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Although land surface water only covers a small portion
(~3.7 %) of our planet, it plays many essential roles: e.g., freshwa-
ter storage, industrial consumption, agricultural irrigation, and
biodiversity maintenance [1,2]. Water storage variability is associ-
ated with various natural processes and human activities on the
Earth [3,4] and it is well known that reservoir regulation is the
most widely distributed and fundamental human activity capable
of altering the global water cycle. In recent years, through reservoir
regulation, humans have been able to obtain more freshwater from
the Earth’s surface, with great benefits to human wellbeing. Cur-
rently, however, the extent to which human activities affect the
global water cycle remains unknown. As a result, there is an urgent
need to quantify and understand the role of human activities in the
global water cycle to ensure that freshwater resources are man-
aged sustainably at the global scale.

Traditional in situ measurement can only record water storage
variability for a very limited number of lakes and reservoirs at a
local scale, and fails to provide water storage information in many
remote and sparsely populated areas without gauging stations.
Fortunately, satellite remote sensing offers repeatable observation
of the earth at the global scale, and has a great potential to track
global surface water storage dynamics. In particular, the Advanced
Topographic Laser Altimeter System (ATLAS), carried on the Ice,
Cloud, and Land Elevation Satellite-2 (ICESat-2), is able to accu-
rately measure the water levels of lakes and reservoirs. It has a
high vertical accuracy of about a few tens of centimeters, which
has been widely validated against in-situ measurements in many
previous studies [5,6]. Moreover, the small footprint of ICESat-2
(i.e., with a diameter <17 m) gives it a unique advantage over other
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satellite sensors of being able to monitor the water levels of small
water bodies.

Since the launch of ICESat-2, its products have been widely used
to track water body storage variability from local to global scales
[7,8]. In one recent study, which used the ICESat-2 data from Octo-
ber 2018 to July 2020, Cooley et al. [9] reported the water storage
variability of global lakes (including natural lakes and human-
managed reservoirs) to be 2048 km?, with 61% of this variability
occurring in human-managed reservoirs. Globally, south of 45°N,
reservoirs make up 67% of surface water storage variability (arid
and semi-arid regions heavily influence this figure), an indication
of intensive water resource management in these regions [9]. Coo-
ley et al. [9] highlight the dominant role of human-managed reser-
voirs in altering global lake water storage variability. They
binarized the Global Surface Water Occurrence (GWSO) product
by counting only pixels with >75% water occurrence to derive a
global water body mask. This mask hides many natural lakes and
reservoirs which are covered by surface water during the ICESat-2
period but have water occurrence <25% during the Landsat period
(1984-present). Cooley et al. [9] further discarded water bodies
without ICESat-2 observations during the period 14 October 2018
to 16 July 2020 to obtain their global lake product, thus losing
many natural lakes and reservoirs. As a result, a large number of
lakes across the globe were not considered, undoubtedly affecting
their estimate of global lake water storage variability, which is
associated with the area and number of global lakes. Specifically,
Cooley et al. included only 227,386 lakes across the globe in their
study, and further identified 8964 reservoirs based on GRanD (Glo-
bal Reservoir and Dam) and GOODD (GIObal geOreferenced Data-
base of Dams).

We compared the dataset by Cooley et al. with GLAKES (Pi et al.)
[10], the most comprehensive lake dataset, which is derived from
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Fig. 1. Comparison of our estimate of water storage variability with that from Cooley et al. [9]. (a) Lake area. (b, c¢) Number and water storage variability in human-managed
reservoirs and natural lakes. Both panels share the same legend. (d, e) Proportion of seasonal surface water storage variability associated with reservoirs at the basin scale
derived from the estimate of Cooley et al. (d) and our estimate (e), which share the same legend. In (d) and (e), darker colours represent a greater influence of reservoirs on
surface water storage, while lighter colours represent less influence. In (e), the inset shows the relationship between the percentage difference of reservoir storage variability
derived in our study and that from Cooley et al. and the ratio of natural lake numbers in our study to that from Cooley et al.
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Fig. 2. Variation of the estimate of water storage variability with the water body size. (a) Water storage variability in human-managed reservoirs and natural lakes of various
sizes. (b) How the human alteration of water storage variability varies for different sizes of water bodies. In both (a) and (b), the size of the water bodies is given in km?.

the 30 m spatial-resolution GSWO dataset by using a deep learning
classification algorithm. The GLAKES dataset makes it possible to
detect lakes as small as 0.03 km? (corresponding to ~33 Landsat
image pixels) and, hence, can greatly improve the minimum map-
ping unit and mitigate issues of mis-accounted small lakes in pre-
vious publicly-accessible lake datasets. Although, Pi et al. [10] also
adopted the GSWO dataset, the global lake product they used was
more complete than that used by Cooley et al. [9] for three reasons.
First, they used GSWO data, containing all potential lakes, for the
period 1984-2019. Second, they used a well-trained U-Net model,
which is significantly better at detecting lakes than a thresholding
method. Third, all the lakes, with or without ICESat-2 observations,
are in their global lake product. Additionally, Pi et al. [10] used the
more complete Georeferenced Global Dam And Reservoir Database
(GeoDAR) to distinguish reservoirs from natural lakes. In our study,
based on the water bodies from Cooley et al. [9], we obtained addi-
tional human-managed reservoirs and natural lakes from GLAKES,
and merged the two data sources in our analysis. We find that,
globally, the number of derived lakes in Cooley et al. [9]
(227386) is significantly lower than the number in GLAKES
(3426389).

Here, we used five steps to derive the water storage variability
of global lakes. Firstly, it must be realized that ICESat-2 is unlikely
to capture the true maximum or minimum water levels of any par-
ticular lake, because most lakes are not observed every month. It is
therefore necessary to correct the observed ICESat-2 water level
variability values (i.e., the maximum minus minimum lake water
levels). By comparing with USGS/G-REALM data, we binned the
percentage values of water level variability observed by ICESat-2
by lake areas (<1 km? 1-2.5 km?, 2.5-5 km?, 5-50 km?, 50-
500 km?, >500 km?). For each lake-area interval, we extracted
the ICESat-2 water level variability from Cooley et al. [9] and
applied the corresponding percentage to make the correction. Sec-
ondly, we obtained the area for the lakes in Cooley et al. [9], and
combined the data from GLAKES with the dataset developed by
Cooley et al. [9]. This combined dataset contains 28,868 human-
managed reservoirs and 3,412,779 natural lakes. Thirdly, following
Luo et al. [11], we calculated the area-weighted average water level
variability for human-managed reservoirs and natural lakes for
each of the seven lake-area groups in Cooley et al. [9]. Finally, we
obtained the water storage variability in human-managed reser-
voirs and natural lakes across the globe by multiplying the water
level variability by the lake area. The ratio of the water storage
variability in human-managed reservoirs to the water storage vari-
ability in global lakes then gives us an estimate of the human alter-
ation effect on the global water storage variability. We derived the
uncertainties in the estimate following the method of Cooley et al.
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[9] and further compared our estimate of water storage variability
with that from Cooley et al. [9].

According to our calculations, both the area of the derived lakes
(Fig. 1a) and the number of lakes (Fig. 1b) is significantly higher
than the values given in Cooley et al. [9]. Furthermore, we find that,
globally, the lake water storage variability from October 2018 to
July 2020 is 4032 (3685-4635) km?, with human-managed reser-
voirs making a relatively low contribution (44%: 1782 km?) com-
pared with the contribution from natural lakes (56%: 2250 km?).
Specifically, for the 227,386 lakes (average area: 6.66 km?) in Coo-
ley et al. [9] and the supplemental 3,214,261 lakes (average area:
0.28 km?) provided by GLAKES, 61% and 16% of the lake water stor-
age variability occurs in human-managed reservoirs, respectively.
For the total global lakes (average area: 0.70 km?), the contribution
from human-managed reservoirs is 44% (39%-50%). This result is
not consistent with the finding in Cooley et al. [9] that the Earth’s
water storage variability is 2048 km> and the contribution of
human-managed reservoirs is 61% (Fig. 1c). We also present a com-
parison of the proportions of seasonal surface water storage vari-
ability associated with reservoirs at the basin scale derived from
our estimate (Fig. 1d) and those from Cooley et al. [9] (Fig. 1e).
From the inset in the figure, it is clearly apparent that most basins
(63%) exhibit an overestimation in the proportion of water storage
variability associated with reservoirs, especially those with numer-
ous small natural lakes, such as North America, South America, and
northern Asia. Additionally, Fig. 2a shows the water storage vari-
ability in the differently sized human-managed reservoirs and nat-
ural lakes, and Fig. 2b implies that human alteration of water
storage variability varies for different sizes of water bodies.
Fig. 2b illustrates a general increasing trend between the human
alteration of water storage variability and water body size, which
highlights the fact that small lakes play a non-negligible role in
reducing the human alteration of water storage variability.

In this study, we re-evaluated the human alteration of global
water storage variability, and conclude that natural lakes play a
dominant role in altering global water storage variability, despite
extensive worldwide reservoir regulation operations involving
damming. Furthermore, our results suggest that the study of Coo-
ley et al. [9] largely underestimates the water storage variability in
global lakes from October 2018 to July 2020, while overestimating
the contribution of human-managed reservoirs to water storage
variability in lakes across the globe. It should be noted that GLAKES
may still omit some small lakes (especially natural lakes), meaning
that the ratio of the global reservoir water storage variability to the
global lake water storage variability may actually be smaller than
our estimate (i.e., 44%). Additionally, Cooley et al. [9] considered
that the water storage variability of human-managed reservoirs
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is the result of human alteration, however, in reality this variability
is controlled by both human activities and natural processes (e.g.,
precipitation, evaporation, discharge, or infiltration). The human
influence on water storage variability should be defined as the
increment in water storage variability caused by human activities,
rather than simply the water storage variability in human-
managed reservoirs. However, it is difficult to disentangle the con-
tribution of human activities to global lake water storage variabil-
ity by using satellite observations alone. Note that our study still
has two limitations: one is that some small lakes are still not
included, and the second is that water storage variability in
human-managed reservoirs can be induced by various natural pro-
cesses as well as human activities. In the future, it is urgently
required to combine satellite observations, hydrological models
[12], and in situ gauge data to separate the contributions of human
activities and natural forces, in order to better understand the
human impact on global surface water storage variability, evaluate
its ecological-environmental impacts [13,14] and guide reservoir
management strategies [15].
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