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Abstract A novel interferometric synthetic aperture radar (InSAR) signal processing method based on com-
pressed sensing (CS) theory is investigated in this paper. InSAR image formation provides the scene reflectivity
estimation along azimuth and range coordinates with the height information. While surveying the height in-
formation of the illuminated scene, the data volume enlarges. CS theory allows sparse sampling during the
data acquisition, which can reduce the data volume and release the pressure on the record devices. InSAR
system which configures two antennas to cancel the common backscatter random phase in each resolution ele-
ment implies the sparse nature of the complex-valued InSAR image. The complex-valued image after conjugate
multiplication that only a phase term proportional to the differential path delay is left becomes sparse in the
transform domain. Sparse sampling such as M-sequence can be implemented during the data acquisition. CS
theory can be introduced to the processing due to the sparsity and a link between raw data and interferometric
complex-valued image can be built. By solving the CS inverse problem, the magnitude image and interferomet-
ric phase are generated at the same time. Results on both the simulated data and real data are presented. In
comparison with the conventional SAR interferometry processing results, CS-based method shows the ability to

keep the imaging quality with less data acquisition.
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1 Introduction

Interferometric synthetic aperture radar (InSAR) has been developed since 1970s and is a technique
extensively used to extract the information from the phase of the SAR signal [1,2]. InSAR systems
take advantage of the two or more antennas by exploiting the phase information. This additional phase
information can be used to obtain height information of the illuminated scene, measure the radial velocity
of moving scatterers, or monitor surface deformation depending on the implementation [3,4]. In this
paper, we focus on cross-track interferometry, although the proposed ideas may extend to the other
modes of interferometry. However, with more information acquired, much more data are needed during
the acquisition and processing. While the volume of data collected is increasing rapidly, the ability to
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transmit it, or to store it, is not increasing as fast. As a result, an effective data acquisition approach
such as sparse sampling is necessary.

Conventional InSAR data acquisition must obey the Nyquist Sampling Theorem. If non-uniform
sampling is implemented during the data acquisition, imaging results will deteriorate rapidly due to the
high sidelobe and grating lobe. Compressed sensing (CS), as a favorable sparse reconstruction technique,
is a new and attractive method for sparse sampled data imaging and has attracted many attention [5,6].
CS indicates that certain signals can be recovered with far fewer samples or measurements than traditional
method.

Inspired by the idea of CS, more and more novel processing methods in radar imaging have been
proposed. For example, ref. [7] introduced CS into radar imaging which aims at eliminating the need for
the pulse compression matched filter at the receiver, and reducing the required receiver bandwidth. High
resolution ISAR imaging method during short coherent interval was presented in [8]. Ref. [9] applied CS
on multi-baseline InSAR data for layover separation and analyzed the effect of signal-to-noise ratio (SNR)
and height difference of CS based method. Refs. [10-12] studied SAR tomography and three-dimensional
imaging using CS. Some applications of CS in SAR imaging are also concerned about recently [13-15].
Among these studies, many researchers used CS to reconstruct high resolution image of sparse targets,
such as ships, aerial targets and persistent scatterers along elevation directions. However, in practical
cases, many scenes are not sparse such as the forest area. Furthermore, compared with optical images,
complex-valued SAR images exhibit significantly higher dynamic range and less spatial correlation due to
the random phase of each resolution element [16]. Thus, common sparse representation to optical images
is not suitable for the complex-valued SAR images. A SAR image obtained by single aperture can hardly
be sparsely represented. It becomes a key challenge for InNSAR images to choose the right representation
scheme.

To find an appropriate scheme other than the identity matrix, researchers developed many new ap-
proaches. Cetin et al. [17,18] established a series of work focusing on sparsely representing the magnitude
image in the transform domain, which enlightens a method that separates the complex-valued image into
two parts for processing. The work about multi-baseline SAR interferometry also inspired the researchers
combining the data from multi-channel in signal processing [19]. In InSAR systems, two antennas bring
more information and redundancy than a single one which creates an opportunity for SAR images to be
represented sparsely.

In this paper, we propose a new method which surveys the roles of sparsity and CS elements in InSAR,
imaging. The InSAR systems cancel the common backscatter random phase and use the phase difference
of two antennas to derive an altitude for each image point. Since the altitude is continuous and slow-
varying, the phase difference proportional to it has the same property, which means the scene can be
sparsely represented. The proposed method takes advantage of this point and can reduce the required
number of measurements releasing the pressure on the data acquisition part of the InNSAR system. The
novelty of this paper lies in the idea that representing the complex-valued SAR image in the transform
domain by interferometric processing. The proposed method can form an image of scene not sparse in
the space using sparse samplings. Both the image magnitude and interferometric phase can be kept with
a few samplings.

The remainder of this paper is given as follows. The next section describes the sparsity of InSAR
images and a CS formulation of the InSAR imaging problem. The InSAR imaging method based on CS
is proposed in Section 3. Section 4 gives extensive experimental results on simulated data and real data
along with a performance analysis of the proposed method. Experiments with three-baseline millimeter
wave InSAR data were performed, and the results show that the scheme works successfully. Section 5
summarizes the properties of the new method and addresses the future developments.
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Figure 1 (Color online) InNSAR geometry projected on height-ground range plane.
2 Sparsity of InSAR signal

The basic principles of InSAR have been described in detail in many related literatures and the concepts of
sparse reconstruction algorithms are central themes in CS and have been presented in many years. Based
on these foundations, this section presents a brief survey of these themes while also drawing connections
between the InSAR and CS.

2.1 InSAR geometry and sparsity

The sparsity of the InSAR signal is analyzed in this section. Figure 1 illustrates the InSAR system.
In a single antenna case, antenna A; transmits signals such as chirp signal and receives the echo. By
pulse compression technique in range direction and synthetic aperture principle in azimuth resolution,
two-dimensional (2-D) high resolution radar images are achieved. For each resolution element of this
image, it can be represented as a complex phasor of the propagation phase delay (proportional to the
propagation route R1) and the coherent backscatter from the scattering elements on the ground [20]. Be-
cause the resolution element is much greater than the wavelength, a resolution element can be considered
as consisting of many individual elemental scatterers within the cell. Hence, the backscatter phase delay
can be expressed as the net phase of the coherent sum of the contributions from all elemental scatterers
in the resolution element [20],

oy = g {Z A¢—R} , 1)

7

where A.;el?<i is the backscatter of the ith elemental scatterer, R.; is its differential path delay and X is
the wavelength.

Typically, 2-D Fourier transform (FT) is used as the representation of the energy of complex-valued
images. However, the energy of the coefficients of 2-D FT of the complex-valued SAR image distributes
in the whole frequency domain. Due to the impact of the backscatter random phase ¢, a SAR image
can hardly be sparsely represented.

In InSAR case, while radar pulses are transmitted from the conventional SAR antenna A;, radar echoes
are received by both the conventional and an additional SAR antenna A, shown in Figure 1. The phases
of two nearby antennas can be expressed as

27
01 = 2731 + ®b1,

o =2

(2)

27
A

where Rj is the distance between Antenna A and the target, ¢n; (i = 1,2) is the antenna A;’s backscatter
phase. The basic assumption of InSAR systems is that the backscatter phase delay of each resolution

Ro + ¢ne,
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Figure 2 SAR image spectrum. (a) The spectrum before the backscatter random phase cancellation; (b) histogram of
the original spectrum; (c) the spectrum after the backscatter random phase cancellation; (d) histogram of the spectrum
after the backscatter random phase cancellation.

element keeps unchanged if the view angles of two antenna are nearly the same. The view angles are
usually much less than 1° in practice, so the backscatter phase delays are approximately the same, that
is, b1 ~ Pba-

By coherently combining the signals from the two antennas, the interferometric phase difference be-
tween the received signals can be formed for each image pixel. The conjugate multiplication can effectively
cancel the common random backscatter phase in each resolution element, but leave a phase term pro-
portional to the differential path delay [20]. Since the nature scene is usually continuous, the differential
path delay is also continuous and slow-varying. Taking advantage of this property, we reconstruct the
complex-valued image as

I = Iiexp(—j¢2), ®3)

where I; is the complex image obtained by antenna A; and I is the reconstructed image. With this
reconstruction, the backscatter random phase delay which contributes to the high frequency part can be
reduced.

The real data images shown in the Section 4 display a typical SAR image of an agricultural area
acquired by three-baseline millimetre wave InSAR of Institute of Electronics, Chinese Academy of Sci-
ences (IECAS). The magnitude image shows that the scatterers are distributed uniformly in most of the
illuminated area. The sparse assumption that the number of targets is much less than the total number
of discrete spatial positions investigated by many papers is not satisfied. As we have known, the SAR
image phase is noise-like and unsmoothed, which indicates that the complex-valued SAR image may not
be sparsely represented in some other transform domains.

Figure 2 shows the spectrum of the SAR image before and after the backscatter random phase can-
cellation (logarithmic operation is taken here). Figure 2(a) is the original spectrum which the principal
frequencies distribute in a wide range, while the spectrum in Figure 2(c) only consists of a few princi-
pal frequencies. The histogram of the Figure 2(a) in vector form is shown in Figure 2(b), the Fourier
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coefficients mainly distribute in the range (0, 0.4] which indicates poor sparsity. After multiplication by
the complex conjugate phasor information of the second image as shown in (3), common backscatter
random phase in each resolution element is effectively cancelled, leaving a phase term proportional to
the differential path delay which is called “interferogram”. Figure 2(d) shows the spectrum histogram
of the reconstructed image, the Fourier coefficients mostly concentrate around zero of the normalized
frequency, which is highly sparse. The result shown in Figure 2(d) indicates the InSAR image can be
sparsely represented in the frequency domain.

2.2 Sparse reconstruction

Since the InSAR image can be sparsely represented, it becomes a key challenge to reconstruct the image
from the echo signal. Compressed sensing is a novel theory focusing on sparse signal compression and
reconstruction. N-dimensional signal « is defined K-sparse if it has K or fewer non-zero coordinates:

z e RY, |zo ™ [supp(e)| < K < N, (4)
where we note that ||-||p is a quasi-norm [21].

For the sparse signal, CS measures M (K < M < N) projections of & and reconstructs the sparse signal
from this small set of non-adaptive linear measurements. Each measurement can be viewed as an inner
product with the signal € RY and some vector 1p; € RV. If we collect M measurements in this way, we
may then consider the M x N measurement matrix ¥ whose rows are the vectors 1/;?. Mathematically,
a sparsity problem can be described as a problem of finding sparse solutions of a representation or an
underdetermined equation, that is, recovering the K-sparse signal € RV from its measurement vector
y =Wax € RM. The problem then can be modeled as the following £y-optimization problem:

i b y=Wx 5
min [lzflo st y=Px (5)

Since M < N, the sparsity problems are seriously ill-posed and may have multiple solutions. A common
practice is then to apply regularization technique for the solutions. Thus, the sparsity problems can be
frequently transformed into the following so called ¢y-regularization problem:

. _ W2 6
min {lly — 3+ €lzlo} )

where parameter ¢ is used to balance the two objective terms. Many researchers have suggested an
approximate solution of (5) by relaxing the £p-norm to ¢,-norm (0 < p < 1) or other approach for ¢,-norm
also promotes sparsity in a solution. Among these approaches, ¢1-regularization becomes widespread that
many research has studied the property of ¢1-regularization and algorithms to solve the /;-regularization
optimization problems. However, for many applications, the solutions of the /;-regularization are less
sparse than those of the fyp-regularization [22]. It may come with the problems such as introducing
extra bias in estimation. In this paper, instead of ¢;-minimization, we choose a powerful approach
{1 jo-minimization (p = 1/2) to reconstruct the sparse signal,

min {|ly — x| +¢2]}/3} (7)
since /; jo-regularizations may generate more sparse solutions than /;-regularization and provide a faster
computational speed in some cases [23].

3 Data processing method

In the case of an InSAR system, the geometry and data acquisition model are shown in Figure 3. Com-
pared with the conventional InSAR sampling uniformly, the model of this paper transmits and receives
pulses randomly in the azimuth direction. Zero azimuth time (n = 0) is defined at zero Doppler and the
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Figure 3 InSAR data acquisition model.

instantaneous slant range R(7) from antenna to a single point P; at a position (R, V1) can be modelled

V2 2
R = [ + Ve ~ By 4 22T ®

where V. is the platform velocity. After demodulation to baseband, the acquired raw data for P; whose

as

backscatter coefficient is o; can be written in terms of the range time 7 and azimuth time 7,

s(7,n) = o {T - %(n)] wa (1 — 1) exp {jT[Kr {T - %@)] 2} exp [jw} ,

(9)
where 7). is the beam center offset time, fy denotes the carrier frequency, K, denotes the chirp rate. w,(+)
is the weighting in azimuth from the antenna pattern, w;(-) is the range envelope and c is the speed of
light.

Use the conventional matcher filter, the output of the range compression can be written as

&(n)} j47TfOR(77)} 7

c (10)

SFC(Tv n) = 0Py [T - wa(n — 1)) €xp |:_
where p,(-) denotes the point spread function of wy(+).
For simplicity, only low squint angle situation is deduced and some procedures in range-Doppler (RD)

algorithm are used in the processing. Hence, the signal of (10) can be approximated as

2R AmtfoR, . 2V?
Sreme(T, 1) = Oipr |T — 28(n) wa(n = 1c) exp | =] Jolto | p | —jmavrp2 (11)
c c ARy
The range migration delay in (11) is removed during processing by range cell migration correction
(RCMC). Assuming a range cell contains K scattering centers with different azimuth locations z} in
the total illumination time T, we have the signal after RCMC in the range cell corresponding to Ry as
follows:
K
2R x
Sreme(T5 1) = Z;Uipr [T - TO] Wa (77 — e — 7:) exp
=

e

22 A
S 2VE L m\T
SV 7 xp




Li L C, et al. Sci China Inf Sci  October 2017 Vol. 60 102305:7

The RCMC is achieved by the RD framework and the signal is assumed uncoupled in azimuth and range
direction. Then, Eq. (12) is simplified as
272 2\ ?
A (P
" \Ro (” w)

K ’
€T
s(n) = Zaiwa (77 —MNe — VZ) exXp

i=0 T
Discretize the azimuth time 7 into 5 = [n1,72,...,7:m]" ([]* denotes vector or matrix transpose) shown
in Figure 3 and construct the matrix

. (13)

® = [hy,h2,...,AN], (14)

T . 2V2 2\’
hi = wa \ M =ne = 3~ ) exp | —Jmype \ M=

where 2; = (i — 1 — N/2)Ax (i = 1,2,...,N) is the ith azimuth location in the illuminated area. The
azimuth sampling interval Az is related to the azimuth resolution. In general, Az can be set equal to
or a little less than V,./PRF and set N an even number greater than V,. Ty/Axz. Considering the noise n,
the echo signal can be expressed as

where

; (15)

SMx1 = PuxNONx1 T+ NN X1, (16)

where o is the complex-valued image of the range cell Ry with N elements o; and s = s(n) is the
discrete echo with M elements. It is worth noting that although Eq. (16) is conducted when the squint
angle is low, the model can be applied to large RCM cases. In such cases, one-dimensional processing
becomes a two-dimensional problem and the subscripts in (16) should be modified considering the range
cell numbers. As aforementioned, the complex-valued SAR image has less sparsity and can hardly be
sparsely represented under common sparse frameworks.

However, inspired by the idea in (3), the complex-valued image o in (16) can be sparsely represented
by cancelling ¢’, the phase of the image acquired by antenna A corresponding to the same range cell
Ry. Therefore, each image element of antenna A; can be rewritten as o; = o} exp(j¢;) and the signal can
be modeled as

s =®PPoy + 1, (17)

where the matrix P = diag {exp(j¢;)} is a diagonal matrix where ¢} denotes the ith elements of ¢’ and
Onew 1s the new reconstructed complex-valued image with N elements o}. The new image o ey combining
the magnitude information of image o and the interferometric phase can be sparsely represented. Thus,
we consider

Onew = Y, (18)

where ¥ is an appropriate dictionary for the model that represents the new image sparsely and « is the
coefficient under dictionary ¥. Substitute (18) into (17), the imaging model can be rewritten as

s=PPPa+n. (19)
If the phase matrix P is known, the problem turns into a typical sparse reconstruction problem:
& = argmin{||s — PPP a3 + )|} (20)

Unfortunately, the phase term matrix P of the antenna A, is unknown due to the sparse sampling.
Here we use the conventional imaging method to form the image of the antenna A5. The imaging result
may suffer from high sidelobes, but has a strong correlation with the image formed by all samples. Hence,
we can substitute the phase of this image for the phase term matrix in (20). Using the substitution, the
optimization problem becomes

& = argmin{||s — SP'ar||3 + M|e, }. (21)
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where P’ is the phase term matrix of the image formation by the conventional imaging approaches.
Quite a number of algorithms have been proposed and studied for solving the problems (20) based on ¢;-
minimization techniques such as the iterative shrinkage thresholding (IST) method [24]. However, to solve
(20) faster and more accurate, we use the iterative half thresholding technique based on ¢; /o-minimization
to get & [22].

Noticed that Eq. (21) is a complex-valued optimization problem, when £, /o-minimization is applied,
an extension of the half thresholding theory established on the complex space is used and the solutions
of problem (21) can be expressed by

a==Gy, 12 (a + uAH (s — Aa)) , (22)

where A = ®P'W, 1 is the a step size and G, 1/2(+) is the complex-valued half thresholding function
defined in [25]. More details about the complex-valued half thresholding algorithm can be seen in [25,26].
With the iteration representation (22), the new complex-valued image which contains the magnitude and
inteferogram phase information of the scene can be acquired by inverse transformation ey = Y.

4 Experiments and results

This section presents some results obtained by processing simulated and real data to show the effectiveness
of the proposed method.

4.1 Experiments description

For sparse sampling, we choose M-sequence to sample in the azimuth direction with “1” in the sequence
represents the sampling position and “0” the vacant position.

M-sequence, or maximum length sequence (MLS) is binary sequence generators that are capable of
outputting all possible combinations of binary sequences in 2™ — 1 cyclic shifts, where n is the size of the
linear feedback shift registers used in generating such sequences®).

M-sequences are inexpensive to implement in hardware or software, and relatively low-order feedback
shift registers can generate long sequences; a sequence generated using a shift register of length 20 is
220 _ 1 samples long.

Another reason we choose M-sequence is its good autocorrelation properties (a single peak with no
sidelobes) which simplify the recovery process. An M-sequence can be shown to have a thumbtack-
like autocorrelation function [27]. Therefore, terms like psuedorandom binary sequences or psuedonoise
sequences are also used to refer M-sequences. Figure 4 shows the autocorrelation function (ACF) of a
M-sequence with n = 10 and length p = 2'© — 1 = 1023. As seen in Figure 4, the M-sequence has a
certain degree of randomness which contributes to the reconstruction. M-sequence is irrelevant with the
sparsity of the scene, which means it can be used repetitively and the hardware cost can be reduced in
the practical cases.

An M-sequence has 2"~ ! “1”s and 2"~ ! — 1 “0”s, the occurrence of 0 and 1 in the sequence is approx-
imately the same, so the sparse rate of the data acquisition is about 50% in the experiments.

For the sparse representation, Fourier transform is chosen to represent the image in the experiment.
Fourier basis is a simple and popular dictionary. Figure 2 has shown that under Fourier basis, the new
image ohew can be sparsely represented. In the practical cases, the other bases can be used according to
the scene. A rough imaging can be done to get the prior information of the scene and the corresponding
sparse basis can be chosen. CS theory points out that it has to satisfy an incoherency property between
@ P’ and ¥ to recover the signal. It needs P’ to be incoherent in the ¥ domain. To evaluate the
incoherence, mutual coherence defined by

(i)
w(B, ) = max - 23)
(B.C) = max 1 Tl (

1) Maximum length pn sequence generation.  http://www.mathworks.de/matlabcentral/linkexchange/links/2324-
maximum-length-pn-sequence-generation.
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Figure 4 The autocorrelation function of an M-sequence. Figure 5 Coherence matirx of A.

is used. The parameter u(B,C') serves as a rough characterization of the degree of similarity between
matrices B and C', where by, is the kth row of the matrix B and ¢; is the jth column of the matrix C [28].
In our case, ¥ is the inverse Fourier transform matrix, with the chosen step, u(®P’, %) attains a value
about 0.12 (minimum value 1/v/N = 0.03).

With the chosen matrix and sparse representation, each column of A is highly incoherent, Figure 5
shows the logarithmic autocorrelation matrix of rows from A. The matrix is close to an identity matrix,
which indicates that A approximately satisfies the orthogonality and can be used to recover the signal.

The InSAR images after cancelling the common backscatter phase are also sparse in other transform
domains and dictionaries such as wavelets basis can be used to sparsely represent the complex-valued
InSAR images. Ref. [29] studied the sparse regularization of interferometric phase and amplitude for
InSAR image formation from Bayesian perspective and such studies worth deeper researching.

For the computational complexity, it can be analyzed according to (22). For each range cell, the
computational complexity of pA™ (s — Aa) is O(MN) and the half thresholding operator take O(N) in
each iteration. Hence, the total computational complexity of an iteration is O(M N), which is the same
order with that of the soft algorithm. The convergence speed is analyzed in [30], the number of iteration
requires of the proposed method are nearly the same with some ¢; based algorithm. Therefore, the total
time consuming of the proposed method is the same with those ¢; based algorithm. To shorten the time
consuming, some accelerated £, 5 regularization algorithms such as the method proposed in [26] can be
applied. However, the conventional match filter method only involves some matrix multiplication and
fast Fourier Transform (FFT) operation. The computational complexity is O(N log N). The cost is much
higher compared to conventional method which would entail a new study about fast ¢; 5 regularization
techniques.

4.2 Evaluation principle

To provide a numerical evaluation for the results, we consider images that directly use the ground truth.
First idea for evaluation could be the complex correlation function v [2], which is widely used in the
interferometry and is defined as

E[vv*]

W) 24
E[00*| E[vv*) (24)

"}/ =
where ¥ represents the imaging results acquired by the specified method, v represents the ground truth
image, (-)* denotes the complex conjugate and E[-] denotes averaging over the ensemble of image real-
izations. An estimate of coherence can be obtained through spatial averaging. The correlation function
is used to judge the relationship between the scattered fields at the interferometric receivers after image
formation, while we use v here to judge the relationship between imaging results and the ground truth
and evaluate the image quality. For completely coherent image results, we have v = 1, while v = 0 when
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Figure 6 Simulated scene. (a) DEM; (b) ideal interferometric phase.

the image results are independent, which indicates the imaging results are far from the truth and the
specified method malfunctions.

Another idea to evaluate the reconstructed image is the mean squared error (MSE) which also indicates
the SNR of the image. MSE can be defined as [17]

1
MSE = < [l[[v] = [9][3, (25)

where |v| and |0| are the true and reconstructed magnitude images and N is the number of resolution
elements in the reconstructed image.

Since our result is a complex-valued image and the image phase contains the interferogram information,
an evaluation for phase is necessary. Here we use mean phase error (MPE) which can be expressed as

1
MPE = —||£4v — £9||1, (26)
N
where Zv is the phase of the ground truth and Zv denotes reconstructed phase.

4.3 Simulated data

To analyze the effects due to the reduced number of acquisitions and to their non-uniform spacing, and to
show phase-preserving capabilities of the proposed method, we perform some experiments on simulated
data. For comparison, the conventional interferometry [31], including imaging, precise image registration,
interferogram generation and filtering and other procedures is also performed here.

Figure 6(a) shows the simulated scene. To avoid the sparse scene such as point-target, we consider a
scene which contains a cone with 60 meters high and a radius of 120 meters on the ground for simulation.
The whole scene is 200 m x 300 m in the azimuth-ground range plane. The backscatter coefficients of the
cone is 1 and the ground is 0.3. Considering the backscatter random phase, a white zero-mean Gaussian
noise is multiplied during the raw data generation. The synthetic aperture time is about 1 s and 2048
pulses are used to reconstruct the scene. The detailed simulation parameters are listed in Table 1.

To prove the feasibility of the substitution in (21), a comparison between sparse sampling and full
sampling imaging results is made here. Here we use 1024 pulses (50%) and 683 pulses (33%) of azimuth
sparse sampling to form the image, respectively. 500 Monte Carlo trials are conducted for each azimuth
sampling number. When the simulated scene imaging is formed using half of the samplings, the average
MPE is 4.14°. When the sampling number falls down to 683, the average MPE of 500 trials is 5.95°.
The sparse sampling imaging result will suffer phase loss, however, it can be used for substitution in (21)
since the phase loss is small.

The ideal interferometric phase of the ground truth is shown in Figure 6(b). The phases here are the
principal value, modulo 27, from —7 (blue) to 7 (red). To make the illustration more intuitive and the
comparison more accurate, the flat earth phase contribution is removed before display and evaluation.
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Table 1 Simulation parameters

Parameter Notation Value
Carrier frequency fe 35 GHz
Incidence angle 0 35°
Baseline B 1m
Platform height H 3000 m
Platform velocity Vi 50 m/s
Pulse repetition frequency PRF 200 Hz
Range sampling rate fs 600 MHz
System bandwidth Bs 400 MHz
Antenna size D 0.6 m
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Figure 7 RDA results (noise free). (a) Magnitude (all samples); (b) interferometric phase (all samples); (c) magnitude
(50% samples); (d) interferometric phase (50% samples).

Figure 7 shows the RDA imaging results which we use here to compare the performances of the proposed
method. Figure 8 is the imaging results of the proposed method with all samples and 50% samples
without noise. To show the capabilities of the proposed method under different noise conditions, an
additive Gaussian white noise is added in the simulated raw echo to generate different noise levels (single
pulse SNR = 0 dB, —10 dB) and Figures 9 and 10 show the interferometric imaging results of different
approaches in the case single pulse SNR = —10 dB.

The evaluation results are given in Table 2. Here the image coherence is evaluated separately which
“Yabs and Yphase denote the coherence of the image magnitude and phase, respectively. To depress the
noise impact on the image, pivoting median filter [32] is used and different sizes of windows are tried to
smooth the image. In Table 2, the subscript 1 means imaging using the proposed method with all samples
and 2 means using 50% of the samples. It is observed that by using all the samples, the imaging results
of the proposed method are the same as the performance of the conventional interferometry techniques.
When the number of samples decreases, the results show that the image quality of both the methods
degrades. However, the proposed method can still obtain the magnitude image and interferometric phase
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Figure 8 CS results (noise free). (a) Magnitude (all samples); (b) interferometric phase (all samples); (c) magnitude
(50% samples); (d) interferometric phase (50% samples).
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Figure 9 RDA results (SNR = —10 dB). (a) Magnitude (all samples); (b) interferometric phase (all samples); (c) mag-
nitude (50% samples); (d) interferometric phase (50% samples).

within the tolerance error in high SNR condition while the conventional interferometry approach suffers
great from high sidelobes. (When MPE = 10°, the corresponding height measurement error is 0.94 m.
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Figure 10 CSresults (SNR = —10 dB). (a) Magnitude (all samples); (b) interferometric phase (all samples); (c) magnitude
(50% samples); (d) interferometric phase (50% samples).

Since our InSAR system height measurement accuracy is 0.99 m, the error is tolerable in some case such
as emergency mapping.) The CS method preserves the image phase and performs better when using less
acquisition samples.

4.4 Real data

We present the experiments on real data in the following part. In particular, we consider the agricul-
ture area in Xi’an, China. The scatterers distribute uniformly in the illuminated area and the sparse
assumption that the most papers studied is not suitable.

The InSAR flight experiment was operated on May 16, 2011. In the experiment, the aeroplane flew at
about 3000 m high with the velocity of 47.9 m/s and the system PRF is 1000 Hz. The ground altitude
is about 300 m. We use antennas 1 and 2 for imaging whose baseline length is 0.6 m. The time width of
chirp signal is 12 ps. Other parameters are listed in Table 1. The InSAR system operated on standard
mode that only antenna 1 transmitted the chirp signal and both antennas received the echoed signal.

Before the proposed method implementation, the errors arising from the aircraft movements are com-
pensated by a two step motion compensation during the SAR imaging processing [33,34]. Additionally,
a very precise velocity and range delay variation compensation has been carried out.

The image formation results of different approaches are listed below. Figure 11 is the imaging results
using chirp scaling algorithm (CSA) and the conventional SAR interferometry flow where (a) is the image
magnitude and (b) is the image phase. Figure 12 shows the imaging results using the proposed method
with full samples (2048 samples) and Figure 13 uses half of the samples. We show the coherence images
of imaging phase in Figure 12(c) and Figure 13(c) where we can see that the image phase of the proposed
method is highly coherent with the results of the conventional approach.

It is a pity that we do not have the ground truth or higher precision data for the experiments with the
real data. However, we still make a comparison with the conventional InNSAR results to set an approximate
evaluation on the proposed method. The evaluation results are given in Table 3. As seen in the table, the
proposed method performs nearly the same using the full samples. When using 50% samples, the image
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Table 2 Simulation evaluation

Window MSE MPE Yabs Yphase
Noise free
RD; 5x5 0.4033 7.7318 0.9435 0.9885
RDa 5x5 0.4246 16.1688 0.9405 0.8993
CSq 5x5 0.3895 7.5999 0.9441 0.9834
CSq 5x5 0.4117 11.8588 0.9428 0.9542
RD; TXT7 0.3464 7.6803 0.9516 0.9878
RD2 TXT7 0.3795 13.6570 0.9495 0.9278
CSy TXT7 0.3440 7.0813 0.9518 0.9875
CSq TXT7 0.3714 9.6770 0.9503 0.9698
SNR =0
RD1 5x5 0.4297 11.0752 0.9415 0.9839
RD> 5x5 0.4639 20.0382 0.9387 0.8951
CS1 5x5 0.4369 11.0750 0.9435 0.9831
CS» 5x5 0.4455 15.4450 0.9409 0.9438
RD1 TxXT7 0.4011 9.9295 0.9513 0.9871
RD> TxXT7 0.4258 16.2879 0.9498 0.9234
CS1 TxXT7 0.4100 9.2649 0.9513 0.9842
CS» TxXT7 0.4155 12.7845 0.9503 0.9628
SNR = —10 dB

RD; 5x5 0.4449 23.1369 0.9359 0.9421
RDa 5x5 0.4755 37.9985 0.9140 0.7699
CSy 5x5 0.4350 23.1223 0.9358 0.9425
CSq 5x5 0.4739 30.4115 0.9211 0.8413
RD; TXT7 0.4235 19.3985 0.9422 0.9472
RD2 TXT7 0.4283 31.9880 0.9216 0.8096
CSy TXT7 0.4149 19.2339 0.9422 0.9495
CSq TXT7 0.4639 26.5798 0.9283 0.8667
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Figure 11 Chirp scaling results. (a) Magnitude; (b) interferometric phase.

quality only deteriorates a little which can be tolerable in practice. The interferogram can be further
used in digital elevation model (DEM) generation.

5 Conclusion and future developments

This paper presents a CS-based InSAR imaging approach which allows the scene reconstruction using
sparsely sampled data acquisition. The method exploits the information of two antennas to cancel the
common backscatter random phase of the same resolution element, so that a sparse representation for the
InSAR images can be used. The proposed method reduces the restriction and extends the CS application
in SAR imaging. The main feature of the proposed method is allowing a reduction of the number of
acquisitions required for InSAR image formation with respect to conventional interferometry methods.
The data acquisition can be non-uniformly sampled in the real system and data volume is decreased
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Figure 12 Compressed sensing results (full samples). (a) Magnitude; (b) interferometric phase; (¢) coherent coefficient.
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Figure 13 Compressed sensing results (50% samples). (a) Magnitude; (b) interferometric phase; (c) coherent coefficient.

Table 3 Real data results evaluation

MSE MPE Yabs Yphase
CS1 0.0345 3.6981 0.9872 0.9501
CS2 0.0392 9.2247 0.9534 0.9019

which will release great pressure on transmission and storage. The main contribution of this paper is
that we proposed a method complex-valued SAR images can be sparsely represented by uniting the data
from different channels.

Experiment results on simulated data show that image quality obtained by the CS-based method
performs better than that obtained using conventional interferometry methods when the acquired data
decreased. The proposed method can preserve the interferometric phase better than the conventional
method under the same noise level. In high SNR condition, the imaging results which contain the
information of both magnitude and interferometric phase can be further developed in DEM generation
and InSAR applications. This property has also been confirmed from the three-baseline millimeter wave
InSAR experiments data.

To develop the potentialities of the proposed method, a further research would be required. The
current work still needs to get the image of antenna As using conventional imaging method and does not
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combine the multi-channel data completely. The full combination of the data from different antennas
would gain more information and enhance the image quality. For sparse representation, Fourier basis is
used in this paper. However, to deal with a more complicated scene, Fourier basis may deteriorate and
an appropriate basis would substitute. For example, Haar wavelets can be used to represent the image
with many sharp edges. If the complex-valued SAR image can be represented more sparsely, it may use
less sampling to get the InSAR image. With the change of the sparse basis, the sampling method may
also need adjustment. Instead of M-sequence, a more sparse sampling sequence can be developed. Since
our work focuses on processing sparse data acquisitions, both issues and their relationships are worthy
of a deep research. Moreover, we only discuss the CS application in cross-track interferometry in this
paper while the proposed method may extend to other InSAR modes. Since the preliminary experiments
in this paper show very positive results, these issues look very promising.
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