环结构修饰的丙烯酰胺聚合物的合成及性质

刘东志*赵锦花 李祥高 (天津大学化工学院 天津 300072) (天津复印技术研究所 天津)

关键词 聚丙烯酰胺、结构修饰、 , 合成, 性质

近年来, 红基元结构作为功能材料引起人们的广泛注意^[1,2],我们选择部分 红颜料研究了其用于静电复印的光电性能取得了较好的结果^[3~6]. 但其难溶性阻碍了对它的进一步研究和应用,为此力图合成了 红染料修饰的丙烯酰胺聚合物,该化合物溶解性、成膜性、加工性等方面得到明显改善,且具有一定荧光性、光电性. 可用于水处理示踪,高分子染料等方面. 这种新型 环结构修饰的丙烯酰胺聚合物的合成未见有文献报道

四羧酸酐由上海染料化工厂提供, 纯度为 98.0%, 提纯后使用. 丙烯酰氯为自制品, 其它试剂均为化学纯.

四口瓶中加入 $7.8 \,\mathrm{g}$ 四羧酸酐、 $80 \,\mathrm{mL}$ 水和 $12 \,\mathrm{mL}$ 三乙胺,加热至 四羧酸酐溶解,加 $20 \,\mathrm{mL}$ 吡啶和 $2 \,\mathrm{mL}$ 苄胺冷至 $20 \sim 25$. 85% 磷酸调 pH 值 $6.4 \sim 6.7$,慢慢升温至 90 ,保 持温度及 pH 值反应 $6 \,\mathrm{h}$. 用 85% 磷酸酸析,过滤,滤饼用 5% 氢氧化钾及 95 热水处理,除去未反应的 四羧酸酐及副产物 N ,N' —二苄基—3,4,9,10— 四羧二酰亚胺,得到 $2.7 \,\mathrm{g}$ N —苄基—3,4,9,10— 四羧单酸酐单酰亚胺 (PT CMI),收率 28%. 将 $2.4 \,\mathrm{g}$ PT CMI 和 $5 \,\mathrm{mL}$ 乙醇胺,在 $50 \,\mathrm{mL}$ 乙二醇中 170 回流 $2 \,\mathrm{h}$,冷却,过滤.滤饼用乙醇、5% 热氢氧化钾溶液、蒸馏水洗净,干燥得 $2.1 \,\mathrm{g}$ N —苄基—N' —羟乙基—3,4,9,10— 四羧二酰亚胺 $(PT \,\mathrm{CI})$,收率 80% .

往 2. 6 g PTCI、2 mL 吡啶及 40 mL 二氧六环混合物中加入 1.5 mL 丙烯酰氯, 100 下回流 3 h, 然后趁热加水 150 mL, 搅拌一夜, 过滤, 水洗, 干燥得 2.2 g N —苄基-N'-(2-丙烯酸酯基乙基) -3, 4, 9, 10 — 四羧二酰亚胺(以下简称 红单体), 收率 77%.

准确称取丙烯酰胺和 红单体加入一定量蒸馏水和二氧六环混合溶剂(具体量见表 1)中,通氮条件下,搅拌并加热至 65 ,加入引发剂过硫酸铵,温度升至 75 后维持 2 h,得到的反应液用溶解沉淀法(水/乙醇)精制.

Carlo Erba 公司 M O D 1106 自动元素分析仪; N ico let 公司 FT 红外光谱仪; 岛津 R F - 5000 荧光分光光度计; 岛津 U V - 3100 紫外可见近红外分光光度计.

结果与讨论

红染料单体的合成路线如下:

1998-02-10 收稿, 1998-03-09 修回

$$\sum_{CH_2-N} C_{CH_2-N} = \sum_{CH_2-N} C_{CH_4OOCCH} = CH_2$$

将 PTCI、 红单体分别用硝基苯和冰醋酸重结晶后, 进行元素分析, PT CI 实测值(理论值) %: C 75. 66(75.57), N 5.34(5.34), H 4.00(3.82); 红单体实测值(理论值) %: C 73. 68(74.74), N 4.04(3.80), H 4.66(4.84). 同时 红单体红外光谱在 $1732~{\rm cm}^{-1}$ 处出现酯基的特征吸收峰.

聚合物合成路线为:

$$mCH_2CHCOC_2H_4N$$

$$DYE = COC_2H_4N$$

选择适宜的条件合成了不同 红含量及不同分子量的聚合物, 其特性粘数见表 1. 可以看出, 随着 红单体含量的增大, 聚合物特性粘数逐渐变小, 分子量呈下降趋势. 这是因为 红单体的聚合活性远远低于丙烯酰胺单体聚合活性.

聚合物编号	m(红单体)/m(丙烯酰胺)	V(二氧六环)/V(水)	特性粘数/(mL·g ⁻¹)
1	0. 01/ 10	10/30	117. 4
2	0. 02/ 10	10/35	91.7
3	0. 05/ 10	10/40	85. 8
4	0. 1/ 10	10/50	73. 0
5	0. 2/ 10	10/60	68. 3

表 1 红单体含量对分子量的影响

配制 红单体的二氧六环溶液及聚合物 2,5 的水溶液,测定吸收曲线及荧光发射光谱,结果见图 1 和图 2. 由图 1 可见,不同染料含量聚合物吸收曲线基本相似,但与单体吸收曲线差别较大,单体吸收曲线尖锐,而聚合物吸收曲线宽;单体最大吸收分别出现在 $460~\mathrm{nm}$ 、 $490~\mathrm{nm}$ 处,而聚合物最大吸收出现在 $530~\mathrm{nm}$ 及 $570~\mathrm{nm}$ 左右处,较前者向长波长方向移动 $70~80~\mathrm{nm}$. 由图 2 可见,不同染料含量聚合物荧光发射曲线基本相似,但与单体发射曲线差别较大,单体荧光发射峰为双峰,而聚合物荧光发射峰为单峰;单体最大发射峰出现在 $532.6~\mathrm{nm}$ 、

571.6 nm处, 而聚合物最大发射峰出现在 732 nm 左右处. 这种光谱性质的变化是由溶剂极性和氢键作用引起的, 此外聚合物分子链扭曲对光谱性质的影响也不容忽视. 将不同染料含量的聚合物(2, 3, 5)配制成不同浓度水溶液, 测定荧光强度, 如图 3 所示. 由图看出, 染料含量较低的聚合物 2 的荧光强度与浓度呈线性关系之外其余两种染料含量较高的聚合物 3,5 浓度较小时荧光强度与浓度呈线性关系, 浓度较大时曲线往下偏离.

将聚合物(1~5)配制成水溶液,铺在铝箔上再蒸去水形成高分子膜.对此膜进行电镜分析发现,

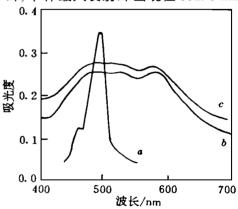
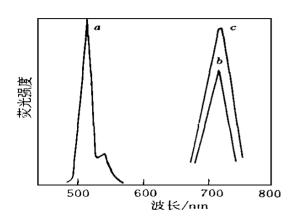



图 1 单体(a)、聚合物 2(b)、5(c) 吸收曲线

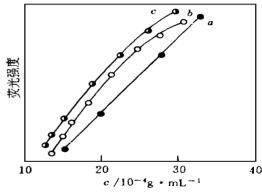


图 2 单体(a)、聚合物 2(b)、5(c) 荧光发射曲线

图 3 聚合物 2(a)、3(b)、5(c)浓度-荧光强度曲线

其表面光滑无颗粒,说明聚合物具有良好的成膜性.

参考文献

- 1 Hans Tobias, Macholdt, Alexander Sieber. Dyes and Pigments, 1988, 9(3):119
- 2 Panyootatos P J, Whitlock J, Sauers R R et al. Conference Record of Photovoltaic Specialists Conference, 1987 (19th), IEEE, New Orleans, May 4, 1987: 889
- 3 刘东志,黄颂羽,任绳武. 高技术通讯, 1993, 3(3):30
- 4 刘东志. 染料工业, 1994, 31(1): 17
- 5 Liu Dongzhi, Liu Guangchen, Qi Cuie. Transactions of Tianjin University, 1997, 3(2): 154
- 6 刘东志. 功能性染料导论, 第1版. 天津: 天津科技翻译出版社, 1996: 72

Synthesis and Properties of Acrylamide Polymers Tailored by Pervlene Structure

Liu Dongzhi*, Zhao Jinhua
(Chemical Engineering School, Tianjin University, Tianjin 300072)

Li Xianggao
(Tianjin Institute of Electric-photography, Tianjin)

Abstract Perylene monoanhydride monoimide was prepared by reaction of perylene anhydride and benzylamine in water-pyridine mixture of pH 6.4 \sim 6.7. It was then condensed with ethanolamine and acrylchloride to give an unsymetrical perylene monomer N-benzyl-N'-(2-acrylate ethyl)-3, 4, 9, 10-tetracarboxylic diimide. Polymerization of the diimide with acrylamide gave a new type polymer containing perylene structure. The new polymer has different visible and fluorescence properties from the perylene monomer and improved solubility and film formation properties.

Keywords polyacrylamide, structure modification, perylene, synthesis, property