

Vχ.

Also we know, when a representation πL is attached to a nilpotent orbit OL of L, we can attach

the representation πG := IndG
P (πL ⊗ 11) to the nilpotent orbit OG := Ind g

l (OL). Here, L is the Levi

part of the parabolic subgroup P of G. Then a natural question is: When πL is associated with an

orbit datum (OL, χL) in the sense of Vogan’s conjecture on quantization, which orbit datum will πG be

associated with?

In this paper, we define an induced orbit datum χG. We get a relationship between the space of

K-finite vectors of πG and the space of algebraic sections of the bundle VχG
. Here is the statement.

∗Corresponding author
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Theorem 1.2 (See also Theorem 3.13). Let G be a complex Lie group. Assume πL to be a repre-

sentation which satisfies Vogan’s conjecture attached to the admissible orbit datum (Ou, χL). Let Ov =

IndG
L (Ou) be the induced orbit, and (Ov, χG) the induced orbit datum of G. Write πG = IndG

LN(πL ⊗ 11),

the parabolic induced representation. Then the space of K-finite vectors of πG equals the space of algebraic

sections of the bundle G×Gv χG.

Then we obtain the following corollary.

Corollary 1.3 (See also Corollary 3.14). When χG is irreducible, if furthermore we assume πG is

irreducible, then πG, which is attached to the orbit datum (OG, χG), will satisfies Vogan’s conjecture on

quantization.

2 Admissible orbit data and Vogan’s conjecture on quantization

In this section, we recall the definition of admissible orbit data, and Vogan’s conjecture on quantization.

We begin with a real reductive Lie group G in Harish-Chandra’s class (see [6, Section 3]). We write g for

the Lie algebra of G; analogous notation will be used for other groups.

The “coadjoint orbits” of the orbit method consist of linear functionals on Lie algebras. First of all,

we are interested in

ig∗ = imaginary-valued R-linear functionals on g.

A coadjoint orbit is by definition an orbit of G on ig∗. An orbit is called nilpotent if its closure is a cone.

The orbit method seeks to attach unitary representations not to arbitrary coadjoint orbits, but only

to those satisfying a certain additional condition. In the original work of Kirillov and Kostant, this

additional condition, called integrality, was formulated in a straightforward way. All nilpotent coadjoint

orbits are integral. But Duflo [5] later found that a treatment of more general groups was possible only

if integrality was replaced by the more subtle requirement of admissibility. Not every nilpotent coadjoint

orbit is admissible, so we need to understand this condition.

Definition 2.1. Suppose that G is a real Lie group, and λ ∈ ig∗. Write G(λ) for the isotropy group

of the coadjoint action at λ, so that the coadjoint orbit X = G ·λ may be identified with G/G(λ). Recall

that the tangent space g/g(λ) to X at λ carries a natural G(λ)-invariant imaginary-valued non-degenerate

symplectic form ωλ, defined by

ωλ(A+ g(λ), B + g(λ)) = λ([A,B]), A,B ∈ g.

The isotropy action therefore gives a natural group homomorphism

j(λ) : G(λ) → Sp(ωλ).

The symplectic group has a natural two-fold covering, the metaplectic group:

1 → {1, ǫ} → Mp(ωλ)
p
→ Sp(ωλ) → 1.

This covering may be pulled back via the homomorphism j(λ) to define the metaplectic double cover :

1 → {1, ǫ} → G̃(λ)
p(λ)
→ G(λ) → 1.

Explicitly,

G̃(λ) = {(g,m) ∈ G(λ) ×Mp(ωλ) | j(λ)(g) = p(m)}.

A representation χ of G̃(λ) is called genuine if χ(ǫ) = −I. It is called admissible if it is genuine, and in

addition the differential of χ is a multiple of λ. Explicitly,

χ(expA) = exp(λ(A)) · I, A ∈ g(λ).

An admissible orbit datum is a pair (λ, χ) with λ ∈ ig∗ and χ an irreducible unitary admissible represen-

tation of G̃(λ). The element λ (or the coadjoint orbit G · λ) is called admissible if admissible orbit data

(λ, χ) exist.
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The notion of admissibility is a bit involved, but fortunately it simplifies for nilpotent orbits.

Proposition 2.2 (See [16, Theorem 5.7 and Observation 7.4]). Suppose that G is a real reductive Lie

group. Then an element λ ∈ ig∗ is nilpotent if and only if the restriction of λ to g(λ) is zero.

Suppose henceforth that λ is nilpotent. A representation χ of G̃(λ) is admissible if and only if χ(ǫ)

= −I, and χ is trivial on the identity component of G̃(λ). Consequently λ is admissible if and only if the

preimage under the metaplectic covering map p(λ) of the identity component G(λ)0 is disconnected.

In the case of complex groups, matters are even simpler.

Proposition 2.3 (See [1, Lemma 2.4]). Suppose G is a complex Lie group and λ ∈ ig∗. Then the

metaplectic double cover of G(λ) is trivial:

G̃(λ) ∼= {1, ǫ} ×G(λ).

Suppose in addition that G is reductive and λ is nilpotent. Then λ is admissible, and the admissible

representations of G̃(λ) are in one-in-one correspondence with irreducible representations of the group

G(λ)/G(λ)0 of connected components of G(λ).

When G is a complex reductive Lie group, we have the Vogan’s conjecture on quantization as follows.

Conjecture 2.4 (See [1]). Let G be a complex reductive Lie group, and X = G · λ ≃ G/G(λ) a

nilpotent coadjoint orbit. Suppose that we are given an irreducible G-equivariant local system on X ;

equicalently, an irreducible representation (χ, Vχ) of the finite group G(λ)/G(λ)0, or an indecomposable

G-equivariant holomorphic vector bundle Vχ
∼= G ×G(λ) Vχ on X with a flat connection. Then there is

attached to χ an irreducible unitary representation π(λ, χ) of G. The space of K-finite vectors of π(λ, χ)

is isomorphic to the space of algebraic sections of the bundle Vχ.

More details about this section can be found in [1, 16].

3 Induced orbit data and unitary representations

Let p = l+n be a parabolic subalgebra such that the Cartan subalgebra h of g satisfies h ⊂ l and P = LN

the corresponding parabolic subgroup. Then it is well known that, if πM is a unitary representation of M ,

π = IndG
P (πM ⊗ 11) (unitary induction)

is also unitary.

By [2, 7], we can attach to any representation π a set in the nilpotent cone in g∗. This set is denoted

by WF (π) and called the wavefront set. In the case when π is irreducible and G is complex, WF (π) is

the closure of one nilpotent orbit.

There is a simple relation between induction and the wavefront set. If π = Ind (πM ⊗ 11), then

WF (π) = Ind g

lWF(πM ),

where induction of nilpotent orbits is as in [15]. More details about this can be found in [3].

So given a unitary representation πL attached to a nilpotent orbit OL, the induced representation

πG := IndG
P (πL ⊗ 11)

should be attached to the nilpotent orbit

OG := Ind g

l (OL)

of g. Specially when πG is irreducible, it is natural to wonder which orbit datum πG will be associated

with. We will consider this question in this section.
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3.1 Orbit covers and induced orbit data

In this section, we will recall the definition of induced orbit covers and some properties about the space

of regular functions on orbit covers. More details about this can be found in [12, 14]. Then we will use

this to define the induced orbit data.

Definition 3.1. Let O be an adjoint orbit of G. An orbit cover of O for G is a G-space Õ with a

G-invariant cover map π : Õ → O.

For any v ∈ O and a subgroup Π of Gv/Gv
0, where G

v is the isotropic subgroup of v and Gv
0 the identity

component of Gv, we have a natural G-invariant cover map

π : Õ = G/Gv
Π → G/Gv = O,

where Gv
Π is the open subgroup of Gv corresponding to Π. Then Õ is an orbit cover. (v,Π) is called

a representation of Õ. Obviously, every orbit cover has such a representation; and two representations

correspond to the same orbit cover if and only if they are conjugated in G.

Suppose that G is a complex Lie group, and P = LUP a parabolic subgroup, with Levi factor L and

unipotent component UP . The Lie algebra p of P has Levi decomposition p = l ⊕ uP . Here, uP is the

nil-radical of p and l is a Levi-part.

Naturally, we have an inclusion i : p →֒ g and the quotient by the nil radical map j : p ։ l. The maps

on the dual spaces i∗ and j∗ go in the other direction. Fix a nilpotent coadjoint orbit OL of L. Then

there is a unique nilpotent coadjoint orbit OG such that OG meets (i∗)−1(j∗(OL)) in a dense open subset

(see [15]). Such an orbit OG is called the nilpotent orbit induced from OL and we write OG = Ind g

l (OL).

Choose v ∈ OG ∩ ((i∗)−1(j∗(OL))), we have u ∈ OL, x ∈ u∗P such that v = u+ x.

Lemma 3.2 (See [15]). With the notation as above, we have

1. P v
0 = Gv

0, so pv = gv;

2. OG ∩ (OL + u∗P ), denoted by OP , is a single orbit of P ;

3. P v ⊂ LuUP , and P v meets every component of LuUP , so we have a surjective homomorphism

θ : P v/P v
0 → Lu/Lu

0 .

Given an orbit cover ÕL of L, find a representation (u,ΠL), and choose v ∈ OP such that v = u + x

for some x ∈ u∗P . Now, θ
−1(ΠL) ⊂ P v/P v

0 ⊂ Gv/Gv
0. Hence, (v, θ

−1(ΠL)) is a representation of the orbit

cover ÕG of OG.

Definition 3.3. (v, θ−1(ΠL)) defines an orbit cover of G, which is called the parabolic induction of ÕL

through P , denoted by IndG
L [P ](ÕL).

Remark 3.4 (See [12, Lemma 2.2]). This definition is well-defined, and IndG
L [P ](ÕL) is independent

of the choice of u ∈ OL, of P with Levi factor L, and v ∈ OP . So we will denote it by IndG
L(ÕL) simply.

About the parabolic induction of orbits covers, there is an important property.

Proposition 3.5 (Induction-by-stage, see [12, Lemma 2.3]). Let L1 ⊃ L be a Levi subgroup of G. So

L1 ∩ P and L1P are parabolic subgroups of L1 and G, respectively. Then

IndG
L [P ](ÕL) = IndG

L1
[L1P ](Ind L1

L [L1 ∩ P ](ÕL)).

Let Õ be an orbit cover for G and R(Õ) the normal function ring on Õ. Set N(Õ) = SpecR(Õ).

Then N(Õ) is the normalizer of the closure of Õ (Note here we choose N(Õ) = MaxR(Õ)). Obviously,

N(Õ) is a G-algebraic variety, Õ ⊂ N(Õ) and Õ is dense in N(Õ). (Õ is homogeneous, hence every

point in Õ is normal, so Õ can be regarded as a subset of N(Õ).)

Let OL be a nilpotent orbit and ŌL its closure. Then there exist a natural mapping φ : N(ÕL) → ŌL.

For any (x, y) ∈ N(ÕL) × u∗P , p = ab ∈ P , where a ∈ L, b ∈ UP , we can define the action of P on

N(ÕL)× u∗P as the following:

p(x, y) := (ax,Ad p(y) + Ad b(φ(x)) − φ(x)). (3.1)
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It is easy to check that N(ÕL)× u∗P is a normal P -algebraic variety. Similarly, we can define the action

of P on ÕL × u∗P and ÕP can be defined similar to the definition of ÕG. More details about this part

can be found in [12].

Proposition 3.6 (See [12, Proposition 2.1]). With notation as before, then we have

1. ÕP is an open dense subset of ÕL × u∗P ;

2. N(ÕP ) = N(ÕL)× u∗P ;

3. IndG
L (ÕL) = G×P ÕP .

Since we can identify g with g∗ via an invariant bilinear form on g (for example, the Killing form

when g is semisiple), we will consider the adjoint orbits on g instead of the coadjoint orbits on g∗ from

now. We have that R(uP ) = S(uoppP ) ∼= S(g)/S(p). So

R(ÕP ) = R(ÕL × uP ) = R(N(ÕL)× uP ) ∼= S(g)⊗S(p) R(ÕL). (3.2)

Proposition 3.7 (See [12, Theorem 2.1]). Since G×P R(ÕP ) can be regarded as an induced sheaf on

G/P , we have

R(IndG
L (ÕL)) = Γ(G×P R(ÕP )) = Γ(G×P (R(ÕL))⊗S(p) S(g)) = IndG

L (R(ÕL)).

With notation as above, let θ−1(1) = P v
1 /P

v
0 . Given an admissible representation χL of OL, χL is

corresponding to an irreducible representation of Lu/Lu
0 . To be simple, we still sign this representation

as χL. And also suppose the space χL acts on is VχL
. Then

P v/P v
0

θ
−→ Lu/Lu

0
χL

−→ End (Vχ).

So χL induces a unique irreducible representation χP of P v/P v
0 , satisfying that it acts trivially on P v

1 /P
v
0 .

We can regard χP as an admissible representation of the orbit OP . We still sign it as χP to be simple.

By Lemma 3.2, P v/P v
0 ⊂ Gv/Gv

0. Define χG = IndGv

Pv (χP ). We have the following definition.

Definition 3.8. With notation as before, we call (OG, χG) the induced orbit datum ofG from (OL, χL).

Proposition 3.9. By Remark 3.4, we know that this definition is independent of P .

Theorem 3.10. When P v/P v
0 = Gv/Gv

0, χG is an irreducible representation of Gv/Gv
0. In this case,

(OG, χG) is definitely an orbit datum of G.

Table 1 Induction of orbit covers in classical cases

G Type Gφ/Gφ
0

Lφ′

/Lφ′

0
ΠG P v/P v

0

I (Z2)m (Z2)m−1 ψ−1

j (ΠL) (Z2)m

Sp(2n,C) II (Z2)m (Z2)m ΠL (Z2)m

III (Z2)m (Z2)m−1 ϕi(ΠL) (Z2)m−1

SO(N,C); I S((Z2)m) S((Z2)m−1) ψ−1

j (ΠL) S((Z2)m)

Spin(N,C) for d II S((Z2)m) S((Z2)m) ΠL S((Z2)m)

is not rather odd III S((Z2)m) S((Z2)m−1) ϕi(ΠL) S((Z2)m−1)

I S((Z2)m) S((Z2)m−1) ψ−1

j (ΠL) S((Z2)m)

Spin(N,C) for d II S((Z2)m) S((Z2)m) ΠL S((Z2)m)

is rather odd IV S((Z2)m) S((Z2)m) ΠL S((Z2)m)

V S((Z2)m) S((Z2)m−2) ΠL S((Z2)m−2)

I (Z2)m/∆′

d
(Z2)m−1/∆′

p ψ−1

j (ΠL) (Z2)m/∆′

d

PSp(2n,C) II (Z2)m/∆′

p (Z2)m/∆′

d
ΠL (Z2)m/∆′

p

III (Z2)m/∆′

d
(Z2)m−1/∆′

p ϕi(ΠL) (Z2)m−1/∆′

p

I S((Z2)m)/S(∆′

d
) S((Z2)m−1)/S(∆′

p) ψ−1

j (ΠL) S((Z2)m)/S(∆′

d
)

PSO(2n,C) II S((Z2)m)/S(∆′

d
) S((Z2)m)/S(∆′

p) ΠL S((Z2)m)/S(∆′

d
)

III S((Z2)m)/S(∆′

d
) S((Z2)m−1)/S(∆′

p) ϕi(ΠL) S((Z2)m−1)/S(∆′

p)
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This is easy to verify from the representation theory of finite groups. Moreover, when P v/P v
0

6= Gv/Gv
0, χG is almost never irreducible. In classical cases, the induction of orbit covers has been

divided into three conditions except when G = Spin(N,C) and the partition associated with the nilpo-

tent orbit is rather odd. In this case, it is a little complicated, and the induction of orbit covers is divided

into four parts. In the last condition of each case, P v/P v
0 6= Gv/Gv

0. The induction of orbit covers is

calculated clearly. We recall the result in the following table. Here, φ = {h, v, v′} ∼= sl2(C) is a standard

three-dimensional simple Lie algebra attached to v by the Jacobson-Morozov theorem (see [4, Theo-

rem 3.3.1]), while φ′ is attached to u. And Gφ/Gφ
0
∼= Gv/Gv

0 , L
φ′

/Lφ′

0
∼= Lu/Lu

0 . More details and

notation can be found in [13].

From Table 1, we know that in classical cases, when P v/P v
0 6= Gv/Gv

0, χG is not irreducible. In

exceptional cases, the induction of orbit covers was almost totally calculated. More details about this can

be found in [14]. The tables in the exceptional cases are too long to list here. χG may be not irreducible

only when P v/P v
0
∼= Z3, and Gv/Gv

0
∼= S3.

3.2 Orbit data of induced representations and Vogan’s conjecture

Let OL = L·u be a nilpotent orbit of L and ÕL = L/Lu
0 an orbit cover. Here Lu

0 is the identity component

of Lu. Then R(ÕL) = R(L/Lu
0).

R(ÕL) = Ind L
Lu

0

(C) = Ind L
LuInd Lu

Lu

0

(C) =
∑

χL∈L̂u/Lu

0

Ind L
Lu(VχL

). (3.3)

Here, L̂u/Lu
0 stands for the set of equivalent irreducible representations of Lu/Lu

0 . So we can regard

Ind L
Lu(VχL

) as a subspace of R(ÕL). Choose f ∈ Ind L
Lu(VχL

). That is, f : L → VχL
satisfies f(ll1)

= χL(l1)f(l), for all l1 ∈ Lu. Write f as f̃ ∈ R(ÕL) in the form: f̃(lũ) := f(l), where ũ ∈ ÕL is a

determined element.

Let p = ln ∈ P , where l ∈ L and n ∈ UP . According to the action (3.1) of P on N(ÕL)× uP ,

p · (ũ, x) = (l · ũ, iu(p · (u + x))), for x ∈ uP .

Also, p1 · p2 · (ũ, x) = (l1 · l2 · ũ, iu(p1 · p2 · (u + x))), for p1, p2 ∈ P .

According to (3.2), R(ÕP ) ∼= R(ÕL)⊗S(uopp). Given g ∈ S(uopp), f̃ ⊗ g ∈ R(ÕP ), we regard it as an

element of R(P/P v
1 ), named F .

F (p) = (f̃ ⊗ g)(p · (ṽ)) = f̃(l · ũ) · g(iu(p · (u + x))).

Let p ∈ P and p1 ∈ P v. Then we have

F (pp1) = f̃(ll1ũ) · g(iu(pp1(u+ x)))

= f(ll1) · g(iu(p(u + x)))

= χL(l1)f(l) · g(iu(p(u + x)))

= χL(l1)f̃(lũ) · g(iu(p(u+ x)))

= χP (p1)F (p).

Here, l and l1 are Levi parts of p, p1, respectively. And also by the definition of χP , χP (p1) = χL(l1).

Adding these, we get the following result.

Lemma 3.11. With notation as above, we have Ind L
Lu(χL)⊗ S(uopp) ⊂ Ind P

Pv (χP ).

Furthermore, we have the following theorem.

Theorem 3.12. Let χG be defined as before. Then

IndG
L Ind

L
Lu(χL) ∼= IndG

P Ind
P
Pv (χP ) = IndG

Gv(χG).
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Proof. From the above theorem, we have

IndG
L Ind

L
Lu(χL) = IndG

P Ind
P
L Ind

L
Lu(χL)

= IndG
P (Ind

L
Lu(χL)⊗ S(uopp))

⊂ IndG
P Ind

P
Pv (χP ). (3.4)

By (3.3), we have

R(ÕL) = Ind L
Lu

0

(C) =
∑

χL∈L̂u/Lu

0

Ind L
Lu(VχL

).

Similarly,

R(ÕP ) = Ind P
Pv

1

(C) =
∑

χP∈P̂v/Pv

1

Ind P
Pv (VχP

).

According to (3.2),

IndG
LR(ÕL) = IndG

P Ind
P
LR(ÕL) ∼= IndG

P (R(ÕP ))

= IndG
P

(

∑

χP ∈P̂v/Pv

1

Ind P
Pv (VχP

)

)

=
∑

χP ∈P̂v/Pv

1

IndG
P Ind

P
Pv (VχP

) (by the definition of χG)

=
∑

χP ∈P̂v/Pv

1

IndG
Gv(χG).

Also, because P v/P v
1
∼= Lu/Lu

0 and the formula (3.4), we finish the proof.

We will consider the connection between induction of admissible orbit data and the induction of unitary

representations. Suppose that πL is an irreducible unitary representation of L attached to (Ou, χL). We

choose a maximal compact subgroup KL of L and then extend it to a maximal compact subgroup K

of G. πL|KL
= Ind L

Lu(χL). We will consider the representation πG = IndG
LN(πL⊗11). This is also unitary

by unitary induction.

πG|K = IndG
LN(πL ⊗ 11)|K = IndK

K∩L(πL|K∩L).

When G is a complex reductive Lie group, KC
∼= G. Instead of looking at the action of KC, we will look

at the action of G. This is equivalent. Also by Weyl’s unitary trick (see [9]), we can get

the space of K-finite vectors of πG
∼= IndG

L (Ind
L
Lu(χL)), as a G-action.

Then we get our main result.

Theorem 3.13. Let G be a complex Lie group. With notation as before, assume πL to be a repre-

sentation which satisfies Vogan’s conjecture attached to the admissible orbit datum (Ou, χL). Let Ov =

IndG
L (Ou) be the induced orbit, and (Ov, χG) the induced orbit datum of G. Write πG = IndG

LN(πL ⊗ 11),

the parabolic induced representation. Then the space of K-finite vectors of πG equals the space of algebraic

sections of the bundle G×Gv χG.

Proof. By Corollary 3.12, the space of K-finite vectors of πG is

πG|K = IndG
L (Ind

L
Lu(χL))

= IndG
P Ind

P
Pv (χp) (by definition of χG)

= IndG
Gv (χG).

This is just the space of algebraic sections of the bundle G×Gv χG. So we have finished the proof.
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Corollary 3.14. When χG is irreducible, if furthermore we assume πG is irreducible, then πG, which

is attached to the orbit datum (OG, χG), will satisfy Vogan’s conjecture on quantization. Specially, when

P v/P v
0 = Gv/Gv

0, χG is irreducible.

Example 3.15. Let G = GL(n,C), and O = Op a nilpotent orbit of G, where p := [p1, p2, . . . , pr] is

a partition of n. Assume d := [d1, d2, . . . , ds] = pt to be the transpose partition of p. L = GL(d1,C)

×GL(d2,C)× . . . GL(ds,C) is a Levi subgroup of G. The trivial representation is an irreducible unitary

representation of L attached to the orbit datum (O0, 11). Here O0 is the 0-orbit of L, and 11 the trivial

admissible representation. By [17], we know that πG := IndG
LN(11) is irreducible and unitary. Also,

by [4, Theorem 7.2.3], OG = Ind g
l (O0) = Op. So by our result, πG, attached to the orbit datum (Op, 11),

satisfies Vogan’s conjecture on quantization.

Example 3.16. We consider the representation IndG
P (σ ⊗ eδ ⊗ 11N). Here, P = MAN is a parabolic

subgroup of G, σ a unitary admissible representation of M , and δ half-sum of all positive roots. From [8],

we know that this representation is unitary. Specially, when P is a minimal parabolic subgroup and σ = 11,

it is irreducible. By our results, this representation is attached to the principal nilpotent orbit. Actually,

our result in the case amounts to Kostant’s result in [9,10] that the restriction toK of IndG
Pmin

(11⊗eδ⊗11N)

is isomorphic to the restriction to K of the adjoint action on the principal nilpotent orbit.
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