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ber of neurons. In contrast, DNNs func- 
tion in a static manner: for any input, the 
model activates all its components when 
generating the output response. 

Dynamic neural networks represent 
an emerging research focus within deep 
learning [4 ]. Different from conventional 
deep learning models with fixed com- 
putational graphs and parameters dur- 
ing inference, dynamic networks can 
adjust their structures and parameters 
in response to varying inputs, resulting 
in significant advantages regarding ac- 
curacy, computational efficiency, adapt- 
ability and more. Consequently, dynamic 
networks have garnered substantial re- 
search attention in recent years within 
the fields of computer vision, natural lan- 
guage processing and speech recognition. 

CATEGORIZATION OF DYNAMIC 

NEURAL NETWORKS 

In general, dynamic neural networks can 
be categorized into three primary groups 
based on their methods for conducting 
conditional computations on input sam- 
ples. 

Sample-wise dynamic neural networks 
refer to deep learning models that dy- 
namical ly al locate computation resources 
based on each individual input. Specifi- 
cally, these networks treat each sample as 
a whole and do not delve into the internal 
data structure of individual samples. This 
characteristic distinguishes it from the 
other two types of dynamic models intro- 

namic networks can be subdivided into 
two distinct categories. 

The first category is implemented us- 
ing a dynamic architecture , wherein the 
network comprises different segments to 
be executed conditioned on its input. 
The most common dynamic architecture 
is the early-exit network [5 ], which has 
multiple intermediate classifiers attached 
to various internal layers. The forward 
propagation can be halted when adequate 
confidence is achieved or when specific 
criteria are met at an internal classifier. 
Since the depth varies adaptively accord- 
ing to the input, we also refer to this 
model type as a dynamic depth network. 
Likewise, a network can ex hibit dy namic 
width, typically implemented using a ‘gat- 
ing’ mechanism, wherein a gating func- 
tion is trained to regulate the activation of 
paral lel ly organized modules [6 ]. A more 
general variant is known as dynamic rout- 
ing, where a router function is trained 
to determine the computation graph in 
a more adaptable manner [7 ]. Among 
the three aforementioned types of dy- 
namic architectures, the dynamic depth 
network is the most commonly adopted, 
primarily owing to its simplicity in terms 
of training. 

The second approach to implement- 
ing sample-wise dynamic networks 
involves incorporating dynamic pa- 
rameters. One of the most well-known 
dynamic parameter networks is a model 
with an attention mechanism. Since 
attention weights are a function of the 
input, their values are dynamic, and we 
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eep neural networks (DNNs) have un- 
erpinned the development of numer- 
us contemporary artificial intelligence 
AI) systems. Like the biological neu- 
al network, they comprise a substan- 
ial number of nodes and connections. 
he rapid advancement of computational 
ardware in the last decade has led 
o a significant expansion in the scale 
f DNNs, approaching the complexity 
f the human neural system. For in- 
tance, the GPT-3 model developed by 
penAI has achieved 175 bi l lion parame- 
ers [1 ], and the human brain is estimated 
o consist of 86 bi l lion neurons, inter- 
onnected by ∼100 tri l lion connections 
2 ]. 
While recent large language models 

ave exhibited remarkable performance, 
heir efficiency lags behind that of the hu- 
an neural system. For instance, the hu- 
an brain consumes approximately 12 W 

3 ]. In contrast, training a large lan- 
uage model (LLM) may require hun- 
reds of machines operating for months, 
onsuming mi l lions of ki lowatt hours of 
ower. Performing inferences with LLMs 
s also computationally demanding, and 
he power consumption throughout their 
ifetime wi l l be significant. 
The question of why human brains 

re exceptionally efficient has sparked sig- 
ificant research interest in the field of 
I. One apparent reason is that human 
rains operate with highly efficient bio- 
ulse signals, and only a small fraction of 
eurons would fire simultaneously. As a 
esult, the information processing proce- 

ure is lightweight, despite the vast num- duced below. Generally, sample-wise dy- view a neural network with an attention 
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echanism as a dynamic model. It is also 
ossible to directly predict certain sets of 
etwork weights to construct a dynamic 
arameter network [8 ]. A key finding 
egrading the introduction of dynamic 
arameters is its remarkable ability to 
nhance network capacity with minimal 
omputational overhead. 
In general, dynamic architectures are 

ess compatible to batch computation, 
.e. each sample has a distinct computa- 
ion graph, making it challenging to effi- 
iently process multiple samples in paral- 
el. However, this may not pose a problem 

n specific scenarios, such as mobile com- 
uting, where inputs arrive sequentially, 
nd there is no requirement for batch 
rocessing. In contrast, networks with 
ynamic parameters are more hardware- 
riendly. For instance, transformers with 
n attention mechanism can be efficiently 
eployed on contemporary GPUs. 
Spatial-wise dynamic neural networks 

re models that consider the spatial struc- 
ure within input samples, primarily ap- 
lied to visual data like images [9 ] or 
oint clouds [10 ]. Conventional deep 
earning algorithms distribute computa- 
ion uniformly across spatial regions, re- 
ulting in redundant processing in many 
ision tasks, such as object detection, 
here the region of interest constitutes 
nly a small fraction of the input. By 
daptively concentrating on the informa- 
ive regions that are most relevant to the 
ask, spatial-wise dynamic networks can 
ignificantly enhance computational effi- 
iency. Note that the practical efficiency 
f spatial-wise dynamic networks is sensi- 
ive to the granularity of spatially adaptive 
omputation. 
Temporal-wise dynamic neural net- 

orks can unevenly allocate compu- 
ation along the temporal dimension 
or sequential data, such as videos [11 ] 
r time series data [12 ]. In the case of 
treaming data, such as videos, there is 
ypically high correlation among nearby 
rames. Consequently, the dynamic fo- 
us on specific key frames is a crucial 
haracteristic for deep learning models 
o reduce redundant computation. Fur- 
hermore, temporal-wise and spatial-wise 
daptive computation could be imple- 
ented simultaneously to achieve higher 
fficiency. 
T
DVANTAGES 

wing to their adaptive computing 
echanisms, dynamic neural networks 
ffer numerous notable advantages, as 
etailed below. 
Efficiency is arguably the most promi- 

ent advantage of dynamic networks. In 
ome cases, dynamic inference can im- 
rove the speed by more than one mag- 
itude when achieving the same accuracy 
s a static model. There is a widespread 
elief that large neural networks involve 
 substantial number of redundant pa- 
ameters and computational processes. 
his is the reason why model compres- 
ion techniques such as neural pruning, 
eight quantization and model disti l la- 
ion have garnered substantial interest in 
oth academia and industry. Notably, the 
ynamic neural network addresses the 
omputational redundancy from quite a 
istinct perspective, and is compatible 
ith the aforementioned methods. 
Adaptiveness represents another favor- 

ble property of dynamic models, which 
s often absent in static models. Typi- 
ally, the inference cost of a train neural 
etwork is constant for any input sam- 
le. Nevertheless, many applications re- 
uire real-time adjustment of the trade- 
ff between speed and accuracy. Many 
ynamic models, including early-exit net- 
orks, can fulfil l this demand easily by 
ynamically adjusting some thresholds 
n the fly. 
Capacity. Because of the adaptive 

omputation paradigm, dynamic net- 
orks can exploit their parameters more 
horoughly to learn more complicated 
epresentations compared to static mod- 
ls. In other words, dynamic models 
sually have a higher model capacity 
han those that do not employ a dy- 
amic computation graph. Notably, the 
ixture-of-experts mechanism can ex- 
and the model parameters by eight times 
hi le maintaining simi lar computational 
ost, which significantly improves the 
erformance of various vision tasks. 
Interpretability. Spatial-wise and 

emporal-wise dynamic networks, by 
heir ability to redirect attention to spe- 
ific regions or time slots in the input, can 
rovide insights into the information the 
odel relies on when making decisions. 
his capability can be valuable in appli- 
Page 2 of 3
ations where decision transparency is 
rucial. Moreover, dynamic networks ex- 
ibit greater biological plausibility than 
tatic models, potentially opening up 
ew avenues for exploring bio-inspired 
earning models and algorithms. 

HALLENGES AND FUTURE 

IRECTIONS 

s a newly emerging research field, there 
re many open problems yet to be solved. 
Theory. Dynamic computing in- 

roduces novel challenges that do not 
merge in traditional machine learn- 
ng theory. For example, theoretical 
ormulation of the distribution shift 
roblem among classifiers in an early-exit 
odel remains unsatisfactory. In fact, 
he generalization properties, adversarial 
obustness and representation power 
f dynamic networks remain relatively 
nderexplored in the literature. 
Optimization issues. In the pursuit of 

daptive computation, dynamic models 
ypically incorporate discrete decision 
unctions to be simultaneously learned 
longside their continuous parameters, 
esulting in mixed-integer optimization 
hallenges. Consequently, training dy- 
amic networks requires specialized tech- 
iques, such as gradient approximation 
r the Gumbel-SoftMax trick. While the 
re-train–fine-tuning paradigm and dis- 
i l lation technique have proven helpful 
n accelerating training and enhancing 
odel performance, more efficient and 
ffective approaches are sought to facili- 
ate the training of a wide variety of dy- 
amic networks. 
Hardware compatibility. A major chal- 

enge in practical deployment of dy- 
amic networks is the reduced degree 
f parallelism arising from the dynamic 
omputation graph conditioned on each 
nput or its constituent parts, leading to 
ecreased efficiency on high-end GPU 

evices. Hence, it is imperative to design 
ynamic models that are more hardware- 
riendly from the algorithmic side, and 
t is equally valuable to develop hard- 
are that is more compatible with dy- 
amic computing. The combination with 
ther hardware-friendly techniques, such 
s quantization and pruning, is also worth 
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xploring. For example, the quantization 
recision could be adjusted conditioned 
n different inputs. 
Multi-modality modeling. Recently, 
ulti-modal foundation models, such 
s GPT-4 Vision, have demonstrated 
emarkable capabilities in processing 
atural language and visual input. Never- 
heless, these models typically comprise 
i l lions, or even more, parameters, mak- 
ng them unaffordable or less economical 
or real-world applications. Hence, a 
aluable avenue for future research 
s developing efficient multi-modal 
oundation models based on dynamic 
etworks. 
In summary, there are sti l l many re- 

earch challenges that persist in the de- 
ign, deployment and comprehension of 
ynamic networks. It is expected that 
hese issues are likely to attract substan- 
ial research interest in the near future, 
iven the remarkable advantages of dy- 
amic models in terms of efficiency, effi- 
acy and adaptiveness. Additionally, dy- 
amic networks offer a promising solu- 
ion to the low-power computation of 
arge foundational models. Furthermore, 
he bio-inspired nature of dynamic net- 

The Author(s) 2024. Published by Oxford University Pre
ommons Attribution License ( https://creativecommons
ork is properly cited. 
orks has the potential to bridge the 
ap between deep learning models and 
he human brain. However, extensive re- 
earch is sti l l required to gain a deeper un- 
erstanding and harness the full potential 
f dynamic networks in this context. It is 
nticipated that this wi l l be a significant 
rea of focus in the future. 
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