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Differentially expressed protein analysis of different drought tolerance hulless
barley leaves
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Abstract: In order to reveal the differences in response to drought stress among different hulless barley varieties from the protein
level and to analyze the protein molecular mechanism of drought tolerance, Handizi Barley (HDZ) resistant to drought stress and
Dama Barley (DM) sensitive to drought stress were used as research materials in this study. Drought treatment were determined
by potted-planting method with limited water supply, four physiological indexes of hulless barley leaves with different drought
gradients, including chlorophyll, soluble protein, malondialdehyde content, and relative conductivity were investigated. iTRAQ
technology was used to conduct differential protein analysis on the whole protein group of barley leaves under deep drought stress.
The results showed that with the extension of the drought treatment, the chlorophyll and soluble protein content of two hulless
barleys under drought stress gradually decreased, the electrical conductivity and malondialdehyde content gradually increased,
and the decrease in chlorophyll and soluble protein content, the increase in electrical conductivity and the content of malondial-
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dehyde in Dama were greater than that of Handizi; 4163 proteins (polypeptides) were quantified, among them, compared with
normal culture in the Handizi comparison group, 68 up-regulated proteins and 63 down-regulated proteins were screened by
iTRAQ; in the comparative group of Dama, 21 up-regulated proteins and 32 down-regulated proteins were screened. KEGG
pathway showed that the top three enrichment pathways were metabolic, amino acid biosynthesis, and secondary metabolite bio-
synthesis. The first one mainly related to citric acid cycle, carbon cycle, and other metabolic pathways. The synthesis and degra-
dation of amino acids were mainly involved arginine and alanine. The synthesis of secondary metabolites were about arachidonic
acid and linolenic acid. This study screened the proteins related to the metabolic pathways and other related functions in response
to drought stress on proteome level in hulless barley, providing a theoretical basis for revealing the molecular regulation mecha-

nism in response to drought stress.
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Table 1 Effects of drought treatment on protein, relative conductivity and malondialdehyde content of barley leaves
Treatment Variety Protein C(jlntent Relative -el‘ectrical Malondialdehydj content
(mgg) conductivity (%) (umoL g7)
HDZ 7.30+0.10 Aa 44.50+0.68 Cc 32.92+0.45 Cc
CK DM 10.00+0.56 Aa 50.10+0.34 Cc 28.70+0.10 Cc
7d HDZ 6.90+0.55 Aa 45.89+0.47 Bb 35.55+0.29 Bb
7 days after drought treatment DM 7.87+0.12 Bb 54.33+0.60 Bb 32.21+0.38 Bb
10d HDZ 6.75+0.26 Aa 48.97x0.71 Aa 38.92+0.42 Aa
10 days after drought treatment DM 7.65+0.61 Bb 60.22+0.39 Aa 40.33+0.48 Aa
0.01 , 0.05

Uppercase letters indicate extremely significant differences at the 0.01 probability level; lowercase letters indicate significant differences at

the 0.05 probability level.
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Table 2 Distribution of coverage percentage of identified protein

Protein coverage (%)

Comparison group <10 10<X<20 20<X<30 30<X<40 40<X<50 50<X<60 60<X<70 Total
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