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Abstract A novel interferometric synthetic aperture radar (InSAR) signal processing method based on com-

pressed sensing (CS) theory is investigated in this paper. InSAR image formation provides the scene reflectivity

estimation along azimuth and range coordinates with the height information. While surveying the height in-

formation of the illuminated scene, the data volume enlarges. CS theory allows sparse sampling during the

data acquisition, which can reduce the data volume and release the pressure on the record devices. InSAR

system which configures two antennas to cancel the common backscatter random phase in each resolution ele-

ment implies the sparse nature of the complex-valued InSAR image. The complex-valued image after conjugate

multiplication that only a phase term proportional to the differential path delay is left becomes sparse in the

transform domain. Sparse sampling such as M-sequence can be implemented during the data acquisition. CS

theory can be introduced to the processing due to the sparsity and a link between raw data and interferometric

complex-valued image can be built. By solving the CS inverse problem, the magnitude image and interferomet-

ric phase are generated at the same time. Results on both the simulated data and real data are presented. In

comparison with the conventional SAR interferometry processing results, CS-based method shows the ability to

keep the imaging quality with less data acquisition.
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1 Introduction

Interferometric synthetic aperture radar (InSAR) has been developed since 1970s and is a technique

extensively used to extract the information from the phase of the SAR signal [1, 2]. InSAR systems

take advantage of the two or more antennas by exploiting the phase information. This additional phase

information can be used to obtain height information of the illuminated scene, measure the radial velocity

of moving scatterers, or monitor surface deformation depending on the implementation [3, 4]. In this

paper, we focus on cross-track interferometry, although the proposed ideas may extend to the other

modes of interferometry. However, with more information acquired, much more data are needed during

the acquisition and processing. While the volume of data collected is increasing rapidly, the ability to
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transmit it, or to store it, is not increasing as fast. As a result, an effective data acquisition approach

such as sparse sampling is necessary.

Conventional InSAR data acquisition must obey the Nyquist Sampling Theorem. If non-uniform

sampling is implemented during the data acquisition, imaging results will deteriorate rapidly due to the

high sidelobe and grating lobe. Compressed sensing (CS), as a favorable sparse reconstruction technique,

is a new and attractive method for sparse sampled data imaging and has attracted many attention [5,6].

CS indicates that certain signals can be recovered with far fewer samples or measurements than traditional

method.

Inspired by the idea of CS, more and more novel processing methods in radar imaging have been

proposed. For example, ref. [7] introduced CS into radar imaging which aims at eliminating the need for

the pulse compression matched filter at the receiver, and reducing the required receiver bandwidth. High

resolution ISAR imaging method during short coherent interval was presented in [8]. Ref. [9] applied CS

on multi-baseline InSAR data for layover separation and analyzed the effect of signal-to-noise ratio (SNR)

and height difference of CS based method. Refs. [10–12] studied SAR tomography and three-dimensional

imaging using CS. Some applications of CS in SAR imaging are also concerned about recently [13–15].

Among these studies, many researchers used CS to reconstruct high resolution image of sparse targets,

such as ships, aerial targets and persistent scatterers along elevation directions. However, in practical

cases, many scenes are not sparse such as the forest area. Furthermore, compared with optical images,

complex-valued SAR images exhibit significantly higher dynamic range and less spatial correlation due to

the random phase of each resolution element [16]. Thus, common sparse representation to optical images

is not suitable for the complex-valued SAR images. A SAR image obtained by single aperture can hardly

be sparsely represented. It becomes a key challenge for InSAR images to choose the right representation

scheme.

To find an appropriate scheme other than the identity matrix, researchers developed many new ap-

proaches. Cetin et al. [17,18] established a series of work focusing on sparsely representing the magnitude

image in the transform domain, which enlightens a method that separates the complex-valued image into

two parts for processing. The work about multi-baseline SAR interferometry also inspired the researchers

combining the data from multi-channel in signal processing [19]. In InSAR systems, two antennas bring

more information and redundancy than a single one which creates an opportunity for SAR images to be

represented sparsely.

In this paper, we propose a new method which surveys the roles of sparsity and CS elements in InSAR

imaging. The InSAR systems cancel the common backscatter random phase and use the phase difference

of two antennas to derive an altitude for each image point. Since the altitude is continuous and slow-

varying, the phase difference proportional to it has the same property, which means the scene can be

sparsely represented. The proposed method takes advantage of this point and can reduce the required

number of measurements releasing the pressure on the data acquisition part of the InSAR system. The

novelty of this paper lies in the idea that representing the complex-valued SAR image in the transform

domain by interferometric processing. The proposed method can form an image of scene not sparse in

the space using sparse samplings. Both the image magnitude and interferometric phase can be kept with

a few samplings.

The remainder of this paper is given as follows. The next section describes the sparsity of InSAR

images and a CS formulation of the InSAR imaging problem. The InSAR imaging method based on CS

is proposed in Section 3. Section 4 gives extensive experimental results on simulated data and real data

along with a performance analysis of the proposed method. Experiments with three-baseline millimeter

wave InSAR data were performed, and the results show that the scheme works successfully. Section 5

summarizes the properties of the new method and addresses the future developments.
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Figure 1 (Color online) InSAR geometry projected on height-ground range plane.

2 Sparsity of InSAR signal

The basic principles of InSAR have been described in detail in many related literatures and the concepts of

sparse reconstruction algorithms are central themes in CS and have been presented in many years. Based

on these foundations, this section presents a brief survey of these themes while also drawing connections

between the InSAR and CS.

2.1 InSAR geometry and sparsity

The sparsity of the InSAR signal is analyzed in this section. Figure 1 illustrates the InSAR system.

In a single antenna case, antenna A1 transmits signals such as chirp signal and receives the echo. By

pulse compression technique in range direction and synthetic aperture principle in azimuth resolution,

two-dimensional (2-D) high resolution radar images are achieved. For each resolution element of this

image, it can be represented as a complex phasor of the propagation phase delay (proportional to the

propagation route R1) and the coherent backscatter from the scattering elements on the ground [20]. Be-

cause the resolution element is much greater than the wavelength, a resolution element can be considered

as consisting of many individual elemental scatterers within the cell. Hence, the backscatter phase delay

can be expressed as the net phase of the coherent sum of the contributions from all elemental scatterers

in the resolution element [20],

φb = arg

{

∑

i

Aεie
jφεie−j 4π

λ
Rεi

}

, (1)

where Aεie
jφεi is the backscatter of the ith elemental scatterer, Rεi is its differential path delay and λ is

the wavelength.

Typically, 2-D Fourier transform (FT) is used as the representation of the energy of complex-valued

images. However, the energy of the coefficients of 2-D FT of the complex-valued SAR image distributes

in the whole frequency domain. Due to the impact of the backscatter random phase φb, a SAR image

can hardly be sparsely represented.

In InSAR case, while radar pulses are transmitted from the conventional SAR antenna A1, radar echoes

are received by both the conventional and an additional SAR antenna A2 shown in Figure 1. The phases

of two nearby antennas can be expressed as










φ1 = 2
2π

λ
R1 + φb1,

φ2 = 2
2π

λ
R2 + φb2,

(2)

where R2 is the distance between Antenna A2 and the target, φbi (i = 1, 2) is the antenna Ai’s backscatter

phase. The basic assumption of InSAR systems is that the backscatter phase delay of each resolution
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Figure 2 SAR image spectrum. (a) The spectrum before the backscatter random phase cancellation; (b) histogram of

the original spectrum; (c) the spectrum after the backscatter random phase cancellation; (d) histogram of the spectrum

after the backscatter random phase cancellation.

element keeps unchanged if the view angles of two antenna are nearly the same. The view angles are

usually much less than 1◦ in practice, so the backscatter phase delays are approximately the same, that

is, φb1 ≈ φb2.

By coherently combining the signals from the two antennas, the interferometric phase difference be-

tween the received signals can be formed for each image pixel. The conjugate multiplication can effectively

cancel the common random backscatter phase in each resolution element, but leave a phase term pro-

portional to the differential path delay [20]. Since the nature scene is usually continuous, the differential

path delay is also continuous and slow-varying. Taking advantage of this property, we reconstruct the

complex-valued image as

I ′1 = I1 exp(−jφ2), (3)

where I1 is the complex image obtained by antenna A1 and I ′1 is the reconstructed image. With this

reconstruction, the backscatter random phase delay which contributes to the high frequency part can be

reduced.

The real data images shown in the Section 4 display a typical SAR image of an agricultural area

acquired by three-baseline millimetre wave InSAR of Institute of Electronics, Chinese Academy of Sci-

ences (IECAS). The magnitude image shows that the scatterers are distributed uniformly in most of the

illuminated area. The sparse assumption that the number of targets is much less than the total number

of discrete spatial positions investigated by many papers is not satisfied. As we have known, the SAR

image phase is noise-like and unsmoothed, which indicates that the complex-valued SAR image may not

be sparsely represented in some other transform domains.

Figure 2 shows the spectrum of the SAR image before and after the backscatter random phase can-

cellation (logarithmic operation is taken here). Figure 2(a) is the original spectrum which the principal

frequencies distribute in a wide range, while the spectrum in Figure 2(c) only consists of a few princi-

pal frequencies. The histogram of the Figure 2(a) in vector form is shown in Figure 2(b), the Fourier
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coefficients mainly distribute in the range (0, 0.4] which indicates poor sparsity. After multiplication by

the complex conjugate phasor information of the second image as shown in (3), common backscatter

random phase in each resolution element is effectively cancelled, leaving a phase term proportional to

the differential path delay which is called “interferogram”. Figure 2(d) shows the spectrum histogram

of the reconstructed image, the Fourier coefficients mostly concentrate around zero of the normalized

frequency, which is highly sparse. The result shown in Figure 2(d) indicates the InSAR image can be

sparsely represented in the frequency domain.

2.2 Sparse reconstruction

Since the InSAR image can be sparsely represented, it becomes a key challenge to reconstruct the image

from the echo signal. Compressed sensing is a novel theory focusing on sparse signal compression and

reconstruction. N -dimensional signal x is defined K-sparse if it has K or fewer non-zero coordinates:

x ∈ R
N , ‖x‖0 def

= |supp(x)| 6 K ≪ N, (4)

where we note that ‖·‖0 is a quasi-norm [21].

For the sparse signal, CS measuresM (K < M ≪ N) projections of x and reconstructs the sparse signal

from this small set of non-adaptive linear measurements. Each measurement can be viewed as an inner

product with the signal x ∈ R
N and some vector ψi ∈ R

N . If we collect M measurements in this way, we

may then consider the M ×N measurement matrix Ψ whose rows are the vectors ψT
i
. Mathematically,

a sparsity problem can be described as a problem of finding sparse solutions of a representation or an

underdetermined equation, that is, recovering the K-sparse signal x ∈ R
N from its measurement vector

y = Ψx ∈ R
M . The problem then can be modeled as the following ℓ0-optimization problem:

min
x∈RN

‖x‖0 s.t. y = Ψx. (5)

Since M ≪ N , the sparsity problems are seriously ill-posed and may have multiple solutions. A common

practice is then to apply regularization technique for the solutions. Thus, the sparsity problems can be

frequently transformed into the following so called ℓ0-regularization problem:

min
x∈RN

{

‖y − Ψx‖22 + ξ‖x‖0
}

, (6)

where parameter ξ is used to balance the two objective terms. Many researchers have suggested an

approximate solution of (5) by relaxing the ℓ0-norm to ℓp-norm (0 < p 6 1) or other approach for ℓp-norm

also promotes sparsity in a solution. Among these approaches, ℓ1-regularization becomes widespread that

many research has studied the property of ℓ1-regularization and algorithms to solve the ℓ1-regularization

optimization problems. However, for many applications, the solutions of the ℓ1-regularization are less

sparse than those of the ℓ0-regularization [22]. It may come with the problems such as introducing

extra bias in estimation. In this paper, instead of ℓ1-minimization, we choose a powerful approach

ℓ1/2-minimization (p = 1/2) to reconstruct the sparse signal,

min
x∈RN

{

‖y − Ψx‖22 + ξ‖x‖1/21/2

}

, (7)

since ℓ1/2-regularizations may generate more sparse solutions than ℓ1-regularization and provide a faster

computational speed in some cases [23].

3 Data processing method

In the case of an InSAR system, the geometry and data acquisition model are shown in Figure 3. Com-

pared with the conventional InSAR sampling uniformly, the model of this paper transmits and receives

pulses randomly in the azimuth direction. Zero azimuth time (η = 0) is defined at zero Doppler and the
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Figure 3 InSAR data acquisition model.

instantaneous slant range R(η) from antenna to a single point Pi at a position (R0, Vrη) can be modelled

as

R(η) =
√

R2
0 + V 2

r η
2 ≈ R0 +

V 2
r η

2

2R0
, (8)

where Vr is the platform velocity. After demodulation to baseband, the acquired raw data for Pi whose

backscatter coefficient is σi can be written in terms of the range time τ and azimuth time η,

s(τ, η) = σiwr

[

τ − 2R(η)

c

]

wa(η − ηc) exp

{

jπKr

[

τ − 2R(η)

c

]2
}

exp

[

−j
4πf0R(η)

c

]

, (9)

where ηc is the beam center offset time, f0 denotes the carrier frequency, Kr denotes the chirp rate. wa(·)
is the weighting in azimuth from the antenna pattern, wr(·) is the range envelope and c is the speed of

light.

Use the conventional matcher filter, the output of the range compression can be written as

src(τ, η) = σipr

[

τ − 2R(η)

c

]

wa(η − ηc) exp

[

−j
4πf0R(η)

c

]

, (10)

where pr(·) denotes the point spread function of wr(·).
For simplicity, only low squint angle situation is deduced and some procedures in range-Doppler (RD)

algorithm are used in the processing. Hence, the signal of (10) can be approximated as

srcmc(τ, η) = σipr

[

τ − 2R(η)

c

]

wa(η − ηc) exp

[

−j
4πf0R0

c

]

exp

[

−jπ
2V 2

r

λR0
η2
]

. (11)

The range migration delay in (11) is removed during processing by range cell migration correction

(RCMC). Assuming a range cell contains K scattering centers with different azimuth locations x′
i in

the total illumination time T0, we have the signal after RCMC in the range cell corresponding to R0 as

follows:

srcmc(τ, η) =
K
∑

i=0

σipr

[

τ − 2R0

c

]

wa

(

η − ηc −
x′
i

Vr

)

exp

[

−jπ
2V 2

r

λR0

(

η − x′
i

Vr

)2
]

· exp
[

−j
4πf0R0

c

]

. (12)
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The RCMC is achieved by the RD framework and the signal is assumed uncoupled in azimuth and range

direction. Then, Eq. (12) is simplified as

s(η) =

K
∑

i=0

σiwa

(

η − ηc −
x′
i

Vr

)

exp

[

−jπ
2V 2

r

λR0

(

η − x′
i

Vr

)2
]

. (13)

Discretize the azimuth time η into η = [η1, η2, . . . , ηM ]T ([·]T denotes vector or matrix transpose) shown

in Figure 3 and construct the matrix

Φ = [h1,h2, . . . ,hN ] , (14)

where

hi = wa

(

η − ηc −
xi

Vr

)

exp

[

−jπ
2V 2

r

λR0

(

η − xi

Vr

)2
]

, (15)

where xi = (i − 1 − N/2)∆x (i = 1, 2, . . . , N) is the ith azimuth location in the illuminated area. The

azimuth sampling interval ∆x is related to the azimuth resolution. In general, ∆x can be set equal to

or a little less than Vr/PRF and set N an even number greater than VrT0/∆x. Considering the noise n,

the echo signal can be expressed as

sM×1 = ΦM×NσN×1 + nN×1, (16)

where σ is the complex-valued image of the range cell R0 with N elements σi and s = s(η) is the

discrete echo with M elements. It is worth noting that although Eq. (16) is conducted when the squint

angle is low, the model can be applied to large RCM cases. In such cases, one-dimensional processing

becomes a two-dimensional problem and the subscripts in (16) should be modified considering the range

cell numbers. As aforementioned, the complex-valued SAR image has less sparsity and can hardly be

sparsely represented under common sparse frameworks.

However, inspired by the idea in (3), the complex-valued image σ in (16) can be sparsely represented

by cancelling φ′, the phase of the image acquired by antenna A2 corresponding to the same range cell

R0. Therefore, each image element of antenna A1 can be rewritten as σi = σ′
i exp(jφ

′
i) and the signal can

be modeled as

s = ΦPσnew + n, (17)

where the matrix P = diag {exp(jφ′
i)} is a diagonal matrix where φ′

i denotes the ith elements of φ′ and

σnew is the new reconstructed complex-valued image with N elements σ′
i. The new image σnew combining

the magnitude information of image σ and the interferometric phase can be sparsely represented. Thus,

we consider

σnew = Ψα, (18)

where Ψ is an appropriate dictionary for the model that represents the new image sparsely and α is the

coefficient under dictionary Ψ . Substitute (18) into (17), the imaging model can be rewritten as

s = ΦPΨα+ n. (19)

If the phase matrix P is known, the problem turns into a typical sparse reconstruction problem:

α̂ = argmin
α

{‖s−ΦPΨα‖22 + λ‖α‖p}. (20)

Unfortunately, the phase term matrix P of the antenna A2 is unknown due to the sparse sampling.

Here we use the conventional imaging method to form the image of the antenna A2. The imaging result

may suffer from high sidelobes, but has a strong correlation with the image formed by all samples. Hence,

we can substitute the phase of this image for the phase term matrix in (20). Using the substitution, the

optimization problem becomes

α̂ = argmin
α

{‖s−ΦP ′Ψα‖22 + λ‖α‖p}, (21)
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where P ′ is the phase term matrix of the image formation by the conventional imaging approaches.

Quite a number of algorithms have been proposed and studied for solving the problems (20) based on ℓ1-

minimization techniques such as the iterative shrinkage thresholding (IST) method [24]. However, to solve

(20) faster and more accurate, we use the iterative half thresholding technique based on ℓ1/2-minimization

to get α̂ [22].

Noticed that Eq. (21) is a complex-valued optimization problem, when ℓ1/2-minimization is applied,

an extension of the half thresholding theory established on the complex space is used and the solutions

of problem (21) can be expressed by

α = Gλµ,1/2

(

α+ µAH (s−Aα)
)

, (22)

where A = ΦP ′Ψ , µ is the a step size and Gλµ,1/2(·) is the complex-valued half thresholding function

defined in [25]. More details about the complex-valued half thresholding algorithm can be seen in [25,26].

With the iteration representation (22), the new complex-valued image which contains the magnitude and

inteferogram phase information of the scene can be acquired by inverse transformation σ̂new = Ψα̂.

4 Experiments and results

This section presents some results obtained by processing simulated and real data to show the effectiveness

of the proposed method.

4.1 Experiments description

For sparse sampling, we choose M-sequence to sample in the azimuth direction with “1” in the sequence

represents the sampling position and “0” the vacant position.

M-sequence, or maximum length sequence (MLS) is binary sequence generators that are capable of

outputting all possible combinations of binary sequences in 2n − 1 cyclic shifts, where n is the size of the

linear feedback shift registers used in generating such sequences1).

M-sequences are inexpensive to implement in hardware or software, and relatively low-order feedback

shift registers can generate long sequences; a sequence generated using a shift register of length 20 is

220 − 1 samples long.

Another reason we choose M-sequence is its good autocorrelation properties (a single peak with no

sidelobes) which simplify the recovery process. An M-sequence can be shown to have a thumbtack-

like autocorrelation function [27]. Therefore, terms like psuedorandom binary sequences or psuedonoise

sequences are also used to refer M-sequences. Figure 4 shows the autocorrelation function (ACF) of a

M-sequence with n = 10 and length p = 210 − 1 = 1023. As seen in Figure 4, the M-sequence has a

certain degree of randomness which contributes to the reconstruction. M-sequence is irrelevant with the

sparsity of the scene, which means it can be used repetitively and the hardware cost can be reduced in

the practical cases.

An M-sequence has 2n−1 “1”s and 2n−1 − 1 “0”s, the occurrence of 0 and 1 in the sequence is approx-

imately the same, so the sparse rate of the data acquisition is about 50% in the experiments.

For the sparse representation, Fourier transform is chosen to represent the image in the experiment.

Fourier basis is a simple and popular dictionary. Figure 2 has shown that under Fourier basis, the new

image σnew can be sparsely represented. In the practical cases, the other bases can be used according to

the scene. A rough imaging can be done to get the prior information of the scene and the corresponding

sparse basis can be chosen. CS theory points out that it has to satisfy an incoherency property between

ΦP ′ and Ψ to recover the signal. It needs ΦP ′ to be incoherent in the Ψ domain. To evaluate the

incoherence, mutual coherence defined by

µ(B,C) = max
k,j

|〈bk, cj〉|
‖bk‖2‖cj‖2

(23)

1) Maximum length pn sequence generation. http://www.mathworks.de/matlabcentral/linkexchange/links/2324-

maximum-length-pn-sequence-generation.
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Figure 4 The autocorrelation function of an M-sequence. Figure 5 Coherence matirx of A.

is used. The parameter µ(B,C) serves as a rough characterization of the degree of similarity between

matrices B and C, where bk is the kth row of the matrix B and cj is the jth column of the matrix C [28].

In our case, Ψ is the inverse Fourier transform matrix, with the chosen step, µ(ΦP ′,Ψ ) attains a value

about 0.12 (minimum value 1/
√
N = 0.03).

With the chosen matrix and sparse representation, each column of A is highly incoherent, Figure 5

shows the logarithmic autocorrelation matrix of rows from A. The matrix is close to an identity matrix,

which indicates that A approximately satisfies the orthogonality and can be used to recover the signal.

The InSAR images after cancelling the common backscatter phase are also sparse in other transform

domains and dictionaries such as wavelets basis can be used to sparsely represent the complex-valued

InSAR images. Ref. [29] studied the sparse regularization of interferometric phase and amplitude for

InSAR image formation from Bayesian perspective and such studies worth deeper researching.

For the computational complexity, it can be analyzed according to (22). For each range cell, the

computational complexity of µAH (s−Aα) is O(MN) and the half thresholding operator take O(N) in

each iteration. Hence, the total computational complexity of an iteration is O(MN), which is the same

order with that of the soft algorithm. The convergence speed is analyzed in [30], the number of iteration

requires of the proposed method are nearly the same with some ℓ1 based algorithm. Therefore, the total

time consuming of the proposed method is the same with those ℓ1 based algorithm. To shorten the time

consuming, some accelerated ℓ1/2 regularization algorithms such as the method proposed in [26] can be

applied. However, the conventional match filter method only involves some matrix multiplication and

fast Fourier Transform (FFT) operation. The computational complexity is O(N logN). The cost is much

higher compared to conventional method which would entail a new study about fast ℓ1/2 regularization

techniques.

4.2 Evaluation principle

To provide a numerical evaluation for the results, we consider images that directly use the ground truth.

First idea for evaluation could be the complex correlation function γ [2], which is widely used in the

interferometry and is defined as

γ =
E[v̂v∗]

√

E[v̂v̂∗]E[vv∗]
, (24)

where v̂ represents the imaging results acquired by the specified method, v represents the ground truth

image, (·)∗ denotes the complex conjugate and E[·] denotes averaging over the ensemble of image real-

izations. An estimate of coherence can be obtained through spatial averaging. The correlation function

is used to judge the relationship between the scattered fields at the interferometric receivers after image

formation, while we use γ here to judge the relationship between imaging results and the ground truth

and evaluate the image quality. For completely coherent image results, we have γ = 1, while γ = 0 when
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Figure 6 Simulated scene. (a) DEM; (b) ideal interferometric phase.

the image results are independent, which indicates the imaging results are far from the truth and the

specified method malfunctions.

Another idea to evaluate the reconstructed image is the mean squared error (MSE) which also indicates

the SNR of the image. MSE can be defined as [17]

MSE =
1

N
‖|v| − |v̂|‖22, (25)

where |v| and |v̂| are the true and reconstructed magnitude images and N is the number of resolution

elements in the reconstructed image.

Since our result is a complex-valued image and the image phase contains the interferogram information,

an evaluation for phase is necessary. Here we use mean phase error (MPE) which can be expressed as

MPE =
1

N
‖∠v − ∠v̂‖1, (26)

where ∠v is the phase of the ground truth and ∠v̂ denotes reconstructed phase.

4.3 Simulated data

To analyze the effects due to the reduced number of acquisitions and to their non-uniform spacing, and to

show phase-preserving capabilities of the proposed method, we perform some experiments on simulated

data. For comparison, the conventional interferometry [31], including imaging, precise image registration,

interferogram generation and filtering and other procedures is also performed here.

Figure 6(a) shows the simulated scene. To avoid the sparse scene such as point-target, we consider a

scene which contains a cone with 60 meters high and a radius of 120 meters on the ground for simulation.

The whole scene is 200 m×300 m in the azimuth-ground range plane. The backscatter coefficients of the

cone is 1 and the ground is 0.3. Considering the backscatter random phase, a white zero-mean Gaussian

noise is multiplied during the raw data generation. The synthetic aperture time is about 1 s and 2048

pulses are used to reconstruct the scene. The detailed simulation parameters are listed in Table 1.

To prove the feasibility of the substitution in (21), a comparison between sparse sampling and full

sampling imaging results is made here. Here we use 1024 pulses (50%) and 683 pulses (33%) of azimuth

sparse sampling to form the image, respectively. 500 Monte Carlo trials are conducted for each azimuth

sampling number. When the simulated scene imaging is formed using half of the samplings, the average

MPE is 4.14◦. When the sampling number falls down to 683, the average MPE of 500 trials is 5.95◦.

The sparse sampling imaging result will suffer phase loss, however, it can be used for substitution in (21)

since the phase loss is small.

The ideal interferometric phase of the ground truth is shown in Figure 6(b). The phases here are the

principal value, modulo 2π, from −π (blue) to π (red). To make the illustration more intuitive and the

comparison more accurate, the flat earth phase contribution is removed before display and evaluation.
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Table 1 Simulation parameters

Parameter Notation Value

Carrier frequency fc 35 GHz

Incidence angle θ 35◦

Baseline B 1 m

Platform height H 3000 m

Platform velocity Vr 50 m/s

Pulse repetition frequency PRF 200 Hz

Range sampling rate fs 600 MHz

System bandwidth Bs 400 MHz

Antenna size D 0.6 m
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Figure 7 RDA results (noise free). (a) Magnitude (all samples); (b) interferometric phase (all samples); (c) magnitude

(50% samples); (d) interferometric phase (50% samples).

Figure 7 shows the RDA imaging results which we use here to compare the performances of the proposed

method. Figure 8 is the imaging results of the proposed method with all samples and 50% samples

without noise. To show the capabilities of the proposed method under different noise conditions, an

additive Gaussian white noise is added in the simulated raw echo to generate different noise levels (single

pulse SNR = 0 dB, −10 dB) and Figures 9 and 10 show the interferometric imaging results of different

approaches in the case single pulse SNR = −10 dB.

The evaluation results are given in Table 2. Here the image coherence is evaluated separately which

γabs and γphase denote the coherence of the image magnitude and phase, respectively. To depress the

noise impact on the image, pivoting median filter [32] is used and different sizes of windows are tried to

smooth the image. In Table 2, the subscript 1 means imaging using the proposed method with all samples

and 2 means using 50% of the samples. It is observed that by using all the samples, the imaging results

of the proposed method are the same as the performance of the conventional interferometry techniques.

When the number of samples decreases, the results show that the image quality of both the methods

degrades. However, the proposed method can still obtain the magnitude image and interferometric phase
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Figure 8 CS results (noise free). (a) Magnitude (all samples); (b) interferometric phase (all samples); (c) magnitude

(50% samples); (d) interferometric phase (50% samples).
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Figure 9 RDA results (SNR = −10 dB). (a) Magnitude (all samples); (b) interferometric phase (all samples); (c) mag-

nitude (50% samples); (d) interferometric phase (50% samples).

within the tolerance error in high SNR condition while the conventional interferometry approach suffers

great from high sidelobes. (When MPE = 10◦, the corresponding height measurement error is 0.94 m.
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Figure 10 CS results (SNR =−10 dB). (a) Magnitude (all samples); (b) interferometric phase (all samples); (c) magnitude

(50% samples); (d) interferometric phase (50% samples).

Since our InSAR system height measurement accuracy is 0.99 m, the error is tolerable in some case such

as emergency mapping.) The CS method preserves the image phase and performs better when using less

acquisition samples.

4.4 Real data

We present the experiments on real data in the following part. In particular, we consider the agricul-

ture area in Xi’an, China. The scatterers distribute uniformly in the illuminated area and the sparse

assumption that the most papers studied is not suitable.

The InSAR flight experiment was operated on May 16, 2011. In the experiment, the aeroplane flew at

about 3000 m high with the velocity of 47.9 m/s and the system PRF is 1000 Hz. The ground altitude

is about 300 m. We use antennas 1 and 2 for imaging whose baseline length is 0.6 m. The time width of

chirp signal is 12 µs. Other parameters are listed in Table 1. The InSAR system operated on standard

mode that only antenna 1 transmitted the chirp signal and both antennas received the echoed signal.

Before the proposed method implementation, the errors arising from the aircraft movements are com-

pensated by a two step motion compensation during the SAR imaging processing [33, 34]. Additionally,

a very precise velocity and range delay variation compensation has been carried out.

The image formation results of different approaches are listed below. Figure 11 is the imaging results

using chirp scaling algorithm (CSA) and the conventional SAR interferometry flow where (a) is the image

magnitude and (b) is the image phase. Figure 12 shows the imaging results using the proposed method

with full samples (2048 samples) and Figure 13 uses half of the samples. We show the coherence images

of imaging phase in Figure 12(c) and Figure 13(c) where we can see that the image phase of the proposed

method is highly coherent with the results of the conventional approach.

It is a pity that we do not have the ground truth or higher precision data for the experiments with the

real data. However, we still make a comparison with the conventional InSAR results to set an approximate

evaluation on the proposed method. The evaluation results are given in Table 3. As seen in the table, the

proposed method performs nearly the same using the full samples. When using 50% samples, the image
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Table 2 Simulation evaluation

Window MSE MPE γabs γphase

Noise free

RD1 5× 5 0.4033 7.7318 0.9435 0.9885

RD2 5× 5 0.4246 16.1688 0.9405 0.8993

CS1 5× 5 0.3895 7.5999 0.9441 0.9834

CS2 5× 5 0.4117 11.8588 0.9428 0.9542

RD1 7× 7 0.3464 7.6803 0.9516 0.9878

RD2 7× 7 0.3795 13.6570 0.9495 0.9278

CS1 7× 7 0.3440 7.0813 0.9518 0.9875

CS2 7× 7 0.3714 9.6770 0.9503 0.9698

SNR = 0

RD1 5× 5 0.4297 11.0752 0.9415 0.9839

RD2 5× 5 0.4639 20.0382 0.9387 0.8951

CS1 5× 5 0.4369 11.0750 0.9435 0.9831

CS2 5× 5 0.4455 15.4450 0.9409 0.9438

RD1 7× 7 0.4011 9.9295 0.9513 0.9871

RD2 7× 7 0.4258 16.2879 0.9498 0.9234

CS1 7× 7 0.4100 9.2649 0.9513 0.9842

CS2 7× 7 0.4155 12.7845 0.9503 0.9628

SNR = −10 dB

RD1 5× 5 0.4449 23.1369 0.9359 0.9421

RD2 5× 5 0.4755 37.9985 0.9140 0.7699

CS1 5× 5 0.4350 23.1223 0.9358 0.9425

CS2 5× 5 0.4739 30.4115 0.9211 0.8413

RD1 7× 7 0.4235 19.3985 0.9422 0.9472

RD2 7× 7 0.4283 31.9880 0.9216 0.8096

CS1 7× 7 0.4149 19.2339 0.9422 0.9495

CS2 7× 7 0.4639 26.5798 0.9283 0.8667
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Figure 11 Chirp scaling results. (a) Magnitude; (b) interferometric phase.

quality only deteriorates a little which can be tolerable in practice. The interferogram can be further

used in digital elevation model (DEM) generation.

5 Conclusion and future developments

This paper presents a CS-based InSAR imaging approach which allows the scene reconstruction using

sparsely sampled data acquisition. The method exploits the information of two antennas to cancel the

common backscatter random phase of the same resolution element, so that a sparse representation for the

InSAR images can be used. The proposed method reduces the restriction and extends the CS application

in SAR imaging. The main feature of the proposed method is allowing a reduction of the number of

acquisitions required for InSAR image formation with respect to conventional interferometry methods.

The data acquisition can be non-uniformly sampled in the real system and data volume is decreased



Li L C, et al. Sci China Inf Sci October 2017 Vol. 60 102305:15

Range (m) Range (m)

 

 

3250 3300 3350 3400 3450

−40

−20

0

20

40
−2

0

2

A
zi

m
u
th

 (
m

)

A
zi

m
u
th

 (
m

)

 

 

3250 3300 3350 3400 3450

−40

−20

0

20

40

Range (m)
A

zi
m

u
th

 (
m

)

3250 3300 3350 3400 3450

−40

−20

0

20

40

−1

−0.5

0

0.5

1.0

1.0

0.5

0

(a)

(b) (c)

Figure 12 Compressed sensing results (full samples). (a) Magnitude; (b) interferometric phase; (c) coherent coefficient.
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Figure 13 Compressed sensing results (50% samples). (a) Magnitude; (b) interferometric phase; (c) coherent coefficient.

Table 3 Real data results evaluation

MSE MPE γabs γphase

CS1 0.0345 3.6981 0.9872 0.9501

CS2 0.0392 9.2247 0.9534 0.9019

which will release great pressure on transmission and storage. The main contribution of this paper is

that we proposed a method complex-valued SAR images can be sparsely represented by uniting the data

from different channels.

Experiment results on simulated data show that image quality obtained by the CS-based method

performs better than that obtained using conventional interferometry methods when the acquired data

decreased. The proposed method can preserve the interferometric phase better than the conventional

method under the same noise level. In high SNR condition, the imaging results which contain the

information of both magnitude and interferometric phase can be further developed in DEM generation

and InSAR applications. This property has also been confirmed from the three-baseline millimeter wave

InSAR experiments data.

To develop the potentialities of the proposed method, a further research would be required. The

current work still needs to get the image of antenna A2 using conventional imaging method and does not
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combine the multi-channel data completely. The full combination of the data from different antennas

would gain more information and enhance the image quality. For sparse representation, Fourier basis is

used in this paper. However, to deal with a more complicated scene, Fourier basis may deteriorate and

an appropriate basis would substitute. For example, Haar wavelets can be used to represent the image

with many sharp edges. If the complex-valued SAR image can be represented more sparsely, it may use

less sampling to get the InSAR image. With the change of the sparse basis, the sampling method may

also need adjustment. Instead of M-sequence, a more sparse sampling sequence can be developed. Since

our work focuses on processing sparse data acquisitions, both issues and their relationships are worthy

of a deep research. Moreover, we only discuss the CS application in cross-track interferometry in this

paper while the proposed method may extend to other InSAR modes. Since the preliminary experiments

in this paper show very positive results, these issues look very promising.
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