关于 Hopf 曲面的模空间*

李庆忠

张锦豪

(中国科学院数学研究所, 北京 100080)

(复旦大学数学系,上海 200433)

摘要 研究了 $S^1 \times (S^3/H)$ 上复结构的模空间,这里 $H \subset U(2)$ 是有限阶 Abel 群, $H \subset S^3$ 上的作用自由且真不连续.

关键词 复结构的形变 层上同调 Kodaira-Spencer 映射

一个 Hopf 曲面 V是指一个紧的二维复流形,它的万有复盖空间是 $\mathbb{C}_*^2 = \mathbb{C}^2 \setminus \{0\}$. 由 Kodaira 的结论^[1], V 可以表示为一个商空间 \mathbb{C}_*^2/G , 其中 G 由 \mathbb{C}_*^2 的一些自同构生成,G 在 \mathbb{C}_*^2 上的作用是自由的且真不连续.

令 $B \notin \mathbb{C}^2$ 中的单位球, 即 $B = \{(z, w) \in \mathbb{C}^2 | |z|^2 + |w|^2 < 1\}$. 若 $g \notin \mathbb{C}^2$ 的一个自同构,且当 $n \to +\infty$ 时, $q^n(B)$ 收敛于 0, 那么 g 被叫做一个收缩.

由文献[1],G有下面的性质:

- (1) G 包含一个收缩 q, 而 q 生成的无限循环子群在 G 中有一个有限指标;
- (2) 若 G 是非 Abel 群,那么通过对 \mathbb{C}^2 的整体坐标的适当选择, G 是 $GL(2,\mathbb{C})$ 的一个子群.

定理 1 若 Abel 群 H 不是有限阶循环群,那么 $S^1 \times (S^2/H)$ 上所有复结构的精细模空间存

¹⁹⁹⁴⁻⁰⁶⁻²³ 收稿, 1995-02-06 收修改稿

^{*}国家自然科学基金和江苏省教委自然科学基金资助项目

在;若H是有限阶循环群,那么连 $S^1 \times (S^3/H)$ 上所有复结构的粗糙模空间也不存在.

文中使用的方法同文献[5] 中的方法类似,直接计算 $\dim H^1(V, \Theta)$, 这与文献[1], IV 中使用的方法不同.

$1 H^1(V, \Theta)$ 维数的计算

因为 $H \subset U(2)$ 为有限阶 Abel 群,由文献[6],我们可设

$$K=A_m=\left\langle \left(\begin{array}{cc} a & 0\\ 0 & a^{-1} \end{array}\right) \right\rangle,$$

这样 K为 m- 阶循环群, a 为 1 的 m- 次本原单位根, $m \ge 3$.

利用 K, 我们可以确定 H. 设

$$x = \left(\begin{array}{cc} b & c \\ d & e \end{array}\right) \in H,$$

由 H 为 Abel 群, 且 $K \subseteq H$, 从等式

$$\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} b & c \\ d & e \end{pmatrix} = \begin{pmatrix} b & c \\ d & e \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$$

便可立得 c=d=0, 即 $x=\begin{pmatrix}b&0\\0&e\end{pmatrix}$, |be|=1.

首先,由文献[4], 若商空间 \mathbb{C}^2_*/G 为 Hopf 曲面且 $G \subset GL(2,\mathbb{C})$, 那么 \mathbb{C}^2_*/G 为 $S^1 \times (S^3/H)$ 上的复结构的充要条件是 $G = \langle u \rangle \times H$, 这里 $u = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, α , $\beta \in D^*$. 下面我们证明,若存在一正整数 q,

使得对每个 $x = \begin{pmatrix} b & 0 \\ 0 & e \end{pmatrix} \in H$, 有 $b = e^a$, 那么 $S^1 \times (S^3/H)$ 上有除上述 \mathbb{C}^2_*/G 以外的复结构, 这里 $G = \langle u \rangle \times H$, $u = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, $\alpha, \beta \in D^*$.

引理 1.1 $S^1 \times (S^3/H)$ 上仅以 \mathbb{C}^2_*/G_u 为复结构的充要条件是 $H \neq A_m$, 这里 $G_u = \langle u \rangle \times H$, $u = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, α , $\beta \in D^*$.

证 我们先证: 若存在一正整数 q, 使对每个 $x = \begin{pmatrix} b & 0 \\ 0 & e \end{pmatrix} \in H$, 有 $b = e^q$, 即 $H = A_m$ 包含于这种情况, 那么任取定 $\alpha \in D^*$, 记

$$u_{\lambda}$$
: $(z, w) \mapsto (\alpha^q z + \lambda w^q, \alpha w), \quad \lambda \in \mathbb{C}$.

 $G_{u_{\lambda}} = \langle u_{\lambda} \rangle \times H$,有 $\mathbb{C}_{*}^{2}/G_{u_{\lambda}}$ 为 $S^{1} \times (S^{3}/H)$ 上的复结构. 事实上,由文献[4],当 $\lambda = 0$ 时, $\mathbb{C}_{*}^{2}/G_{u_{0}}$ 为 $S^{1} \times (S^{3}/H)$ 上的复结构. 下面我们利用复结构形变的基本知识 $\mathbb{C}_{*}^{2}/G_{u_{\lambda}}$ ($\lambda \neq 0$) 也为 $S^{1} \times (S^{3}/H)$ 上的复结构. 因 H 在 S^{3} 上的作用自由,从而在 \mathbb{C}_{*}^{2} 上的作用自由,故 \mathbb{C}_{*}^{2}/H 为一个复流形. 令

$$g: \mathbb{C} \times (\mathbb{C}^2_*/H) \to \mathbb{C} \times (\mathbb{C}^2_*/H),$$

 $(\lambda, [x]) \mapsto (\lambda, [u,x]).$

由于 u_λ 为一个收缩, 且 $\langle u_\lambda \rangle$ 与 H 中的元素可交换, 故 g 是完全确定的, 且 ($\mathbb{C} \times (\mathbb{C}_*^2/H)$)/ $\langle g \rangle$ 为复流形. 令

$$\eta: (\mathbb{C} \times (\mathbb{C}^2_+/H))/\langle g \rangle \to \mathbb{C}$$

为自然投影,那么易证

$$((\mathbb{C} \times (\mathbb{C}^2_{+}/H))/\langle g \rangle, \eta, \mathbb{C})$$

为一个复解析族,且 $\eta^{-1}(\lambda) \cong \mathbb{G}_*^2/G_{u_\lambda}$. 由此,从 \mathbb{G}_*^2/G_{u_0} 的底流形为 $S^1 \times (S^3/H)$,便知 $\mathbb{G}_*^2/G_{u_\lambda}(\lambda \neq 0)$ 也是 $S^1 \times (S^3/H)$ 上的复结构.显然 $G_{u_\lambda} \subset GL(2,\mathbb{G})$.

另一方面,若 V 为 $S^1 \times (S^3/H)$ 上的复结构,由文献[1,4], V 为 Hopf 曲面,记 $V = \mathbb{G}_*^2/G$,当 $G \subseteq GL(2,\mathbb{G})$ 时, G 为 Abel 群,且 $G \cong \mathbb{Z} \otimes Torsion(G)$,并且 Torsion(G) 为有限阶的, \mathbb{Z} 的生成元对应于 TG 的元素为

$$u_{\lambda}$$
: $(z, w) \mapsto (\alpha^q z + \lambda w^q, \alpha w),$

其中 $\lambda \in \mathbb{G}_*$, $\alpha \in D^*$. 我们先确定 Torsion(G)的元素. 令 $h \in \text{Torsion}(G)$. 由 Hartogs 定理, h 可以全纯延拓到 \mathbb{G}^2 上,即存在 \mathbb{G}^2 上的全纯函数 φ , ψ , 使得

$$h:(z, w) \mapsto h(z, w) = (\varphi(z, w), \psi(z, w)),$$

 $\varphi(0, 0) = 0, \quad \psi(0, 0) = 0.$

由 u₁ · h=h · u₁, 我们有

$$\varphi(\alpha^q z + \lambda w^q, \ \alpha w) = \alpha^q \varphi(z, w) + \lambda \psi(z, w)^q, \tag{1.1}$$

$$\psi(\alpha^q z + \lambda w^q, \ \alpha w) = \alpha \psi(z, w). \tag{1.2}$$

通过解这个函数方程,可得

$$h:(z,w)\mapsto (C(h)^q z, C(h)w),$$

这里 C(h) 为依赖于 h 的常数. $C(h)^n = 1$, n 也仅由 h 决定. 这样便得到了一个到 U(1) 的子群的同构:

$$\Phi$$
: Torsion(G) $\rightarrow U(1)$, $h \mapsto C(h)$.

再利用 h 无不动点便得

Torsion(G)
$$\cong \mathbb{Z}_n$$
, $(n, q) = 1$.

由此可知, 当 $G \subset GL(2,\mathbb{C})$ 时, $G \cong \mathbb{Z} \oplus \mathbb{Z}_n$, 且由下面两个元素生成:

$$u_{\lambda}: (z, w) \mapsto (\alpha^{q}z + \lambda w^{q}, \alpha w), \quad \alpha \in D^{*}, \quad \lambda \in \mathbb{G}_{*},$$

 $h: (z, w) \mapsto (b^{q}, bw),$

b是 1 的 n- 次本原单位根, (n,q)=1. 因 $K=A_m$, 而

$$A_{m} = \left\langle \left(\begin{array}{cc} a & 0 \\ 0 & a^{-1} \end{array} \right) \right\rangle \subset H = \left\langle h \right\rangle,$$

a 为 1 的 m- 次本原单位根,这样便立得 $H = A_m$. 证毕.

为了计算 $\dim H^1(\mathbb{G}^2_*/H, \Theta)$, 我们首先对 $G \subset GL(2, \mathbb{G})$ 的情况, 求复流形 $\operatorname{Aut}(\mathbb{G}^2_*/G)$ 的维数, 因为对紧复流形 M, $\operatorname{Aut}(M)$ 有一个自然的复 Lie 群结构.

当 $G \subset GL(2,\mathbb{C})$ 时, $G = G_u = \langle u \rangle \times H$, $u = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, α , $\beta \in D^*$. 因 G_u 为 Abel 群, 故 $\mathbb{C}^2_*/\langle u \rangle$ 为 \mathbb{C}^2_*/G_u 的一个有限分支复盖. 若 $f \in \operatorname{Aut}(\mathbb{C}^2_*/G_u)$, 则 f 可提升到复盖空间 \mathbb{C}^2_* , $\mathbb{C}^2_*/\langle u \rangle$, 即存在

 $\widetilde{f} \in Aut(\mathbb{G}_*^2)$, $\widetilde{\widetilde{f}} \in Aut(\mathbb{G}_*^2/\langle u \rangle)$, 使图 1 交换, 其中 π 为自然投影.

$$\begin{array}{cccc}
\mathbb{C}_{+}^{2} & & \widetilde{f} & & \mathbb{C}_{+}^{2} \\
\downarrow & \pi & & \downarrow \pi \\
\mathbb{C}_{+}^{2}/\langle u \rangle & & & \widetilde{f} & & \downarrow \pi \\
\downarrow & \pi & & \downarrow \pi \\
\mathbb{C}_{+}^{2}/G_{u} & & & f & & \mathbb{C}_{+}^{2}/G_{u}
\end{array}$$

$$\begin{array}{cccc}
\mathbb{C}_{+}^{2}/G_{u} & & & & \mathbb{C}_{+}^{2}/G_{u}
\end{array}$$

下面我们求出f的具体表达式.

$$(1)u = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}, \alpha \in D^*.$$
 由于 \tilde{f} 为 \tilde{f} 的提升,利用比较幂

级数系数的方法可得

$$\widetilde{f} = \begin{pmatrix} c_{10} & c_{01} \\ d_{10} & d_{01} \end{pmatrix} \in GL(2, \mathbb{C}).$$

又 \widetilde{f} 为 f 的提升, 必有 $\widetilde{f}H\widetilde{f}^{-1}=H$, 从而得 $\widetilde{f}K\widetilde{f}^{-1}=K$, 由此得 $c_{01}=d_{10}=0$, 或 $c_{10}=d_{01}=0$. 这里 $\mathrm{Aut}(\mathbb{C}_*^2/G_u)$ 由对角阵决定,

故 $\dim_{\mathbb{C}} \operatorname{Aut}(\mathbb{G}^2_{\star}/G_{u})=2.$

$$(2)\alpha = \beta^q$$
, 即 $u = \begin{pmatrix} \beta^q & 0 \\ 0 & \beta \end{pmatrix}$. 同样由 \tilde{f} 为 \tilde{f} 的提升, 利用比较幂级数系数的方法得 \tilde{f} : $(z,w) \mapsto (cz + bw^q, dw), \quad cd \neq 0$.

若令

$$K = \left\langle \left(\begin{array}{cc} a & 0 \\ 0 & a^{-1} \end{array} \right) \right\rangle = \langle v \rangle,$$

由 $\tilde{f} \circ v = v \circ \tilde{f}$,便得 $ba = a^{-q}b$,从而仅当 $q \equiv m-1 \pmod{m}$ 时, $b \neq 0$. 这里的 m 由 K 唯一决定, $v = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$,a 为 m- 次本原单位根.同样,若 $h = \begin{pmatrix} s & 0 \\ 0 & t \end{pmatrix} \in H$, $h \notin K$,从 $\tilde{f} \circ h = h \circ \tilde{f}$,有仅 当 $s = t^q$, $q \equiv m-1 \pmod{m}$ 时,有 b 自由.总之,仅当 $q \equiv m-1 \pmod{m}$,且 H 的每个元素 $h = \begin{pmatrix} t^q & 0 \\ 0 & t \end{pmatrix}$ 时,b 才能自由,否则 b = 0. 这说明:仅当 H 的所有元素 $h = \begin{pmatrix} t^q & 0 \\ 0 & t \end{pmatrix}$,且 $q \equiv m-1 \pmod{m}$ 时,dim_cAut(\mathbb{C}^2_*/G_u)=3,否则 dim_cAut(\mathbb{C}^2_*/G_u)=2.

 $(3)\beta = \alpha^q$, 即 $u = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^q \end{pmatrix}$. 同 (2)一样可得, 当 $q = m-1 \pmod{m}$ 且 H 的所有元素 $h = \begin{pmatrix} t & 0 \\ 0 & t^q \end{pmatrix}$ 时, 有 $\dim_{\mathbf{c}} \operatorname{Aut}(\mathbb{C}^2_*/G_u) = 3$, 否则 $\dim_{\mathbf{c}} \operatorname{Aut}(\mathbb{C}^2_*/G_u) = 2$.

(4) $\alpha \neq \beta^q$, $\beta \neq \alpha^q$, $\forall q \in \mathbb{N}^+$. 由 \tilde{f} 为 \tilde{f} 的提升, 利用幂级系数的比较可得 $\tilde{f} = \begin{pmatrix} b & 0 \\ 0 & c \end{pmatrix}$. 这便有 $\dim_{\mathbf{c}} \operatorname{Aut}(\mathbb{C}^2_{*}/G_{*}) = 2$.

由 $S^1 \times (S^3/H)$ 的第一、第二 Betti 数 $b_1 = b_2 = 0$, 便易得陈类 $c_1 = c_2 = 0$. 令 Θ 为 \mathbb{C}_*^2/G_u 上全纯切向量场的芽层,由 Serre 对偶关系,

$$H^2(\mathbb{G}_*^2/G_u, \Theta) \cong H^0(\mathbb{G}_*^2/G_u, \Omega^2(T^*\mathbb{G}_*^2/G_u)).$$

但用后面引理 1.3 的类似证法可证

$$H^0(\mathbb{G}_*^2/G_u, \Omega^2(T^*\mathbb{G}_*^2/G_u))=0.$$

故

$$H^2(\mathbb{G}^2_{\bullet}/G_u, \Theta) = 0.$$

由 Riemann-Roch-Hirzebruch 定理,

$$h^2 - h^1 + h^0 = \frac{1}{12} (c_1^2 + c_2) = 0.$$

这便得

$$h^1 = h^0$$
, $h^j = \dim H^j(\mathbb{C}^2_{\bullet}/G_{\bullet}, \Theta)$.

由于 \mathbb{G}_*^2/G_u 为线性变换群 G_u 在 \mathbb{G}_*^2 上作用的轨道空间, 便易得 $h^0 = \dim_{\mathbb{G}} \operatorname{Aut}(\mathbb{G}_*^2/G_u)$.

从上面的论证和引理 1.1 的证明有

引理 1.2 设 $G_u = \langle u \rangle \times H$, $u = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, α , $\beta \in D^*$, 那么我们有表 1.

引理 1.3 若 $H = A_m$, $u: (z, w) \mapsto (\alpha^q z + \lambda w^q)$

 αw), $q \equiv m-1 \pmod{m}$, 那么

$$h^1 = \dim_{\mathbb{C}} H^1(\mathbb{C}^2_{*}/G_{u}, \Theta) = 2,$$

其中 $G_u = \langle u \rangle \times H$, $\lambda \in \mathbb{G}_*$, $\alpha \in D^*$.

证 由上面的论证, $h^1 = h^0 = \dim_{\mathbb{C}} H^0(\mathbb{C}^2_*/G_u, \Theta)$. 由引理的假设, \mathbb{C}^2_*/G_u 由自同构 u 和 $v = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$

决定. 而这两个解析自同构可以看作流形 \mathbb{C}_*^2/G_u 的转换函数,这样 \mathbb{C}_*^2/G_u 的切丛有转换矩阵

表 1

$u = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ 的形式	Н	h^1
$\alpha = \beta$	任意	2
$\alpha = \beta^q q \equiv m - 1 \pmod{m}$	A_m	3
$\alpha = \beta^q q \equiv m - 1 \pmod{m}$	$H \neq A_m$	2
$\beta = \alpha^q q \equiv m - 1 \pmod{m}$	A_m	3
$\beta = \alpha^q q \equiv m - 1 \pmod{m}$	$H \neq A_m$	2
	任意	2

$$\left(\begin{array}{cc} \alpha^q & q\lambda w^{q-1} \\ 0 & \alpha \end{array}\right), \left(\begin{array}{cc} a & 0 \\ 0 & a^{-1} \end{array}\right).$$

因此,为了在 \mathbb{C}^2_*/G_u 上得到一个整体向量场,仅需找两个 \mathbb{C}^2 上的全纯函数 f, g 满足下列条件:

$$\begin{cases} f(\alpha^q z + \lambda w^q, \ \alpha w) = \alpha^q f(z, w) + q \lambda w^{q-1} g(z, w), \\ g(\alpha^q z + \lambda w^q, \ \alpha w) = \alpha g(z, w) \end{cases}$$

且

$$\begin{cases} f(az, a^{-1}w) = af(z, w), \\ g(az, a^{-1}w) = a^{-1}g(z, w). \end{cases}$$

由此可得

$$\begin{cases} f(z,w) = bz + cw^{q}, \\ g(z,w) = \frac{b}{q} w. \end{cases}$$

这样仅 b, c 两个自由量,故 \mathbb{C}_*^2/G_u 上全纯切向量场的维数为 2, 即 $h^1(\mathbb{C}_*^2/G_u)=2$. 证毕.

2 模空间

我们先回忆一下基本定义^[8]. 设有一个复空间的类 2, 在 2 上有一个全纯等价关系"~". 我们要考察等价类的集 2/~.

定义 2.1 对 \mathcal{D} 来说有一个精细的模空间,是指有一个复空间 M 和 \mathcal{D} 的对象的复解析族 $\mathcal{V}=(V,p,M)$,使得对 \mathcal{D} 的对象的每一个复解析族 $\mathcal{V}=(W,q,S)$,存在唯一的全纯映射 $f:S\to M$,满足: \mathcal{V} 是局部同构于 f*v.

因为只有很少的类 2/存在精细的模空间,人们也考虑弱一点的概念.

设有一个复空间 M, 它的底集是 \mathcal{U}/\sim . 对 \mathcal{U} 的对象的一个复解析族 $(W,q,S)=\{X_s\}_{s\in S}$, 有一个映射

$$\mathscr{V}_{w}: S \mapsto \mathscr{U}/\sim.$$
$$S \mapsto [X_{s}],$$

其中[]代表在"~"下的等价类.

定义 2.2 对 2 来说,有一个粗糙的模空间是指:有一个复空间 M 和一个映射 $a: 2/\sim M$, 使得

(i) 对 𝒯 的对象的每个解析族 (W, q, S), 映射

$$a \cdot \mathscr{V}_{w}: S \to M$$

是全纯的;

(ii) 若有一个复空间 N, 使得对 \mathcal{D} 的对象的每个解析族 (W,q,S) 都存在唯一的全纯映射 $\chi_{\omega}: S \to N$,

那么我们总有一个映射 μ : $M \rightarrow N$ 如下给出:

令 $m \in M$, $X = a^{-1}(m) \in \mathcal{U}/\sim$. 将 (X, a, m) 看作为一个复解析族,定义 $\mu(m) = \chi_X(m)$, 那么 μ 是 全纯的.

以下我们总认为
$$(\alpha, \beta) \in D^* \times D^*$$
 与矩阵 $u = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ 等同.

引理 2.1 令
$$M = D^* \times D^*$$
, 则 $\forall u = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \in M$, $u' = \begin{pmatrix} \alpha' & 0 \\ 0 & \beta' \end{pmatrix} \in M$, \mathbb{G}_*^2/G_u 与 $\mathbb{G}_*^2/G_{u'}$ 双全

证 由 \mathbb{C}_*^2 为 \mathbb{C}_*^2/G_u 与 \mathbb{C}_*^2/G_u 的万有复盖空间,故 \mathbb{C}_*^2/G_u 与 \mathbb{C}_*^2/G_u 双全纯等价的充要条件是存在 \mathbb{C}_*^2 的双全纯自同构 F 满足

$$Fu = hu'F$$
, $FHF^{-1} = H$, $h = \begin{pmatrix} s & 0 \\ 0 & t \end{pmatrix}$,

其中 $h \in H$. 从 Fu = hu' F,得 u = hu' 或 $\alpha = t\beta'$, $\beta = s\alpha'$. 若 $\alpha = t\beta'$, $\beta = s\alpha'$,则 $F = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$,这 样从 $FHF^{-1} = H$ 便得,当 $v = \begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix} \in H$ 时,有 $\widetilde{v} = \begin{pmatrix} t & 0 \\ 0 & s \end{pmatrix} \in H$. 证毕.

我们首先对 $H \neq A_m$ 的情形构造一个整体的 Kuranishi 族.

取 $M = D^* \times D^*$, 因 $H \subset U(2)$ 为有限子群, 且 H 在 S^3 上的作用自由, 故在 \mathbb{G}_*^2 上的作用自由, 从而 \mathbb{G}_*^2/H 有自然的商流形结构, 即为复流形. 令

$$g: M \times (\mathbb{G}_*^2/H) \to M \times (\mathbb{G}_*^2/H),$$
$$(u, [x]) \mapsto (u, [ux]).$$

由 u = H 的元素可交换,从而 g 是完全确定的. Q(g)无不动点且真不连续,这样

$$(M \times (\mathbb{G}^2_{\star}/H))/\langle g \rangle$$

为复流形. 令

$$\eta: M \times (\mathbb{C}^2_*/H) \rightarrow (M \times (\mathbb{C}^2_*/H))/\langle g \rangle$$

为自然投影, π : $M \times (\mathbb{C}_*^2/H) \to M$ 为因子投影, 则这些映射显然全纯, 从而存在全纯映射 p: $(M \times (\mathbb{C}_*^2/H))/\langle g \rangle \to M$

使图2交换.

$$M \times (\mathbb{G}_{+}^{2}/H) \xrightarrow{\eta} (M \times (\mathbb{G}_{+}^{2}/H))/\langle g \rangle$$

$$\uparrow \qquad \qquad \downarrow \qquad p$$

$$M \qquad \qquad \boxtimes 2$$

由 η 为复盖映射知, p 为淹没. 又 p 的每个纤维 $p^{-1}(u) \cong \mathbb{G}_*^2/\langle u \rangle \times H$, 从而 p 的每个纤维紧. 这样便有复解析族

$$(\mathcal{M}, p, M),$$

其中 $\mathcal{M}=(M\times(\mathbb{G}_*^2/H))/\langle g\rangle$. 由上面的讨论, 当 $H\neq A_m$ 时, 它是 $S^1\times(S^3/H)$ 上所有复结构的复解析族. 我们先证明它是一个 Kuranishi 族. 为此, 我们考虑图 3 所示的交换图:

$$H^{1}(\mathbb{G}_{*}^{2}/G_{u}, \Theta) \xrightarrow{\gamma} H^{1}(\mathbb{G}_{*}^{2}/\langle u \rangle, \Theta)$$

$$\uparrow \rho_{u} \qquad \qquad \uparrow \widetilde{\rho}_{u}$$

$$T_{u}M \xrightarrow{id} T_{u}M$$

$$\boxtimes 3$$

其中 ρ_u , $\tilde{\rho}_u$ 为 Kodaira-Spencer 映射, $T_u M$ 为 M 在点 u 的切空间,id 为恒等映射. γ 的定义为: 若 $\theta \in H^1(\mathbb{C}^2_*/G_u, \Theta)$,取 \mathbb{C}^2_*/G_u 的一个适当的坐标复盖 $\{\mathcal{V}_j\}$,由 $\mathbb{C}^2_*/(u)$ 为 \mathbb{C}^2_*/G_u 的有限分支复盖,我们要求 \mathcal{V}_j 为 \mathbb{C}^2_*/G_u 的复盖邻域. θ 关于 $\{\mathcal{V}_j\}$ 有一个链表示 $\{a_{jk}(z_k)\}$,由 $\{\mathcal{V}_j\}$ 自然对应 $\mathbb{C}^2_*/(u)$ 上的一个复盖 $\{\mathcal{V}_j', \cdots, \mathcal{V}_j^m\}$,当 $\mathcal{V}_j' \cap \mathcal{V}_k^* \neq \emptyset$ 时,显然有 $\mathcal{V}_j \cap \mathcal{V}_k \neq \emptyset$,这样 $\{a_{jk}(z_k)\}$ 可自然扩张为 $\{\mathcal{V}_j', \cdots, \mathcal{V}_j^m\}$ 上的闭链 $\{a_{jk}^*(z_k)\}$,它代表的上同调类 $\theta \in H^1(\mathbb{C}^2_*/(u), \Theta)$ 定义为 $\gamma(\theta)$. 由 ρ_u , $\tilde{\rho}_u$ 的定义可验证图 3 的交换性.下面先考虑

$$\rho_u: T_u M \longrightarrow H^1(\mathbb{G}^2_*/\langle u \rangle, \Theta)$$

的核 $\operatorname{Ker}\tilde{\rho}_{u}$. 由文献[2], Th 6.1, $v \in \operatorname{Ker}\tilde{\rho}_{u}$ 的充要条件是存在 \mathbb{G}_{*}^{2} 上的全纯向量场 $\mathscr{W} = (w^{1}, w^{2})$, 使

$$v = u \cdot w - w \cdot u, \quad v \Longrightarrow \begin{pmatrix} v_1 & 0 \\ 0 & v_2 \end{pmatrix}.$$

即

$$v\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = (\alpha w^1(z_1, z_2), \beta w^2(z_1, z_2)) - (w^1(\alpha z_1, \beta z_2), w^2(\alpha z_1, \beta z_2)),$$

这里 $w^1(z_1, z_2)$, $w^2(z_1, z_2)$ 为 \mathbb{G}^2_* 上的全纯函数. 利用比较幂级系数的方法可证 v=0. 注意 v 是一个常值向量. 即 $\tilde{\rho}_u$ 为单射. 再由图的交换性得 ρ_u 也为单射. 但 $\dim_{\mathbb{C}} T_u M = \dim H^1(\mathbb{G}^2_*/G_u, \Theta) = 2$, 故 ρ_u 为同构, 即得 (\mathcal{M} , p, M) 为一个 Kuranishi 族.

以下我们令 $M^*=M/H$. 由引理 2.1, 当存在 $v=\begin{pmatrix} t & 0 \\ 0 & s \end{pmatrix} \in H$, 而 $\widetilde{v}=\begin{pmatrix} s & 0 \\ 0 & t \end{pmatrix} \notin H$ 时, 任取 $u\neq u'\in M^*$, 有 \mathbb{G}^2_*/G_u 与 $\mathbb{G}^2_*/G_{u'}$ 不双全纯等价. 从而 M^* 为 $S^1\times(S^3/H)$ 上的所有复结构的模空间. 依复结构形变的基本定理 (T,M^*) 也是精细的模空间.

若 $\forall u = \begin{pmatrix} t & 0 \\ 0 & s \end{pmatrix}$ \in H, 有 $\tilde{v} = \begin{pmatrix} s & 0 \\ 0 & t \end{pmatrix}$ \in H, 则 $S^1 \times (S^3/H)$ 上所有复结构的精细模空间是存在的. 事实上, 取 \mathbb{Z}_2 的生成元为 ε : $(z_1, z_2) \mapsto (z_2, z_1)$. 则 M^*/\mathbb{Z}_2 为 $S^1 \times (S^3/H)$ 上所有复结构的精细模空间,这便完成了定理 1 前一部分的证明,

当 H=A 时,由引理 1.1 的证明可知,取定 $\alpha \in D^*$,则

$$((\mathbb{C} \times (\mathbb{C}^2_*/H))/\langle g \rangle, \eta, \mathbb{C})$$

为一复解析族,其中

$$g: \mathbb{C} \times (\mathbb{C}^2_*/H) \to \mathbb{C} \times (\mathbb{C}^2_*/H),$$

 $(\lambda, [x]) \mapsto (\lambda, [u_{\lambda}x]),$

这里

$$u_1: (z_1, z_2) \mapsto (\alpha^q z_1 + \lambda z_2^q, \alpha z_2),$$

 $q = m - 1 \pmod{m}$. 即 $\{\mathbb{C}^2_+/G_u, |\lambda \in \mathbb{C}\}$ 为一个复解析族、但 $\lambda \neq 0$ 时, \mathbb{C}^2_*/G_u ,均为双全纯等价的.

事实上,取
$$F = \begin{pmatrix} 1 & 0 \\ 0 & \lambda^{1/q} \end{pmatrix}$$
,则

$$F \cdot \begin{pmatrix} \alpha^q & \lambda()^q \\ 0 & \alpha \end{pmatrix} = \begin{pmatrix} \alpha^q & ()^q \\ 0 & \alpha \end{pmatrix} \cdot F \quad \text{If} \quad F \cdot \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \cdot F,$$

这里 $\begin{pmatrix} \alpha^q \lambda()^q \\ 0 & \alpha \end{pmatrix}$ 表示映射 u_{λ} . 显然这样 F 诱导了 $\mathbb{G}^2_*/G_{u_{\lambda}}$ 与 \mathbb{G}^2_*/G_{u_1} 的双全纯等价. 从而 $\lambda \neq 0$ 时, \mathbb{G}^2_*/G_{u_1} 均为双全纯等价的. 但 $\lambda = 0$ 时, 由引理 1.2, 1.3,

$$\dim H^1(\mathbb{C}^2_*/G_{u_1}, \Theta) \neq \dim H^1(\mathbb{C}^2_*/G_{u_0}, \Theta).$$

从而 \mathbb{C}^2_*/G_{u_1} 与 \mathbb{C}^2_*/G_{u_0} 不双全纯等价. 即解析族 $\{\mathbb{C}^2_*/G_{u_1}|\lambda\in\mathbb{C}\}$ 在 $\lambda=0$ 处有一个跳跃. 因此,定义 2.2 的第一条已不能满足,故 $S^1\times(S^3/H)$ 上所有复结构的粗糙模空间也不存在. 这便完成了定理 1 后半部分的证明.

注 1 虽然 $H = A_m$ 时, $S^1 \times (S^3/H)$ 上整体模空间不存在,但有了第 1 节的准备,我们可以讨论 $S^1 \times (S^3/H)$ 上部分复结构的模空间,如所有 $h^1 = 2$ 的复结构的精细模空间仍存在.

注2 由上面模空间的构造, 当 $H \neq A_m$ 时, $S^1 \times (S^3/H)$ 上所有复结构的模数均可定义且为 h^1 . 当 $H = A_m$ 时, $S^1 \times (S^3/H)$ 上复结构的模数仅 $h^1 = 2$ 时才有定义, 这时模数也等于 h^1 . 它的证明主要是依赖于 Kuranishi 族的构造.

参 考 文 献

- 1 Kodaira K. On the structure of compact complex surfaces, I ~ IV. Amer J Math, 1964, 86: 751 ~ 798; 1966, 88: 682 ~ 721; 1968, 90: 55 ~ 83, 1048 ~ 1066
- 2 Dabrowski K. Kuranishi families for Hopf surfaces. Ann Polo Math. 1985. XLV: 61 ~ 84
- 3 Dabrowski K. Moduli spaces for Hopf surfaces. Math Ann, 1982, 259: 201 ~ 225
- 4 Kato M. Topology of Hopf surfaces. J Math Soc Japan, 1975, 27(2): 222 ~ 238
- 5 张锦豪,李庆忠. 一类 Hopf 曲面的模空间. 科学通报, 1993, 38(24): 2 219~2 222
- 6 Blichfeldt F. Finite Collineation Groups. Chicago: Univ Chicago Press, 1917
- 7 Kodaira K. Complex Manifolds and Deformations of Complex Structure. New York; Springer-Verlag, 1985
- 8 Newstead P E. Introduction to Moduli Problems and Orbit spaces. New York: Springer-Verlag, 1978