肉制品加工过程对杂环胺含量的影响及其 控制手段的研究进展

王正勇

(无锡天鹏食品有限公司, 江苏 无锡

摘 要: 肉制品经长时间高温处理会伴随杂环胺等有害物质的形成,其作为一类强致突变、致癌性物质,对长期食 用碳烤或油炸类肉制品的消费者造成极大的安全健康隐患。本文通过简要论述加工处理过程对肉制品中杂环胺形成 的影响因素, 进而探讨有效的控制手段, 从根本上降低其对人体健康的危害。

关键词: 肉制品; 杂环胺; 控制方法

Research Progress in the Effect of Processing Technology on Hetercyclic Amine Content in Meat Products and Control Measures

WANG Zheng-yong (Wuxi Tianpeng Food Co. Ltd., Wuxi 214016, China)

Abstract: Long-term high-temperature treatments can induce the formation of hetercyclic amines and other hazardous substances during the production of meat products. Hetercyclic amines are a class of potent carcinogens and mutagens and long-term consumption of grilled or fired foods can be greatly harmful to the health of consumers due to the presence of hetercyclic amines. In this paper, we briefly discuss factors that influence the formation of hetercyclic amines in processed meat products and propose some effective control measures to inhibit their generation.

Key words: meat; hetercyclic amines; control measures 中图分类号: TS251.5 文献标识码: A

文章编号: 1001-8123(2012)10-0045-03

杂环胺是在高温及长时间烹调加工处理畜禽肉、 鱼肉等蛋白质含量丰富的食品过程中产生的一类具有致 突变、致癌作用的多环芳香族化合物。根据其化学结构 可分为氨基咪唑氮杂芳烃和氨基咔啉类两类, 其致突变 性、致癌性和心肌毒性已得到广泛的共识。特别是2-氨 基-3-甲基IQ咪唑并[4,5-f]喹啉(IQ),已被国际癌症研究中 心归类为"对人类高可疑致癌物(2A级)"[1]。研究表明, 饮食习惯是诱发癌症的重要因素之一,合理的膳食习惯 与人类疾病密切相关。其中,癌症作为世界第二大高致 死率疾病,给人们带来了严重的生命威胁[2]。

自1977年Sugimura等[3]首次在碳烤鱼类中发现杂环胺 以来,已有近30种杂环胺相继从高温处理的肉制品中被分 离鉴定,其含量主要采用高效液相色谱法进行测定[4-5]。 最新研究表明,杂环胺不仅存在于烤"焦"的肉制品 中,"正常"烹调条件下产品中也会有杂环胺的形成。 流行病学病例研究指出,长期通过膳食摄取高温处理的 肉制品中所产生的杂环胺将大大提高人体患胃癌、结肠 癌和乳腺癌的风险[6-8]。如何在加工处理过程中抑制杂环

胺的形成,降低其对人体致癌的风险成为当今研究热 点和亟待解决的难题。本文通过简要概述杂环胺在加 工处理过程中形成的影响因素,并介绍相关抑制其形 成的手段。

杂环胺形成的影响因素

动物组织肌肉内含有大量的氨基酸、糖类和肌酸或 肌酐,这些都是杂环胺形成的主要前体物质^[9]。当原料 处于高温或长时间加热状态下, 杂环胺形成的途径主要 分为以下两种: 1)蛋白质分解成氨基酸,在己糖的参与 下转化为吡啶或吡嗪和醛类物质,进而转化为杂环胺; 2)肌酸转化为肌酐,接着肌酐再直接转化为杂环胺[10]。 Puangsombat等[11]针对不同原料不同加工处理方式的方便 食品中杂环胺含量的分析发现,意大利辣香肠<热狗和 熟食产品<熟制熏肉<烤鸡肉<烤鸡皮。这说明杂环胺 的形成量和形成种类不仅与不同原料前体物质的浓度有 着紧密的相关性,而且与加工处理方式、处理时间和加

收稿日期: 2012-08-11

作者简介: 王正勇(1973—),男,工程师,本科,研究方向为肉类及相关制品、食品安全分析。E-mail: wangzhengyong1973@126.com

肉类研究 MEAT RESEARCH

热温度也有着密不可分的关系。研究表明, 处理时间越 长,加热温度越高,在加工处理过程中杂环胺形成的含 量和种类越多。

另外, 明火碳烤或直接接触金属加热也会大大提高 杂环胺的形成量。因此,原料肉种类(前体物质浓度)、加 工处理方式以及处理温度和加热时间等是杂环胺形成的 重要影响因素[12]。

前体物质浓度

不同种类的原料肉含有的游离氨基酸、还原糖与肌 酸等前体物质浓度均存在着天然的差异性。例如白肉相 较于红肉而言,其脂肪含量较低,由于其白肌纤维代谢 更快导致其内部肌酸也要明显高于红肌纤维[13]。廖国周 等[14]将6种不同种类的原料肉经200℃处理10min,以探讨 其在相同处理条件下不同前提物质浓度对杂环胺的形成 量的影响。研究发现,6种原料肉中杂环胺的前体物质浓 度差异较大, 其中, 2-氨基-1-甲基-6-苯基-咪唑并[4,5-b] 吡啶(2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine, PhIP) 在禽兽中更易于产生, 其与肌酸和葡萄糖的浓度比 存在相关性(P<0.05), 随着葡萄糖浓度的增高, PhIP的 形成量逐渐减少。我国针对杂环胺的研究与国外相比起 步较晚,对原料前体物质天然差异性对杂环胺的形成影 响研究至今仍然不是很明确,进一步探讨并确定两者之 间的关系有助于更好的阐明杂环胺的形成机理, 为更好 的抑制其在加工处理过程中的形成提供依据。

1.2 加工处理方式

随着生活水平的不断提高,饮食健康逐渐得到了 人们足够的重视。不健康的饮食习惯将可能直接导致杂 环胺的大量摄入,进而大大增加人体患有癌症的风险。 油炸类和碳烤类产品长期以来被人们称之为"垃圾食 品",其主要来源于原料肉经长时间高温处理甚至明火 加热烹调后, 其内部杂环胺含量明显升高, 长期食用此 类产品将导致人体内的强致突变物含量超出普通标准, 从而发生机体癌变。但研究表明即使是"正常"烹调条 件下, 肉制品内也会有杂环胺的形成, 说明不同加工处 理方式对杂环胺的形成含量和种类具有一定的影响。 Liao等[15]采用煎炸、油炸、碳烤和烘烤4种不同烹饪处 理方式探讨其在加工鸡肉过程中对杂环胺形成含量的影 响。研究发现,不同加工处理方式对杂环胺形成含量由 高到低依次是碳烤>油煎>油炸>烘烤。这说明采用非 明火或间接加热方式加工处理肉制品可有效降低杂环胺 的形成含量。养成合理的膳食习惯,可减少杂环胺的摄 入量,降低产品致突变性和致癌性。

加工温度和时间

研究[16]报道指出加工温度和时间对肉制品在加工处 理过程中杂环胺形成含量的影响最大, 并远远超过前体 物质浓度对其形成的影响。肉制品在加工处理过程中,

杂环胺生成量的最低加工温度为150℃[17-18], 当温度升 至190℃时,杂环胺生成量会迅速增加[19],并且200℃处 理温度下达到峰值[20]。随着处理时间的延长发现,一部 分种类杂环胺含量会继续升高,而另一部分杂环胺含量 却发生明显降低, 表明长时间高温处理肉制品不仅会导 致杂环胺的大量产生,还可能会引起其在高温下发生降 解。姚瑶[21]研究不同加工处理时间对牛排中杂环胺形成 含量的影响,结果表明在煎锅条件下烹饪八分熟的牛 排,其内部杂环胺的含量为6.5ng/g,而全熟的牛排则迅 速上升至23.2ng/g。由此可见,长时间高温处理对肉制品 加工存在着严重的安全隐患,应在保证产品美味的前提 下尽可能地降低加工温度和时间, 避免杂环胺在高温处 理过程中的大量形成。

控制杂环胺形成的方法

流行病学研究证实人类癌症与肉制品摄入有着密切 的联系[22]。这是由于肉制品在加工处理过程中无法避免 杂环胺等致突变、致癌性物质的产生,而肉制品长期以 来深受国内外消费者的喜爱, 如何控制杂环胺在加工过 程中的形成成为人们日益关注的焦点。目前的控制手段 主要有物理抑制和添加天然或合成抗氧化剂两类, 前者 主要根据其形成的影响因素, 采用物理手段抑制杂环胺 在加工处理过程中的形成; 而后者则是利用添加具有抗 氧化剂成分的物质,通过其来清除原料肉加工处理过程 中所产生自由基,进而抑制杂环胺的形成[23]。

物理加工手段

起初研究学者根据影响杂环胺形成的主要因素,提 出降低加工处理温度、减少加工处理时间可有效降低杂 环胺在肉制品中的含量。从杂环胺形成机理来看, 此类 方法从根本上抑制了杂环胺的形成,但针对需要长时间 高温处理的肉制品却无能为力;随着技术的不断发展, 微波处理逐渐成为一种新型的加工手段,原料在加热过 程中, 其热量由内部产生, 原料表面温度较其他部分升 高缓慢。因此, Felton等[24]研究发现利用微波预处理用 于油炸的原料肉可明显抑制杂环胺在油炸过程中生成 量。这是由于微波作用导致原料肉中前提物质浓度发生 变化, 进而降低其在加工中的形成, 生成量可减少高达 95%。但这一研究结果在学界内并未达成广泛的共识, 故微波加工处理肉制品能否降低其内部杂环胺的形成还 有待进一步的研究探讨。

添加抗氧化剂

国外大量应用化学合成抗氧化剂作为抑制杂环胺 形成的主要手段[25]。这是由于其甲氧基团经化学反应可 生成醌类成分物质, 这类物质具有显著清除自由基的效 果,从而大大降低了杂环胺在加工处理过程中的生成。

专题论述

而Puangsombat等[26]通过利用亚洲地区特有的香辛料中 所含有的天然抗氧化剂成分来抑制牛肉饼加工处理过程 中杂环胺的形成。这些香料中含有大量的多酚抗氧化成 分,其可在加工处理中抑制杂环胺的形成。研究表明, 在加工处理前将5种香辛料添加至牛肉饼中进行腌制, 经204℃高温处理10min后测定其内部杂环胺含量发现实 验香辛料可有效抑制其生成量。徐枫[27]利用苦瓜汁对抑 制杂环胺类物质致突变性进行了探讨研究发现, 苦瓜汁 中含有丰富的VA、VE和氧自由基清除剂可有效抑制或 阻断食品中致突变作用的物质。添加抗氧化剂为解决抑 制杂环胺在肉制品加工处理过程中的形成提供了新的方 向, 更为其在肉制品中的广泛应用提供参考。

2.3 其他手段

此外, 微生物学者在研究中发现, 肠道中的益生菌 对杂环胺也具有一定的控制作用[28-30]。体外实验表明, Bifidobacterium pseudocatenulatum G4可以有效地结合杂 环胺,从而降低小肠的吸收^[28]; Nowak 等^[29]也发现, Lactobacillus casei DN 114001不但可以吸附杂环胺,也可 以将其部分代谢,从而有效降低杂环胺的含量。

3 结 语

目前,国外针对杂环胺的形成机理及其形成影响因 素等已做出了深入的探讨研究,但我国这方面的相关研 究报道还比较少。明确杂环胺形成机制,并从根本上抑 制其在加工处理过程中的形成,建立有效评价体系,这 对评估摄入杂环胺对人体健康的危害具有积极的作用。 另外,消费者自身应采用合理膳食习惯,尽量少食油炸 或碳烤类肉制品,重视通过合理烹饪方式降低杂环胺的 日常摄入量,减少致突变和致癌物的生成,共建和谐健 康生活。

参考文献:

- 姚瑶, 彭增起, 邵斌, 等. 加工肉制品中杂环胺的研究进展[J]. 食品 科学, 2010, 31(23): 447-453.
- [2] LYNCH A M, MURRAY S, GOODERHAM N J, et al. Exposure to and activation of dietary heterocyclic amines in humans[J]. Critical Reviews in Oncology Hematology, 1995, 21(1/3): 19-31.
- SUGIMURA T, NAGAO M, KAWACHI T, et al. Mutagens carcinogens in food, with special reference to highly mutagenic pyrolytic products in broiled foods[M]. Cold Spring Harbor Laboratory Press, 1977.
- OZ F. Quantitation of heterocyclic aromatic amines in ready to eat meatballs by ultra fast liquid chromatography[J]. Food Chemistry, 2011, 126: 2010-2016.
- GUO Haitao, PAN Han, WANG Zhenyu, et al. Simultaneous [5] determination of nine heterocyclic aromatic amines in mutton products by solid phase extraction-high performance liquid chromatography[J]. Chinese Journal of Chromatography, 2012, 30(10): 1074-1080.
- KAMPMAN E, SLATTERY M L, BIGLER J, et al. Meat consumption, genetic susceptibility, and colon cancer risk: a United States multicancer case-control study[J]. Cancer Epidemiology, Biomarkers Prevention, 1999, 8(1): 15-24.

- ROHRMANN S, HERMANN S, LINSEISEN J. Heterocyclic aromatic amine intake increases colorectal adenoma risk: findings from a prospective European cohort study[J]. The American Journal of Clinical Nutrition, 2009, 89(5): 1418-1424.
- ALAEJOS M S, PINO V, AFONSO A M. Metabolism and toxicology of heterocyclic aromatic amines when consumed in diet: influence of the genetic susceptibility to develop human cancer: a review[J]. Food Research International, 2008, 41: 327-340.
- PAIS P, SALMON C P, KNIZE M G, et al. Formation of mutagenic/ carcinogenic heterocylic amines in dry-heated model systems, meats and meat drippings[J]. Journal of Agricultural and Food Chemistry, 1999, 47: 1098-1108.
- 何计国, 甄润英. 食品卫生学[M]. 北京: 中国农业大学出版社, 2003. [10]
- PUANGSOMBAT K, GADGIL P, HOUSER T A, et al. Heterocylic amine content in commercial ready to eat meat products[J]. Meat Science, 2011, 88(2): 227-233.
- OZ F, KABAN G, KAYA M. Effects of cooking methods on the formation of heterocyclic aromatic amines of two different species of trout[J]. Food Chemistry, 2007, 104: 67-72.
- MILLER A. Processing-induced mutagens in muscle foods[J]. Food Technology, 1985, 139: 75.
- 廖国周, 王桂瑛, 徐幸莲, 等. 前体物含量对杂环胺形成的影响[J]. 食品与发酵工业, 2011, 37(4): 215-220.
- LIAO G Z, WANG G Y, XU X L, et al. Effect of cooking methods on the formation of heterocyclic aromatic amines in chicken and duck breast[J]. Meat Science, 2010, 85(1): 149-154.
- KNIZE M G, DOLBEARE F A, CARROLL K L, et al. Effects of cooking time and temperature on the heterocyclic amine content of fried beef patties[J]. Food and Chemical Toxicology, 1994, 32: 595-603.
- BALOGH Z, GRAY J I, GOMAA E A, et al. Formation and inhibition of heterocyclic aromatic amines in fried ground beef patties[J]. Food and Chemical Toxicology, 2000, 38(5): 395-401.
- KIZIL M, OZ F, BESLER H T. A review on the formation of carcinogenic/mutagenic heterocyclic aromatic amines[J]. Food Processing & Technology, 2011, 2(5): 1-5.
- JACKSON L S, HARGRAVES W A. Effects of time and temperature on the for mation of MeIOx and DiMeIOx in a model system containing threonine, glucose and creatine[J]. Journal of Agricultural and Food Chemistry, 1995, 43(6): 1678-1684.
- TURESKY R J. Formation and biochemistry of carcinogenic heterocyclic aromatic amines in cooked meats[J]. Toxicology Letters, 2007, 168(3): 219-227.
- 姚瑶. 牛肉食品中的杂环胺[J]. 肉类研究, 2011, 25(5): 73. [21]
- ZIMMERLI B, RHYN P, ZOLLER O, et al. Occurrence of heterocyclic aromatic amines in the Swiss diet: analytical methods, exposure estimation and risk assessment[J]. Food Additives & Contaminants, 2001, 18(6): 533-551.
- PEARSON A M, CHEN C, GRAY J I, et al. Mechanisms involved in meat mutagen formation and inhibition[J]. Free Radical Biology & Medicine, 1992, 13: 161-167.
- FELTON J S, FULTZ E, DOLBEARE F A, et al. Reduction Of heterocyclic aromatic amine mutagens/carcinogens in fried beef patties by microwave pretreatment[J]. Food and Chemical Toxicology, 1994, 32: 897-903.
- VITAGLIONE P, FOGLIANO V. Use of antioxidants to minimize the human health risk associated to mutagenic/carcinogenic heterocyclic amines in food[J]. Journal of Chromatography B, 2004, 802(1): 189-199.
- PUANGSOMBAT K, JIRAPAKKUL W, SMITH J S. Inhibitory activity of asian spices on heterocyclic amines formation in cooked beef patties[J]. Journal of Food Science, 2011, 76(8): 174-180.
- 徐枫. 苦瓜汁抑制杂环胺类物质致突变活性研究[J]. 中国卫生检验, 2007, 17(6): 1044-1047.
- FARIDNIA F, HUSSIN A S M, SAARI N, et al. in vitro binding of mutagenic heterocyclic aromatic amines by Bifidobacterium pseudocatenulatum G4 [J]. Beneficial Microbes, 2010, 1(2): 149-154.
- NOWAK A, LIBUDZISZ Z. Ability of probiotic Lactobacillus casei DN 114001 to bind or/and metabolise heterocyclic aromatic amines in vitro[J]. European Journal of Nutrition, 2009, 48: 419-427.
- NOWAK A, KATARZYNA S, ELZBIETA K. Effect of probiotic lactobacilli on faecal enzyme and genotoxic activity in human faecal water in the presence of the carcinogen PhIP in vitro[J]. International Journal of Dairy Technology, 2012, 65(2): 300-307.