Synergism of insecticides by enzyme inhibitors in the resistant populations of *Spodoptera litura* (Lepidoptera: Noctuidae)

Mushtaq AHMAD

(Plant Protection Division, Nuclear Institute for Agriculture and Biology, Faisalabad 38000, Pakistan)

Abstract: The effect of enzyme inhibitors piperonyl butoxide (PBO) and tribufos (DEF) was studied in combination with insecticides profenofos, methomyl, thiodicarb, cypermethrin, λ -cyhalothrin, bifenthrin, indoxacarb, and spinosad in the resistant Pakistani populations of *Spodoptera litura* using a leaf-dip bioassay. Both the inhibitors synergised carbamates methomyl and thiodicarb but showed no synergistic effect on an organophosphate profenofos. These inhibitors produced a synergism with cypermethrin but had no synergism with bifenthrin. PBO and DEF enhanced the toxicity of λ -cyhalothrin and indoxacarb in one population but not in the other. Spinosad was synergised by DEF but not by PBO. The potent synergism of carbamates, pyrethroids, indoxacarb and spinosad by PBO and DEF in the present study indicates that detoxification by cytochrome P450 monooxygenases and esterases is at least partially involved in imparting resistance to these insecticides in *S. litura*. However, a limited synergism of insecticides shown by both the synergists implies that other mechanisms such as target site insensitivity and reduced cuticular penetration may be more important mechanisms of resistance in the Pakistani populations of *S. litura*.

Key words: Spodoptera litura; insecticides; resistance; synergism; piperonyl butoxide; DEF

1 INTRODUCTION

Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae), known as armyworm in Pakistan, has emerged as a serious pest of many economic crops such as cotton, tobacco, vegetables. legumes, and oilseeds in the past 10 years. These high-value crops have been subjected to frequent applications of pesticides to control S. litura and other pests. This led to the development of a broadspectrum insecticide resistance in this pest in Pakistan (Ahmad et al., 2007, 2008; Saleem et al., 2008), India (Armes et al., 1997; Kranthi et al., 2001, 2002), and China (Zhou and Huang, 2002). The recently-introduced engineered crops expressing Bacillus thuringiensis (Bt) toxin Cry1Ac are effective in controlling many lepidopterous pests (Shelton et al., 2002) but not Spodoptera species. Spodoptera pests are even gaining more importance on Bt crops having Cry1Ac and increasingly becoming resistant to insecticides applied for their control.

The most common mechanism of *S. litura* resistance to insecticides has been documented to be due to enhanced metabolism mediated through

detoxification by cytochrome P450 monooxygenases and general esterases (Armes et al., 1997; Zhou and Huang, 2002; Huang and Han, 2007; Ahmad, 2009). To find out the role of metabolic detoxification in the putatively resistant Pakistani populations of S. litura, synergists viz. PBO (piperonyl butoxide) as a monooxygenase inhibitor (Hodgson, 1999) and DEF (S, S, S-tributyl phosphorotrithioate, tribufos) as an esterase inhibitor (Jang et al., 1992) were added to the selected insecticides in the present bioassays.

2 MATERIALS AND METHODS

2.1 Insects

Fifth or sixth instar larvae of S. litura were mostly collected within 50 km radius from various locations of Multan in the southern Punjab, Pakistan during 1998-2004. Each collection of about 400 larvae was made by walking through a 2-hectare block of a particular host crop in a zigzag manner to randomize collections. Larvae were fed in the laboratory on a semi-synthetic diet, which consisted of chickpea flour $(300~\rm g)$, ascorbic acid $(4.7~\rm g)$, methyl-4-hydroxybenzoate $(3~\rm g)$, sorbic acid $(1.5~\rm g)$, streptomycin $(1.5~\rm g)$, corn oil $(12~\rm mL)$,

vitamin mixture (10 mL), yeast (48 g), and agar (17 g). Yeast and agar were dissolved in 800 mL of boiling water and added to other constituents premixed in 500 mL of water. Adults were fed on a solution containing sugar (50 g), vitamin mixture (10 mL), methyl-4-hydroxybenzoate (1 g), and distilled water (500 mL).

2.2 Insecticides and synergists

Commercial formulations of insecticides used in bioassays were: Curacron profenofos, 500 g/L EC (emulsifiable concentrate); Syngenta, Switzerland, Lannate methonyl, 400 g/kg SP water soluble powder); DuPont Agricultural Products, Wilmington, DE, USA], Larvin [thiodicarb, 800 g/kg DF (dry flowable); Bayer CropScience, Leverkusen, Germany, Arrivo (cypermethrin, 100 g/L EC; FMC, Philadelphia, PA, USA), Karate (λ-cyhalothrin, 25 g/L EC; Syngenta), Talstar (bifenthrin, 100 g/L EC; FMC), Steward [indoxacarb, 150 g/L SC (suspension concentrate); Dupont], and Tracer (spinosad, 240 g/L SC; Dow AgroSciences, Indianapolis, IN, USA). The synergists PBO (91.3% EC) and DEF (70.5% EC) were obtained from Bayer.

2.3 Bioassays

Synergism bioassays were performed on seven populations of S. litura, which were resistant to organophosphates, carbamates and pyrethroids (Ahmad et al., 2007). Newly moulted 2nd instar larvae from F₁ laboratory cultures were exposed to different insecticides using the leaf-dip method recommended by the Insecticide Resistance Action Committee (IRAC) (http://www.irac-online.org/ resources/methods. asp) (Anonymous, 1990). Each time, the whole batch of insects was divided into four sets and the experiment conducted with and without synergists in parallel. Serial dilutions were prepared as mg/L of the active ingredient of the test compounds using distilled water or synergist solutions, as required, with the concentration based on the percentage of active ingredient of the formulated insecticides. Synergist solutions were made in distilled water as 20 mg/L for PBO as well as DEF. This was the maximum concentration of synergists that could be used without any deleterious effects on the 2nd instar larvae of S. litura. Fivecentimeter diameter cotton (Gossypium hirsutum) leaf discs were cut and dipped into the test solutions for 10 seconds with gentle agitation, then allowed to dry on paper towel on both sides. Five larvae were released onto each leaf disc placed in a 5-cmdiameter Petri dish with adaxial side up. Eight replicates of five larvae were used for each

concentration and 5-9 serial concentrations were used for each test insecticide. The same number of leaf discs per treatment was dipped into distilled water or synergist solution as an untreated check. Moistened filter papers were placed beneath leaf discs to avoid desiccation of leaves in Petri dishes. Before and after treatment, larvae were maintained at a constant temperature of $25 \pm 2\%$ with a photoperiod of 14 h.

2.4 Statistical analysis

Larval mortalities were scored 48 h after treatment. Larvae were considered dead if they failed to make a coordinated movement when prodded with a probe. Data were corrected for control mortality using Abbott's formula (Abbott, 1925) and analysed by probit analysis (Finney, 1971) using POLO-PLUS programme (LeOra Software, 2003). Lethal concentrations (LC $_{50}$ and LC $_{90}$) were calculated and any two values compared were considered significantly different if their respective 95% confidence limits (CLs) did not overlap. To assess the degree of synergism, synergistic ratios (SRs) were calculated by dividing the LC $_{50}$ or LC $_{90}$ of the insecticide by the LC $_{50}$ or LC $_{90}$ of the insecticide plus synergist(s). The 95% CLs for the SRs were computed according to Robertson and Preisler (1992).

3 RESULTS

3.1 Profenofos

Metabolic inhibitors PBO and DEF did not synergise profenofos in the three resistant populations of *S. litura* (Table 1). Profenofos is probably less compromised by the attack of metabolic enzymes. The other resistance mechanisms such as insensitive cholinesterase and reduced cuticular penetration may be responsible for the resistance to profenofos in the Pakistani populations of *S. litura*.

3.2 Carbamates

Three populations tested for methomyl and two populations tested for thiodicarb showed good synergism by the use of both PBO and DEF (Table 1), implying that enzymes cytochrome P450 monooxygenases, esterases and probably glutathione S-transferases play a significant role in the detoxification of methomyl and thiodicarb in the resistant populations of *S. litura*. The extent of synergism by PBO and DEF was similar for methomyl and thiodicarb. However, the application of PBO and DEF could partially reduce LC values of methomyl and thiodicarb in the present study, indicating that other mechanisms such as insensitive cholinesterase and decreased cuticular penetration may also be involved in imparting resistance to carbamates in *S. litura*.

Table 1 Synergism of selected insecticides by piperonyl butoxide (PBO) and tribufos (DEF) in field populations of Spodoptera litura

(DEF) in field populations of Spodoptera litura										
D 1.1	Treatment	Number	Fit of probit line				LC ₅₀ (mg/L)	SR at LC ₅₀	LC ₉₀ (mg/L)	SR at LC ₉₀
Population		of tested larvae	Slope $\pm SE$	x^2	df	Р	(95% CL)	(95% CL)	(95% CL)	(95% CL)
Shujabad ³	Profenofos	320	1.89 ±0.17	3.83	6	0.70	104(83.3 – 129)		494(360 - 754)	
	Profenofos + PBO	280	2.10 ± 0.21	4.88	5	0.43	79.9(65.0 – 98.7)	1.3(0.95 – 1.8)	325(239 – 494)	1.5(0.90 - 1.5)
	Profenofos + DEF	280	2.60 ± 0.26	2.85	5	0.72	143 (119 – 172)	0.73(0.55 - 0.96)	446(347 - 627)	1.1(0.70 - 1.77)
	Profenofos + PBO + DEF	240	2.57 ± 0.27	4.38	4	0.36	81.8(61.2-109)	1.3(1.0 - 1.7)	258 (180 - 469)	1.9(1.2-3.1)
Bosan ⁴	Profenofos	320	1.63 ±0.15	4.25	6	0.64	51.6(40.7 -65.7)		314(219 - 513)	
	Profenofos + PBO	240	2.94 ±0.31	2.14	4	0.71	84.4(70.9 - 100)	0.61(0.46 - 0.84)	231 (183 – 319)	1.4(0.83 -2.3)
	Profenofos + DEF	320	1.87 ±0.17	4.00	6	0.68	95.3(76.6 – 119)	0.54(0.39 - 0.75)	460 (336 - 702)	0.68(0.39-1.2)
	Profenofos + PBO + DEF	320	1.91 ±0.17	3.26	6	0.78	45.4(36.5 - 56.4)	1.1(0.82 - 1.6)	213 (156 – 320)	1.5(0.85 - 2.6)
Khanewal ⁵	Profenofos	280	1.91 ±0.23	4.97	5	0.42	67.5(49.6 - 88.0)		315(225 - 513)	
	Profenofos + PBO	240	2.01 ±0.27	3.17	4	0.53	55.8(41.8 -72.4)	1.2(0.8 - 1.8)	243 (170 – 416)	1.3(0.7 - 2.4)
	Profenofos + DEF	280	1.80 ±0.25	2.78	5	0.73	101 (71.8 – 134)	0.7(0.4-1.0)	517(351 -948)	0.6(0.3-1.2)
	Profenofos + PBO + DEF	280	1.88 ±0.24	4.68	5	0.46	38.2(28.1 -49.8)	1.8(1.2 -2.7)	183 (130 – 301)	1.7(1.0-3.1)
Lar ¹	Methomyl	240	2.49 ±0.26	2.57	4	0.63	398 (329 - 482)		1 304(997 -1 901)	
	Methomyl + PBO	280	2.22 ±0.22	1.81	5	0.87	202(165 – 247)	2.0(1.5 -2.5)	763 (577 –1 113)	1.7(1.1 - 2.6)
	Methomyl + DEF	280	2.07 ±0.20	4.96	5	0.42	128 (104 – 158)	3.1(2.3 -4.1)	535 (397 – 807)	2.4(1.5 - 3.9)
	Methomyl + PBO + DEF	280	2.41 ±0.24	2.61	5	0.76	53.0(43.7 -64.2)	7.5(5.7 – 9.8)	180(139 – 257)	7.2(4.6 – 11)
$Muza fargarh^2$	Methomyl	280	2.23 ± 0.22	3.61	5	0.61	289 (237 – 354)		1 086(817 -1 600)	
	Methomyl + PBO	280	2.57 ±0.26	1.81	5	0.87	133 (110 – 160)	2.2(1.7 -2.9)	418 (325 – 588)	2.6(1.7 -4.1)
]	Methomyl + DEI	F 240	2.54 ± 0.27	4.90	4	0.30	104(76.7 - 142)	2.8(2.1 - 3.6)	331 (224 - 653)	3.3(2.1 – 5.2)
	Methomyl + PBO + DEF	240	2.76 ± 0.29	3.18	4	0.53	104(86.9 – 125)	2.8(2.1 - 3.7)	303 (236 – 428)	3.6(2.3 – 5.6)
Shujabad	Methomyl	240	2.63 ± 0.28	4.62	4	0.33	603 (448 - 803)		1 854(1 296 - 3 377)	
	Methomyl + PBO	240	2.59 ± 0.28	4.47	4	0.35	395 (297 – 528)	1.5(1.2 – 1.9)	1 234(854 -2 289)	1.5(1.0-2.2)
	Methomyl + DEF	280	2.32 ± 0.23	3.56	5	0.61	310(255 – 378)	1.9(1.5 -2.5)	1 108(840 - 1 619)	1.7(1.1 -2.5)
	Methomyl + PBO + DEF	240	2.95 ± 0.31	1.92	4	0.75	339(285 - 403)	1.8(1.4 - 2.2)	921 (730 –1 273)	2.0(1.4-2.9)
Muzafargarh	Thiodicarb	280	2.15 ±0.21	2.50	5	0.78	377 (308 – 466)		1 483 (1 095 -2 255)	
	Thiodicarb + PBO	280	2.11 ±0.21	4.38	5	0.50	215(175 – 265)	1.7(1.3 -2.3)	870(651 –1 291)	1.7(1.0 - 2.7)

续表 1 Table 1 continued

Population	Treatment	Number of tested larvae					$LC_{50}(mg/L)$	SR at LC ₅₀	$LC_{90}(mg/L)$	SR at LC ₉₀
			Slope $\pm SE$	x^2	df	P	(95% CL)	(95% CL)	(95% CL)	(95% CL)
	Thiodicarb + DEF	280	2. 12 ±0. 21	3.15	5	0.68	168 (136 – 207)	2.2(1.6 - 3.1)	676(500 - 1 024)	2.2(1.3 - 3.6)
	Thiodicarb + PBO + DEF	240	2.62 ± 0.28	3.76	4	0.44	190(158 - 229)	2.0(1.4 - 2.7)	587 (454 – 842)	2.5(1.5 -4.1)
Shujabad	Thiodicarb	280	2.09 ± 0.21	4.39	5	0.49	235(191 – 289)		962(717 -1 437)	
	Thiodicarb + PBO	320	1.95 ±0.18	3.31	6	0.80	170(137 – 210)	1.4(1.0 – 1.9)	768 (569 –1 146)	1.2(0.75 - 2.1
	Thiodicarb + DEF	280	2.23 ± 0.22	3.89	5	0.57	140(115 – 172)	1.7(1.3 -2.3)	528 (398 – 777)	1.8(1.1 - 3.0)
	Thiodicarb + PBO + DEF	280	2.47 ±0.24	2.28	5	0.81	117(96.9 – 142)	2.0(1.5 -2.7)	386(298 – 548)	2.5(1.6-4.0)
Shujabad	Cypermethrin	240	2.53 ± 0.27	4.53	4	0.34	22.3(16.6 - 29.9)		71.4(49.2 – 133)	
	Cypermethrin + PBO	280	1.99 ±0.20	3.01	5	0.70	11.1(9.00 - 13.9)	2.0(1.5 -2.7)	48.9(35.4 - 76.4)	1.5(0.9 - 2.4)
	Cypermethrin + DEF	280	2.37 ± 0.23	2.87	5	0.72	9.54(7.86 – 11.6)	2.3(1.8 - 3.1)	33.2(25.3 -48.1)	2.2(1.4-3.4)
	Cypermethrin + PBO + DEF	280	2.12 ±0.21	4.36	5	0.50	7.00(5.68 - 8.60)	3.2(2.4 - 4.2)	28.1(21.1 -41.6)	2.5(1.6-4.0
Bosan	Cypermethrin	280	2.60 ± 0.22	4.49	5	0.48	114(93.5 - 140)		423 (321 - 613)	
	Cypermethrin + PBO	280	2.46 ±0.24	2.28	5	0.81	81.1(67.1 - 98.3)	1.4(1.1 –1.8)	269(206 – 386)	1.6(1.0 - 2.4
	Cypermethrin + DEF	320	1.99 ±0.18	3.30	6	0.77	26.8(21.7 -33.2)	4.3(3.2 - 5.8)	118(87.3 – 177)	3.6(2.2 – 5.8
	Cypermethrin + PBO + DEF	320	1.94 ±0.18	3.66	6	0.72	22.3(18.0 -27.6)	5.1(3.8 - 6.9)	102(75.1 – 152)	4.1(2.5 - 6.7)
Muzafargarh	λ -cyhalothrin	280	2.43 ± 0.24	2.29	5	0.81	152(126 - 184)		512(392 - 736)	
	λ-cyhalothrin + PBO	320	1.91 ±0.18	3.78	6	0.71	73.4(59.0 -91.2)	2.1(1.6 - 2.8)	345 (254 – 517)	1.5(0.9 – 2.4)
	λ-cyhalothrin + DEF	280	2.14 ± 0.21	3.99	5	0.55	65.1(53.0 - 80.0)	2.3(1.8 – 3.1)	259 (193 – 385)	2.0(1.3 - 3.2)
	λ-cyhalothrin + PBO + DEF	280	2.33 ± 0.23	3.11	5	0.68	47.8(39.2 – 58.1)	3.2(2.4 -4.2)	169(130 - 243)	3.0(1.9 -4.7
Shujabad	λ-cyhalothrin	240	2.36 ± 0.25	3.48	4	0.48	94.6(77.7 -116)		330(249 - 493)	
	λ -cyhalothrin + PBO	320	1.83 ±0.17	5.05	6	0.54	96.9(77.6 – 121)	0.98(0.39 - 2.44)	485 (351 – 747)	0.68(0.22 - 2.2
	λ -cyhalothrin + DEF	320	1.93 ±0.18	3.32	6	0.77	75.9(61.1 - 94.1)	1.2(0.92 -1.67)	349 (258 – 522)	0.95(0.58 - 1.5
	λ-cyhalothrin + PBO + DEF	280	2. 14 ±0. 21	4.22	5	0.52	67.6(55.1 -83.1)	1.4(1.1 – 1.8)	268 (200 – 400)	1.2(0.76 -2.0
Shujabad	Bifenthrin	280	1.99 ±0.20	2.26	5	0.81	11.4(9.20 – 14.2)		50.1(36.3 - 78.3)	
	Bifenthrin + PBO	240	2.31 ±0.25	2.30	4	0.68	14.3(11.7 – 17.6)	0.80(0.59 - 1.1)	51.3(38.2 - 78.1)	0.98(0.58 - 1.7
	Bifenthrin + DEF	240	2. 19 ±0. 24	1.49	4	0.83	17.7(14.4 -22.0)	0.65(0.48 - 0.89)	68.2(49.3 – 110)	0.73(0.43 - 1.3
	Bifenthrin + PBO + DEF	240	2.52 ±0.27	4.89	4	0.30	11.0(8.04 - 14.9)	1.0(0.79 - 1.4)	35.4(24.1 -68.6)	1.4(0.88 - 2.3

续表 2 Table 2 continued

Population	Treatment	Number of tested larvae	Fit of probit line				LC_{50} (mg/L)	SR at LC_{50}	$LC_{90}(mg/L)$	SR at LC ₉₀
			Slope $\pm SE$	x^2	df	P	(95% CL)	(95% CL)	(95% CL)	(95% CL)
Bosan	Bifenthrin	280	1.96 ±0.19	3.92	5	0.56	14.8(11.9 - 18.4)		66.6(48.9 – 102)	
	Bifenthrin + PBO	320	2.14 ±0.20	2.27	6	0.89	10.9(8.93 - 13.4)	1.4(1.0 - 1.8)	43.5(32.9 -63.2)	1.5(0.95 - 2.5)
	Bifenthrin + DEF	320	1.83 ±0.17	4.28	6	0.64	12.2(9.73 - 15.2)	1.2(0.89 – 1.7)	60.9(44.1 - 93.7)	1.1(0.65 - 1.8)
	Bifenthrin + PBO + DEF	320	1.77 ±0.16	4.58	6	0.60	4.93(3.92 - 6.19)	3.0(2.2 - 4.1)	26.0(18.8 - 40.2)	2.6(1.5 -4.3)
Mailsi ⁶	Indoxacarb	280	1.60 ±0.18	1.11	5	0.95	484 (359 - 638)		3 055 (2 069 -5 352)	
	Indoxacarb + PBO	280	1.91 ±0.19	2.36	5	0.80	395 (315 – 492)	1.2(0.9 – 1.8)	1 850 (1 350 -2 852)	1.7(0.9 - 3.0)
	Indoxacarb + DEF	280	1.89 ±0.20	3.70	5	0.59	424 (326 – 540)	1.1(0.8 – 1.7)	2 026 (1 463 -3 188)	1.5(0.8 - 2.9)
	Indoxacarb + PBO + DEF	200	2.70 ± 0.36	1.66	3	0.65	376(298 – 461)	1.3(0.9 – 1.9)	1 121 (864 –1 647)	2.7(1.5 -4.9)
Multan ⁷	Indoxacarb	240	2.61 ±0.28	1.85	4	0.76	320(266 - 386)		990 (769 – 1 409)	
	Indoxacarb + PBO	200	3.42 ±0.61	4.29	3	0.23	196(96.6 - 291)	1.6(1.3 -2.1)	465 (309 – 2 169)	2.1(1.4-3.3)
	Indoxacarb + DEF	240	2.38 ± 0.26	2.05	4	0.73	143 (117 – 174)	2.2(1.7 -2.9)	492 (375 – 721)	2.0(1.3 - 3.1)
	Indoxacarb + PBO + DEF	280	2.35 ± 0.29	3.99	5	0.55	130(100 – 162)	2.5(1.8 – 3.3)	455 (345 – 677)	2.2(1.4-3.4)
Multan	Spinosad	280	1.92 ±0.19	2.98	5	0.70	36.7(29.4 - 45.8)		170(123 - 266)	
	Spinosad + PBO	320	1.76 ±0.17	3.50	6	0.74	37.6(28.9 - 48.1)	1.0(0.7 -1.4)	200(144 - 313)	0.9(0.5 - 1.5)
	Spinosad + DEF	320	1.93 ±0.22	1.87	6	0.93	18.9(14.1 -24.3)	1.9(1.4 - 2.8)	86.9(63.8 – 133)	2.0(1.2-3.3)
	Spinosad + PBO + DEF	360	1.55 ±0.15	3.10	7	0.88	12.9(9.72 - 16.8)	2.8(2.0 -4.1)	86.2(60.4 - 138)	2.0(1.1 - 3.5)

^{1:} Berseem, April 1998; 2: Cotton, November 1998; 3: Cauliflower, January 1999; 4: Cabbage, August 1999; 5: Potato, March 2003; 6: Cotton, October 2003; 7: Cotton, October 2004.

3.3 Pyrethroids

Both PBO and DEF had a synergism with cypermethrin in both the populations of S. litura tested in the present studies (Table 1). In the case of λ cyhalothrin, these inhibitors produced synergism in the Muzafargarh population but showed no synergism in the Shujabad population of S. litura. For bifenthrin, both PBO and DEF exhibited no synergism in both the populations tested, indicating the existence of nonmetabolic resistance to bifenthrin in S. litura. The LC values of cypermethrin and λ-cyhalothrin indicate that there was still an appreciable resistance in S. litura that could not be overcome by the use of both the synergists. The resistance to bifenthrin as well as the remaining resistance to cypermethrin and λ-cyhalothrin may be due to mechanisms of decreased nerve sensitivity and/or reduced cuticular penetration.

3.4 New chemicals

PBO and DEF produced no synergism with indoxacarb in the Mailsi population but a significant synergism in the Multan population of S. litura (Table 1), showing an enzymatic metabolism of indoxacarb by cytochrome P450 monooxygenases and esterases in the Multan population only. In the case of spinosad, PBO exhibited no synergism but DEF synergised it in the Multan population. No synergism of indoxacarb in one population and a two-fold synergism in another either by PBO or DEF or PBO + DEF, and a two-fold synergism of spinosad by DEF (Table 1) could not fully eliminate the resistance to these new chemicals in the field populations of S. litura. This suggests that other mechanisms of resistance such as target-site insensitivity and/or reduced cuticular penetration may also be responsible for conferring resistance to indoxacarb and spinosad in the Pakistani S. litura.

4 DISCUSSION

PBO is a well-known inhibitor of cytochrome P450 monooxygenases; but recently, it has been shown to inhibit esterases as well (Gunning et al., 1998; Young et al., 2005, 2006; Kang et al., 2006). On the other hand, DEF is an established esterase inhibitor, but it also acts as a substrate for cytochrome P450 monooxygenases (Sanchez-Arroyo et al., 2001). However, for the purpose of present study, PBO and DEF were considered as inhibitors of cytochrome P450 monooxygenases and esterases respectively.

PBO and DEF showed no synergism profenofos but exhibited a good synergism methomyl and thiodicarb in the current studies. These inhibitors also produced no significant increase in toxicity of profenofos to tobacco budworm Heliothis virescens (F.) (Kanga and Plapp, 1994). On the other hand, both PBO and DEF had a synergism with methomyl in beet armyworm Spodoptera exigua (Hübner) from China (Wang et al., 2002) and cotton bollworm *Helicoverpa armigera* (Hübner) Australia (Gunning et al., 1992), and therefore the resistance in these pests was attributable to cytochrome P450 monooxygenase and esterase detoxification of methomyl. PBO demonstrated a high synergism with carbaryl in S. litura in India (Radhika et al., 2005). Contrarily, PBO and DEF did not decrease the level of carbaryl resistance in H. armigera from Thailand (Ahmad and McCaffery, 1991) and of methomyl resistance in the two-spotted mite Tetranychus urticae Koch from Greece (Tsagkarakou et al., 2002).

There was a good synergism by both PBO and DEF in the case of cypermethrin in two populations and λ-cyhalothrin in one out of two populations, but no synergism of these inhibitors in the case of bifenthrin in two populations of S. litura tested in the present studies. Both the inhibitors were highly synergistic with cypermethrin in resistant strains of S. exigua (Wang et al., 2002), fall armyworm Spodoptera frugiperda (Smith JE), corn earworm *Helicoverpa zea* (Boddie), black cutworm Agrotis ipsilon (Hufnagel) (Usmani and Knowles, 2001), and obliquebanded leafroller Choristoneura rosaceana (Harris) (Ahmad and Hollingworth, 2004). PBO and TPP (triphenyl phosphate), an esterase inhibitor, also demonstrated a high synergism with deltamethrin in resistant strains of S. litura from China (Huang and Han, 2007). PBO displayed a good synergistic effect with cypermethrin in S. litura (Armes et al., 1997), H. armigera (Gunning et al., 1991; Kranthi et al., 2001; Yang et al., 2005), H. virescens (McCaffery et al., 1991; Martin et al., 1997), cotton aphid Aphis gossypii Glover (Jhansi and Subbaratnum, 2004), oriental

fruit fly Bactrocera dorsalis (Hendel) (Hsu et al., 2004), and parasitoids Diaeretiella rapae (McIntosh) (Wu and Jiang, 2003) and Apanteles plutellae Kurdj (Wu and Jiang, 2004). The toxicity of cypermethrin was increased by DEF in cotton leafworm Spodoptera littoralis (Boisd.) (El-Sayed et al., 1982) and H. armigera (Kranthi et al., 1997).

significant Although not statistically, synergistic effect of DEF on cypermethrin was more than PBO in the present studies. Conversely, PBO but not DEF strongly synergised cis-cypermethrin, transcypermethrin and fenvalerate in a resistant Thai strain of H. armigera (Ahmad and McCaffery, 1991). A very high synergism of cypermethrin, λ-cyhalothrin, deltamethrin and fenvalerate by PBO was found in the Pakistani and Chinese populations of H. armigera compared with a low synergism of these pyrethroids by DEF in the Chinese populations (Yang et al., 2004, 2005). Biochemical studies confirmed an enhanced rate of pyrethroid detoxification by cytochrome P450 monooxygenase activity as a major metabolic mechanism in resistant H. armigera (Martin et al., 2002; Yang et al., 2004, 2005; Chen et al., 2005) and H. virescens (Little et al., 1989).

Metabolic inhibitors PBO and DEF enhanced the toxicity of λ -cyhalothrin in honey bee Apis mellifera L. (Johnson et al., 2006) and German cockroach Blattella germanica (L.) (Valles, 1998). PBO and TPP also synergised λ -cyhalothrin in T. urticae and Banks grass mite Oligonychus pratensis (Banks) (Yang et al., 2001). PBO eliminated most of the very high resistance to λ-cyhalothrin in a Chinese strain of H. armigera (Yang et al., 2005). Contrary to the present studies, cytochrome P450 monooxygenases and esterases were involved in the detoxification of bifenthrin and thus imparting resistance to bifenthrin in mites T. urticae and O. pratensis (Yang et al., 2001; van Leeuwen et al., 2005). Esterase inhibitor DEF was able to strongly enhance the toxicity of bifenthrin in a resistant strain of T. urticae (van Leeuwen and Tirry, 2007).

Compared with other pyrethroids, bifenthrin and λ -cyhalothrin, which have the same acid moiety, seem to resist enzymatic attack as there was no synergism by PBO and DEF for bifenthrin in both the populations and for λ -cyhalothrin in one out of two populations of S. litura tested in the present study. This explains why some highly cypermethrin-resistant populations of H. armigera had a low resistance to bifenthrin and λ -cyhalothrin (Ahmad et al., 1997; Yang et al., 2005). Also, the Pakistani populations of S. litura that had moderate to high resistance to cyfluthrin were having very low resistance to bifenthrin (Ahmad et al., 2007). The same phenomenon was found in pyrethroid-resistant populations of sweetpotato whitefly

Bemisia tabaci (Gennadius) (Byrne et al., 1994) and cotton jassid Amrasca devastans (Distant) (Ahmad et al., 1999).

PBO and DEF were synergistic with indoxacarb in one of the two populations of *S. litura* in the present studies. These enzyme inhibitors synergised indoxacarb in a highly resistant strain of *C. rosaceana*; however, the synergism by PBO was much higher than DEF, showing that PBO-suppressible metabolism mediated by cytochrome P450 monooxygenases was a critical mechanism of resistance to indoxacarb in *C. rosaceana* (Ahmad and Hollingworth, 2004). PBO also exhibited a high synergism with indoxacarb in the resistant strains of diamondback moth *Plutella xylostella* (L.) (Sayyed and Wright, 2006) and house fly *Musca domestica* (L.) (Shono *et al.*, 2004).

DEF, but not PBO, exhibited a synergism with spinosad in a field population of *S. litura* (Table 1), which is not understood. This DEF synergism is unlikely due to the inhibition of esterases, which would hydrolyze spinosad. Spinosad does contain an internal ester (lactone) in its macrolide structure that is exceedingly stable, sterically hindered system, which is not available for attack by esterases. Nevertheless, PBO and DEF were both synergistic with spinosad in the resistant *S. exigua* in China (Wang *et al.*, 2006). There was also a high synergism of spinosad by PBO in *B. tabaci* from China (Kang *et al.*, 2006). On the contrary, PBO and DEF did not synergise spinosad in a spinosad-selected strain of *M. domestica* (Shono and Scott, 2003).

A synergism of both carbamates and pyrethroids by PBO and DEF in the same populations of S. litura tested in the current studies suggests that these classes of insecticides are cross-resistant due to a common mechanism of metabolic detoxification by cytochrome P-450 monooxygenases and esterases, and this crossresistance probably extends to new chemicals such as indoxacarb and spinosad. A low level of synergism shown by these enzyme inhibitors demonstrates that other mechanisms of resistance such as target-site insensitivity and decreased cuticular penetration may be of major importance for the observed resistance of S. litura to tested insecticides. This implies that the use of synergists will not combat insecticide resistance of S. litura under field conditions. The cross-resistance across diverse chemicals and existence of multiple resistance mechanisms in this pest thus implementation of an insecticide resistance management strategy a difficult task. In this scenario, the valuable new compounds should be applied judiciously and their useful life can be prolonged by limiting their application to one or two sprays per season on a single crop.

ACKNOWLEDGMENTS The technical assistance of M. Iqbal Arif, Tanveer Hussain, Tabassam Nurin, and Hina Rana is much appreciated.

References

- Abbott WS, 1925. A method of computing the effectiveness of an insecticide. *J. Econ. Entomol.*, 18; 265-267.
- Ahmad M, 2009. Observed potentiation between pyrethroid and organophosphorus insecticides for the management of Spodoptera litura (Lepidoptera; Noctuidae). Crop Prot., 28: 264 – 268.
- Ahmad M, Hollingworth RM, 2004. Synergism of insecticides provides evidence of metabolic mechanisms of resistance in the obliquebanded leafroller *Choristoneura rosaceana* (Lepidoptera; Tortricidae). *Pest. Manag. Sci.*, 60: 465 473.
- Ahmad M, McCaffery AR, 1991. Elucidation of detoxication mechanisms involved in resistance to insecticides in the third instar larvae of a field-selected strain of *Helicoverpa armigera* with the use of synergists. *Pestic. Biochem. Physiol.*, 41: 41-52.
- Ahmad M, Arif MI, Attique MR, 1997. Pyrethroid resistance of Helicoverpa armigera (Lepidoptera: Noctuidae) in Pakistan. Bull. Entomol. Res., 87: 343 – 347.
- Ahmad M, Arif MI, Ahmad Z, 1999. Detection of resistance to pyrethroids in field populations of cotton jassid (Homoptera: Cicadellidae) from Pakistan. J. Econ. Entomol., 92: 1 246 – 1 250.
- Ahmad M, Arif MI, Ahmad M, 2007. Occurrence of insecticide resistance in field populations of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Crop Prot., 26: 809 – 817.
- Ahmad M, Sayyed AH, Saleem MA, Ahmad M, 2008. Evidence for field evolved resistance to newer insecticides in *Spodoptera litura* (Lepidoptera: Noctuidae) from Pakistan. *Crop Prot.*, 27: 1 367 -1 372.
- Anonymous, 1990. Proposed insecticide/acaricide susceptibility tests, IRAC method No. 7. Bull. Eur. Plant Prot. Organ., 20: 399
- Armes NJ, Wightman JA, Jadhav DR, Ranga Rao GV, 1997. Status of insecticide resistance in Spodoptera litura in Andhra Pradesh, India. Pestic. Sci., 50: 240 – 248.
- Byrne FJ, Cahill M, Denholm M, Devonshire AL, 1994. A biochemical and toxicological study of the role of insensitive acetylcholinesterase in organophosphorus resistant *Bemisia tabaci* (Homoptera: Aleyrodidae) from Israel. *Bull. Entomol. Res.*, 84: 179 184.
- Chen S, Yang Y, Wu Y, 2005. Correlation between fenvalerate resistance and cytochrome P450-mediated O-demethylation activity in *Helicoverpa armigera* (Lepidoptera; Noctuidae). *J. Econ. Entomol.*, 98; 943 – 946.
- El-Sayed EI, Abdel-Sattar MM, Mohanna HH, 1982. Influence of three synergists on the action of some insecticides against parental and resistant strains of the Egyptian cotton leafworm. *Experientia*, 38: 1083-1084.
- Finney DJ, 1971. Probit Analysis. 3rd ed. Cambridge University Press, UK.
- Gunning RV, Balfe ME, Easton CS, 1992. Carbamate resistance in *Helicoverpa armigera* (Hübner) (Lepidoptera: Noctuidae) in Australia. *J. Australian Entomol. Soc.*, 31: 97 103.
- Gunning RV, Easton CS, Balfe ME, Ferris IG, 1991. Pyrethroid resistance mechanisms in Australian Helicoverpa armigera. Pestic. Sci., 33: 473 – 490.
- Gunning RV, Moores GD, Devonshire AL, 1998. Inhibition of resistance-related esterases by piperonyl butoxide in *Helicoverpa armigera* (Lepidoptera: Noctuidae) and *Aphis gossypii* (Homoptera: Aphididae). In: Jones DG ed. Piperonyl Butoxide. Academic Press, San Diego, USA. 215 226.
- Hodgson E, 1999. Induction and inhibition of pesticide-metabolizing enzymes; Roles in synergism of pesticides and pesticide action. *Toxicol. Ind. Health*, 15: 6-11.
- Hsu JC, Feng HT, Wu WJ, 2004. Resistance and synergistic effects of insecticides in *Bactrocera dorsalis* (Diptera: Tephritidae) in Taiwan. J. Econ. Entomol., 97: 1 682 – 1 688.

- Huang S, Han Z, 2007. Mechanisms for multiple resistances in field populations of common cutworm, Spodoptera litura (Fabricius) in China. Pestic. Biochem. Physiol., 87: 14-22.
- Jang HH, Wu SY, Casida JE, 1992. Oxidative chemistry and toxicology of S, S, S-tributyl phosphorotrithioate (DEF defoliant). J. Agric. Food Chem., 40: 1 703 – 1 709.
- Jhansi K, Subbaratnam GV, 2004. PBO suppressible resistance in cotton aphid, Aphis gossypii Glover to selected insecticides in Andhra Pradesh. J. Entomol. Res., 28: 337-343.
- Johnson RM, Wen Z, Schuler MA, Berenbaum MR, 2006. Mediation of pyrethroid insecticide toxicity to honey bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenases. J. Econ. Entomol., 99: 1 046-1 050.
- Kang CY, Wu G, Miyata T, 2006. Synergism of enzyme inhibitors and mechanisms of insecticide resistance in *Bemisia tabaci* (Gennadius) (Hom., Aleyrodidae). J. Appl. Entomol., 130: 377 – 385.
- Kanga LHB, Pla PPJr WF, 1994. Resistance monitoring and mechanisms in the tobacco budworm to organophosphates, carbamates and cyclodienes insecticides. In: Proceedings of the Beltwide Cotton Conferences Organized by the National Cotton Council of America, Memphis, TN, USA. 810 – 815.
- Kranthi KR, Armes NJ, Rao NGV, Raj S, Sundaramurthy VT, 1997. Seasonal dynamics of metabolic mechanisms mediating pyrethroid resistance in central India. *Pestic. Sci.*, 50: 91 – 98.
- Kranthi KR, Jadhav DR, Wanjari RR, Ali SS, Russell D, 2001.
 Carbamate and organophosphate resistance in cotton pests in India,
 1995 to 1999. Bull. Entomol. Res., 91: 37 46.
- Kranthi KR, Jadhav DR, Kranthi S, Wanjari RR, Ali SS, Russell DA, 2002. Insecticide resistance in five major insect pests of cotton in India. Crop Prot., 21: 449 – 460.
- LeOra Software, 2003. Poloplus, A User's Guide to Probit or Logit Analysis. LeOra Software, Berkeley, CA, USA.
- Little EJ, McCaffery AR, Walker CH, Parker T, 1989. Evidence for an enhanced metabolism of cypermethrin by a monooxygenase in a pyrethroid-resistant strain of the tobacco budworm (*Heliothis virescens* F.). *Pestic. Biochem. Physiol.*, 34: 58-68.
- Martin T, Chandre F, Ochou O, Vaissayre M, Fournier D, 2002.

 Pyrethroid resistance mechanisms in the cotton bollworm,

 Helicoverpa armigera (Lepidoptera: Noctuidae) from West Africa.

 Pestic. Biochem. Physiol., 74: 17 26.
- Martin SH, Ottea JA, Leonard BR, Graves JB, Burris E, Micinski S, Church GE, 1997. Effects of selected synergists on insecticide toxicity in tobacco budworm (Lepidoptera: Noctuidae) in laboratory and field studies. J. Econ. Entomol., 90: 723-731.
- McCaffery AR, Gladwell RT, El-Nayir H, Walker CH, Perry JN, Miles MJ, 1991. Mechanisms of resistance to pyrethroids in laboratory and field strains of *Heliothis virescens*. Southwest Entomol., 15: 143 -158.
- Radhika P, Subbaratnam GV, Punnaiah KC, 2005. Role of mixed function oxidases and esterases in the larval population of *Spodoptera litura* to carbaryl resistance. *Ann. Plant Prot. Sci.*, 13: 217-218.
- Robertson JL, Preisler HK, 1992. Pesticide Bioassays with Arthropods. CRC Press, Boca Raton, FL, USA.
- Saleem MA, Ahmad M, Ahmad M, Aslam M, Sayyed AH, 2008.
 Resistance to selected organochlorine, organophosphates, carbamates and pyrethroids in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. J. Econ. Entomol., 101: 1 667 1 675
- Sanchez-Arroyo H, Koehler PG, Valles SM, 2001. Effects of the synergists piperonyl butoxide and S,S,S-tributyl phosphorotrithioate on propoxur pharmacokinetics in *Blattella germanica* (Blattodea: Blattellidae). J. Econ. Entomol., 94: 1 209 - 1 216.
- Sayyed AH, Wright DJ, 2006. Genetics and evidence of an esteraseassociated mechanism of resistance to indoxacarb in a field

- population of diamondback moth (Lepidoptera; Plutellidae). Pest Manag. Sci., 62; 1 045 1 051.
- Shelton AM, Zhao JZ, Roush RT, 2002. Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Ann. Rev. Entomol., 17: 845 – 881.
- Shono T, Scott JG, 2003. Spinosad resistance in the housefly, *Musca domestica*, is due to a recessive factor on autosome 1. *Pestic. Biochem. Physiol.*, 75: 1-7.
- Shono T, Zhang L, Scott JG, 2004. Indoxacarb resistance in the housefly, Musca domestica. Pestic. Biochem. Physiol., 80: 106 -112.
- Tsagkarakou A, Pasteur N, Cuany A, Chevillon C, Navajas M, 2002. Mechanisms of resistance to organophosphates in *Tetranychus urticae* (Acari: Tetranychidae) from Greece. *Insect Biochem. Mol. Biol.*, 32 · 417 – 424.
- Usmani KA, Knowles CO, 2001. Toxicity of pyrethroids and effect of synergists to larval and adult *Helicoverpa zea*, *Spodoptera frugiperda*, and *Agrotis ipsilon* (Lepidoptera: Noctuidae). *J. Econ. Entomol.*, 94:868-873.
- Valles SM, 1998. Toxicological and Biochemical studies with field populations of the German cockroach, Blattella germanica. Pestic. Biochem. Physiol., 62: 190 – 200.
- van Leeuwen T, Tirry L, 2007. Esterase-mediated bifenthrin resistance in a multiresistant strain of the two-spotted spider mite, *Tetranychus urticae. Pest Manag. Sci.*, 63: 150 156.
- van Leeuwen T, van Pottelberge S, Tirry L, 2005. Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains of *Tetranychus urticae*. *Pest Manag. Sci.*, 61: 499 507.
- Wang KY, Jiang XY, Yi MQ, Chen BK, Xia XM, 2002. Insecticide resistance of Spodoptera exigua. Acta Phytoph. Sin., 29: 229 -234.
- Wang W, Mo J, Cheng J, Zhuang P, Tang Z, 2006. Selection and characterization of spinosad resistance in *Spodoptera exigua* (Hübner) (Lepidoptera; Noctuidae). *Pestic. Biochem. Physiol.*, 84: 180 – 187.
- Wu G, Jiang SR, 2003. Effects of synergists on insecticide susceptibility and detoxification enzyme in a field population of parasitoid Diaeretiella rapae. Acta Phytoph. Sin., 30: 418 – 422.
- Wu G, Jiang SR, 2004. Susceptibility to insecticides and enzyme characteristics in the parasitoid Apanteles plutellae Kurdj. (Hymenoptera: Braconidae) and its host Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Acta Entomol. Sin., 47: 25-32.
- Yang Y, Wu Y, Chen S, Devine GJ, Denholm I, Jewess P, Moores GD, 2004. The involvement of microsomal oxidases in pyrethroid resistance in *Helicoverpa armigera* from Asia. *Insect Biochem. Mol. Biol.*, 34: 763 773.
- Yang E, Yang Y, Wu S, Wu Y, 2005. Relative contribution of detoxifying enzymes to pyrethroid resistance in a resistant strain of Helicoverpa armigera. J. Appl. Entomol., 129: 521 – 525.
- Yang X, Zhu KY, Buschman LL, Margolies DC, 2001. Comparative susceptibility and possible detoxification mechanisms for selected miticides in banks grass mite and two-spotted spider mite (Acari: Tetranychidae). Exp. Appl. Acarol., 25: 293 – 299.
- Young SJ, Gunning RV, Moores GD, 2005. The effect of piperonyl butoxide on pyrethroid-resistance-associated esterases in *Helicoverpa* armigera (Hübner) (Lepidoptera: Noctuidae). Pest Manag. Sci., 61: 397-401.
- Young SJ, Gunning RV, Moores GD, 2006. Effect of pretreatment with piperonyl butoxide on pyrethroid efficacy against insecticide-resistant Helicoverpa armigera (Lepidoptera: Noctuidae) and Bemisia tabaci (Sternorrhyncha: Aleyrodidae). Pest Manag. Sci., 62: 114-119.
- Zhou XM, Huang BO, 2002. Insecticide resistance of the common cutworm (*Spodoptera litura*) and its control strategies. *Entomol. Knowl.*, 39: 98 – 102.

斜纹夜蛾抗性种群中酶抑制剂对 杀虫剂的增效作用

Mushtaq AHMAD

(Plant Protection Division, Nuclear Institute for Agriculture and Biology, Faisalabad 38000, Pakistan)

摘要:采用浸液生测法研究了斜纹夜蛾 Spodoptera litura 巴基斯坦抗性种群中酶抑制剂[胡椒基丁醚(PBO)和脱叶膦(DEF)]对丙溴磷、灭多威、硫双灭多威、氯氰菊酯、氯氟氰菊酯、联苯菊酯、茚虫威和多杀菌素等杀虫剂的增效作用。结果表明:PPO 和 DEF 对氨基甲酸酯杀虫剂灭多威和硫双灭多威均具有增效作用,但对有机磷杀虫剂丙溴磷不具有增效作用。两种抑制剂对氯氰菊酯均产生增效作用,但对联苯菊酯没有增效作用。PPO 和 DEF 增加了氯氟氰菊酯对Multan 种群的毒性,但没有增加其对 Mailsi 种群的毒性。DEF 对多杀菌素具有增效作用,但 PBO 对其没有增效作用。PBO 和 DEF 对氨基甲酸酯杀虫剂、拟除虫菊酯杀虫剂、茚虫威和多杀菌素具有明显的增效作用,这说明细胞色素P450 单加氧酶和酯酶的解毒作用至少部分参与了斜纹夜蛾对这些杀虫剂的抗性过程。不过,两种增效剂对杀虫剂增效作用范围有限,暗示对于斜纹夜蛾巴基斯坦种群而言,其他的机制(如靶位点不敏感、表皮穿透作用降低)可能是更重要的抗性机制。

关键词:斜纹夜蛾;杀虫剂;抗性;增效作用;胡椒基丁醚(PBO);脱叶膦(DEF) 中图分类号:Q965.9 文献标识码:A 文章编号:0454-6296(2009)06-0631-09

(责任编辑:赵利辉)