Chen's theorem in arithmetical progressions*

LU Minggao (陆鸣皋) and CAI Yingchun (蔡迎春)

(Department of Mathematics, Shanghai University, Shanghai 201800, China)

Received April 2, 1998

Abstract Let N be a sufficiently large even integer and

$$q \ge 1$$
, $(l_i, q) = 1$ $(i = 1, 2)$,
 $l_1 + l_2 \equiv N \pmod{q}$.

It is proved that the equation

$$N = p + P_2, p \equiv l_1(\text{mod } q), P_2 \equiv l_2(\text{mod } q)$$

has infinitely many solutions for almost all $q \le N^{\frac{1}{37}}$, where p is a prime and P_2 is an almost prime with at most two prime factors.

Keywords: Chen's Theorem, sieve, mean value theorem.

In 1937 Vinogradov^[1] proved the well-known Goldbach-Vinogradov theorem. Afterwards, some mathematicians generalized Goldbach-Vinogradov theorem to arithmetical progressions^[2-5]. In particular, recently Liu and Zhan^[6] proved that for sufficiently large odd integer N and

$$q \ge 1$$
, $(l_i, q) = 1$ $(i = 1, 2, 3)$,
 $l_1 + l_2 + l_3 \equiv N(\text{mod } q)$,

the equation

$$N = p_1 + p_2 + p_3, \ p_i \equiv l_i \pmod{q} \ (i = 1, 2, 3), \tag{0.1}$$

is solvable in primes p_1, p_2, p_3 for $q \leq N^{\delta}$, where δ denotes an effective positive constant. In ref.

[7] it is shown that for almost all $q \leq N^{\frac{1}{8}-\epsilon}$, where $\epsilon > 0$, eq. (1) is solvable.

In 1966 Chen Jingrun^[8] made considerable progress in the research of the binary Goldbach conjecture. He proved^[9] the well-known Chen's Theorem: let N be a sufficiently large even integer, then the equation

$$N = p + P_2$$

is solvable, where p is a prime and P_2 is an almost prime with at most two prime factors. In fact, Chen's theorem can be stated in a more exact quantitative form.

Inspired by refs. [6,7], it is interesting to generalize Chen's theorem to arithmetical progressions with large moduli. In this paper, we obtain the following result.

Theorem 1. Let N be a sufficiently large even integer, and let

$$q \ge 1$$
, $(l_i, q) = 1$ $(i = 1, 2)$,
 $l_1 + l_2 \equiv N \pmod{q}$.

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 19531010 and 19801021).

Then the equation

$$N = p + P_2, p \equiv l_1(\text{mod } q), P_2 \equiv l_2(\text{mod } q)$$
 (0.2)

has infinitely many solutions for almost all $q \le N^{\frac{1}{37}}$.

Theorem 1 is a simple corollary of the following result.

Theorem 2. Under the conditions in Theorem 1, let S(N,q) be the number of solutions of eq. (0.2). Then for $q \leq N^{\frac{1}{37}}$, except for $O(N^{\frac{1}{37}}\log^{-5}N)$ exceptional values,

$$S(N,q) \ge \frac{0.001 C(N,q) N}{\varphi(q) \log^2 N},$$
 (0.3)

where $\varphi(q)$ is the Euler's function, and

$$C(N,q) = \prod_{p>2} \left(1 - \frac{1}{(p-1)^2}\right) \prod_{p \mid N,q,p>2} \frac{p-1}{p-2}.$$
 (0.4)

By similar arguments we have

Theorem 3. Let x be a sufficiently large real number, and

$$q \ge 1$$
, $(l_i, q) = 1$ $(i = 1, 2)$, $l_1 + 2 \equiv l_2 \pmod{q}$.

Then the equation

$$p + 2 = P_2, p \equiv l_1(\text{mod } q), P_2 \equiv l_2(\text{mod } q), p \leq x$$

has infinitely many solutions for almost all $q \leq x^{\frac{1}{37}}$.

Remark. By an improved sieve procedure used in refs. [9, 10], $\frac{1}{37}$ may be increased to 0.028.

1 Some preliminary lemmas

Let \mathscr{B} denote a finite set of integers, \mathscr{P} denote an infinite set of primes, $\overline{\mathscr{P}}$ denote the set of primes not belonging to \mathscr{P} . Let $z \ge 2$, and put

$$P(z) = \prod_{p < z, p \in \mathcal{P}} p, S(\mathcal{A}, \mathcal{P}, z) = \sum_{a \in \mathcal{A}, (a, P(z)) = 1} 1,$$

$$\mathcal{A}_d = \{a \mid a \in \mathcal{A}, a \equiv 0 \pmod{d}\}.$$

Lemma 1 $^{[11]}$. *If*

$$\begin{aligned} A_1) + \mathcal{A}_d + &= \frac{\omega(d)}{d} X + r_d, \ \mu(d) \neq 0, \ (d, \overline{\mathscr{P}}) = 1; \\ A_2) \sum_{l \in \mathbb{Z}^d} \frac{\omega(p)}{p} &= \log \frac{\log z_2}{\log z_1} + O\left(\frac{1}{\log z_1}\right), \quad z_2 > z_1 \geqslant 2, \end{aligned}$$

where $\omega(d)$ is a multiplicative function, $0 \le \omega(p) < p$, X > 1 is independent of d, then

$$S(\mathcal{A},\mathcal{P},z) \geq XV(z) \left\{ f(s) + O\left(\frac{1}{\log^{\frac{1}{3}} D}\right) \right\} - R_D,$$

$$S(\mathcal{A},\mathcal{P},z) \leq XV(z) \left\{ F(s) + O\left(\frac{1}{\log^{\frac{1}{3}} D}\right) \right\} + R_D,$$

where

$$s = \frac{\log D}{\log z}, \quad R_D = \sum_{d < D, d \mid P(z)} | r_d |,$$

$$V(z) = C(\omega) \frac{e^{-\gamma}}{\log z} \left(1 + O\left(\frac{1}{\log z}\right)\right),$$

$$C(\omega) = \prod_{z} \left(1 - \frac{\omega(p)}{p}\right) \left(1 - \frac{1}{p}\right)^{-1},$$

where γ denotes the Euler's constant, and f(s) and F(s) are determined by the following differential-difference equation:

$$\begin{cases} F(s) = \frac{2e^{\gamma}}{s}, f(s) = 0, & 0 < s \le 2, \\ (sF(s))' = f(s-1), (sf(s))' = F(s-1), s \ge 2. \end{cases}$$

Lemma 2^[12]

$$F(s) = \frac{2e^{\gamma}}{s}, \quad 0 < s \le 3;$$

$$F(s) = \frac{2e^{\gamma}}{s} \left(1 + \int_{2}^{s-1} \frac{\log(t-1)}{t} dt \right), \quad 3 \le s \le 5;$$

$$f(s) = \frac{2e^{\gamma}\log(s-1)}{s}, \quad 2 \le s \le 4;$$

$$f(s) = \frac{2e^{\gamma}}{s} \left(\log(s-1) + \int_{3}^{s-1} \frac{dt}{t} \int_{2}^{t-1} \frac{\log(u-1)}{u} du \right), \quad 4 \le s \le 6.$$

$$F(s) = \frac{2e^{\gamma}}{s} \left(\log(s-1) + \int_{3}^{s-1} \frac{dt}{t} \int_{2}^{t-1} \frac{\log(u-1)}{u} du \right), \quad 4 \le s \le 6.$$

Lemma 3^[12]. Let
$$0 \le g(x) \le 1$$
, $0 \le \beta < 1$,
$$\pi(y; a, d, l) = \sum_{\substack{ap \le y, ap \equiv l \pmod{d}}} 1, \quad (l, d) = 1.$$
 Then for any given constant $A > 0$, there exists a constant $B = B(A) > 0$ such that

$$\sum_{d \in D} \max_{(l,d)=1} \max_{y \in x} \tau(d) \left| \sum_{a \in x', (a,d)=1} g(a) \left(\pi(y;a,d,l) - \frac{\operatorname{Li}\left(\frac{y}{a}\right)}{\varphi(d)} \right) \right| \ll \frac{x}{\log^A x},$$

where

Liy =
$$\int_{2}^{y} \frac{dt}{\log t}$$
, $D = \frac{x^{\frac{1}{2}}}{\log^{B} x}$, $\tau(n) = \sum_{d \mid n} 1$.

In the notations in Lemma 3, let

$$R(D,q) = \sum_{d \in \frac{D}{q}} \max_{(l,dq)=1} \max_{y \in N} \left| \sum_{a \in N^l, (a,d)=1} g(a) \left(\pi(y;a,dq,l) - \frac{\operatorname{Li}\left(\frac{y}{a}\right)}{\varphi(dq)} \right) \right|.$$

Then for any A > 0, there exists a constant B = B(A) > 0 such that for $q \le N^{\frac{1}{37}}$, except for $O(N^{\frac{1}{37}})$ $\log^{-A}N$) exceptional values,

$$R(D,q) \ll \frac{N^{\frac{36}{37}}}{\log^A N},$$

where $D = \frac{N^{\frac{1}{2}}}{\log^B N}$.

Proof. By Lemma 3 we have

$$\sum_{q \leq N^{\frac{1}{2}}} R(D,q) = \sum_{q \leq N^{\frac{1}{2}}} \sum_{d \leq \frac{D}{q}} \max_{y \leq N} \max_{(l,dq)=1} \left| \sum_{a \leq N^{l}, (a,d)=1} g(a) \left(\pi(y;a,dq,l) - \frac{\operatorname{Li}\left(\frac{y}{a}\right)}{\varphi(dq)} \right) \right|$$

$$\leq \sum_{d \leq D} \tau(d) \max_{y \leq N} \max_{(l,dq)=1} \left| \sum_{a \leq N', (a,d)=1} g(a) \left(\pi(y; a, d, l) - \frac{\operatorname{Li}\left(\frac{y}{a}\right)}{\varphi(d)} \right) \right|$$

$$\leq \frac{N}{\log^{2A} N},$$

$$\sum_{q \leq N^{\frac{1}{D}}} 1 \ll \frac{\log^{A} N}{N^{\frac{36}{37}}} \sum_{q \leq N^{\frac{1}{D}}} R(D, q) \ll \frac{N^{\frac{1}{37}}}{\log^{A} N}.$$

Lemma 4 is proved.

2 Weighted sieve method

Let N be a sufficiently large even integer,

$$1 \leq q \leq N^{\frac{1}{37}}, \quad (l_i, q) = 1 \quad (i = 1, 2),$$
 $l_1 + l_2 \equiv N(\bmod q),$
 $\mathcal{L} = \{N - p \mid p < N, p \equiv l_1(\bmod q)\},$
 $\mathcal{P} = \{p \mid (p, Nq) = 1\}.$
(2.1)

If $a \in \mathcal{A}$, then

$$a = N - p \equiv l_1 + l_2 - p \equiv l_2(\operatorname{mod} q).$$

Lemma 5.

$$S(N,q) \geqslant \sum_{\substack{a \in \mathcal{A} \\ (a,P(N^{\frac{10-93}{10-93}}))=1}} \left(1 - \frac{1}{2}\rho_1(a) - \frac{1}{2}\rho_2(a) - \rho_3(a)\right) + O(N^{\frac{9.93}{10.93}}),$$

where

$$\begin{split} \rho_{1}(a) &= \sum_{p_{1}a, (p, Nq)=1 \atop N^{\frac{1}{0.03}} \leq p < N^{\frac{1}{0.33}}} 1, \\ \rho_{2}(a) &= \begin{cases} 1, \ a = p_{1}p_{2}p_{3}, \ N^{\frac{1}{10.93}} \leq p_{1} < N^{\frac{1}{3.3}} \leq p_{2} < p_{3}, \ (a, Nq) = 1; \\ 0, \ otherwise. \end{cases} \\ \rho_{3}(a) &= \begin{cases} 1, \ a = p_{1}p_{2}p_{3}, \ N^{\frac{1}{3.3}} \leq p_{1} < p_{2} < p_{3}, \ (a, Nq) = 1; \\ 0, \ otherwise. \end{cases} \end{split}$$

Proof. Let

$$v_1(a) = \sum_{p \mid a} 1, \quad v_2(a) = \sum_{p \mid a} 1, \quad \lambda(a) = \begin{cases} 1, v_2(a) \leq 2, \\ 0, v_2(a) > 2. \end{cases}$$

Then

$$\begin{split} S(N,q) &\geqslant \sum_{\substack{a \in \mathcal{A} \\ (a,P(N^{\overline{10.93}})) = 1}} \lambda(a) \\ &= \sum_{\substack{a \in \mathcal{A} : (a,Nq) = 1 \\ (a,P(N^{\overline{10.93}})) = 1}} \lambda(a) + O(v_1^{10}(Nq)) \end{split}$$

$$= \sum_{\substack{a \in \mathcal{A}, (a, N_q) = 1 \\ (a, P(N^{\frac{10.93}{10.93}})) = 1}} \mu^2(a)\lambda(a) + O(N^{\frac{9.93}{10.93}}).$$

On the other hand,

$$\begin{split} & \sum_{\substack{a \in \mathcal{A} \\ (a, P(N^{10-3})) = 1}} \left(1 - \frac{1}{2}\rho_1(a) - \frac{1}{2}\rho_2(a) - \rho_3(a)\right) \\ &= \sum_{\substack{a \in \mathcal{A}, (a, N_0) = 1 \\ a \in \mathcal{A}, (a, N_0) = 1}} \mu^2(a) \left(1 - \frac{1}{2}\rho_1(a) - \frac{1}{2}\rho_2(a) - \rho_3(a)\right) + O(N^{\frac{9.93}{10.93}}). \end{split}$$

For

$$\mu^{2}(a) = 1, (a, P(N^{\frac{1}{10.93}})) = 1, (a, Nq) = 1$$

we have

1) $v_2(a) \leq 2$.

$$\lambda(a) = 1 \ge 1 - \frac{1}{2}\rho_1(a) - \frac{1}{2}\rho_2(a) - \rho_3(a).$$

2) $v_2(a) \ge 3$. If $\rho_1(a) \ge 2$, then

$$\lambda(a) = 0 \ge 1 - \frac{1}{2}\rho_1(a) - \frac{1}{2}\rho_2(a) - \rho_3(a).$$

If $\rho_1(a) = 1$, then $v_1(a) = v_2(a) = 3$, and $\rho_2(a) = 1$; hence

$$\lambda(a) = 0 = 1 - \frac{1}{2}\rho_1(a) - \frac{1}{2}\rho_2(a) - \rho_3(a).$$

If $\rho_1(a) = 0$, then $\rho_3(a) = 1$, and

$$\lambda(a) = 0 = 1 - \frac{1}{2}\rho_1(a) - \frac{1}{2}\rho_2(a) - \rho_3(a).$$

Combining the above arguments we complete the proof of Lemma 5.

3 Proof of Theorem 2

In this section, sets \mathcal{A} and \mathcal{P} are defined by (2.1) and (2.2), respectively, $\delta = \frac{1}{37}$ and

$$X = \frac{\operatorname{Li} N}{\varphi(q)} \sim \frac{N}{\varphi(q) \log N}.$$

For (d, Nq) = 1, by Chinese remainder theorem we have

$$\mathcal{A}_d = \{ N - p \mid p < N, \ p \equiv l_1(\bmod q), \ p \equiv N(\bmod d) \}$$
$$= \{ N - p \mid p < N, \ p \equiv l(\bmod qd) \},$$

where (l, dq) = 1; hence

$$r_d = \pi(N; dq, l) - \frac{\text{Li}N}{\varphi(dq)},$$

$$\omega(d) = \frac{d}{\varphi(d)}, \quad \mu(d) \neq 0, \quad (d, Nq) = 1.$$

By Lemma 5 we get

$$S(N,q) \ge S - \frac{1}{2}S_1 - \frac{1}{2}S_2 - S_3 + O(N^{\frac{9.93}{10.93}}),$$
 (3.1)

$$S = \sum_{\substack{a \in \mathcal{A}, (a, Nq) = 1 \\ (a, P(N^{\frac{1}{10.93}})) = 1}} 1, \quad S_1 = \sum_{\substack{N^{\frac{1}{10.93}} \leq p < N^{\frac{1}{3.3}} \\ (p, Nq) = 1}} S(\mathcal{B}_p, \mathcal{P}, N^{\frac{1}{10.93}}),$$

$$S_2 = \sum_{\substack{a \in \mathcal{A}, (a, Nq) = 1 \\ (a, P(N^{\frac{1}{10.93}})) = 1}} \rho_2(a), \quad S_3 = \sum_{\substack{a \in \mathcal{A}, (a, Nq) = 1 \\ (a, P(N^{\frac{1}{10.93}})) = 1}} \rho_3(a).$$

All the following arguments are valid for $q \le N^{\frac{1}{37}}$ with $O(N^{\frac{1}{37}}\log^{-5}N)$ exceptional values excluded.

1) The lower bound for S.

Let $D = \frac{N^{\frac{1}{2}}}{\log^B N}$ with B = B(5) > 0 (see Lemma 4). By Lemma 4 we get

$$R(D,q) = \sum_{d \in \frac{D}{q}} \left| \pi(N; dq, l) - \frac{\operatorname{Li} N}{\varphi(dq)} \right|$$

$$\leq \sum_{d \in \mathbb{Z}} \max_{y \in N(l, dq) = 1} \left| \pi(y; dq, l) - \frac{\operatorname{Li} y}{\varphi(dq)} \right| \ll \frac{N^{\frac{36}{37}}}{\log^5 N}, \tag{3.2}$$

and

get

$$C(\omega) = \prod_{p} \left(1 - \frac{\omega(p)}{p} \right) \left(1 - \frac{1}{p} \right)^{-1}$$

$$= \prod_{p \mid N_q} \left(1 - \frac{1}{p} \right)^{-1} \prod_{(p, N_q) = 1} \left(1 - \frac{1}{p - 1} \right) \left(1 - \frac{1}{p} \right)^{-1}$$

$$= \prod_{p \mid N_q} \frac{p}{p - 1} \prod_{(p, N_q) = 1} \frac{p(p - 2)}{(p - 1)^2}$$

$$= 2 \prod_{p \mid N_q, p > 2} \left(\frac{p}{p - 1} \cdot \frac{(p - 1)^2}{p(p - 2)} \right) \prod_{p \mid N_q, p > 2} \frac{p(p - 2)}{(p - 1)^2}$$

$$= 2 \prod_{p \mid 2} \left(1 - \frac{1}{(p - 1)^2} \right) \prod_{p \mid N_q, p > 2} \frac{p - 1}{p - 2}$$

$$= 2 C(N, q). \tag{3.3}$$

By Lemma 1, (3.2) and (3.3) we have

$$S \ge (1 + o(1)) \frac{8C(N,q)}{1 - 2\delta} \frac{N}{\varphi(q)\log^2 N} (\log(4.465 - 10.93\delta) + \int_2^{3.465 - 10.93\delta} \frac{\log(s-1)}{s} \log \frac{4.465 - 10.93\delta}{s+1} ds)$$

$$\ge 12.2598C(N,q) \frac{N}{\varphi(q)\log^2 N}.$$
(3.4)

2) The upper bound for S_1 .

Let $D = \frac{N^{\frac{1}{2}}}{\log^{B} N}$ with B = B(5) > 0 (see Lemma 4). For $N^{\frac{1}{10.93}} \le p < N^{\frac{1}{3.3}}$, by Lemma 1 we

$$S(\mathscr{A}_p, \mathscr{S}, N^{\frac{1}{10.93}}) \leq 21.86(1 + o(1))C(N, q)e^{-\gamma}$$

$$\times \frac{N}{p\varphi(q)\log^2 N} F\left(5.465 - 10.93\delta - 10.93\frac{\log p}{\log N}\right) + R_D(p), \tag{3.5}$$

where

$$R_D(p) = \sum_{d < \frac{D}{\infty}, d \mid P(N^{\frac{1}{10.9}})} \mid r_{dp} \mid.$$

By Lemma 4 we have

$$\sum_{N^{\frac{1}{(0.3)}} \leq p < N^{\frac{1}{1.3}} \atop (p, Nq) = 1} R_{D}(p)$$

$$= \sum_{N^{\frac{1}{(0.3)}} \leq p < N^{\frac{1}{3.3}} \atop (p, Nq) = 1} \sum_{d \leq \frac{D}{pq}, d \mid P \in N^{\frac{1}{(0.3)}} \rbrace} \left| \pi(N; dpq, l) - \frac{\text{Li}N}{\varphi(dpq)} \right|$$

$$\leq \sum_{d \leq \frac{D}{p}} \max_{(l, dq) = 1} \max_{y \leq N} \tau(d) \left| \pi(y; dq, l) - \frac{\text{Li}y}{\varphi(dq)} \right| \ll \frac{N^{\frac{36}{37}}}{\log^{5} N}. \tag{3.6}$$

By (3.5), (3.6), the prime number theorem and through summation by parts we get

$$S_{1} \leq 21.86(1 + o(1)) C(N, q) e^{-\gamma} \frac{N}{\varphi(q) \log^{2} N}$$

$$\times \sum_{N^{\frac{1}{0.9}} \leq p < N^{\frac{1}{13}}} \frac{1}{p} F\left(5.465 - 10.93\delta - 10.93 \frac{\log p}{\log N}\right)$$

$$= 21.86(1 + o(1)) C(N, q) e^{-\gamma} \frac{N}{\varphi(g) \log^{2} N}$$

$$\times \int_{N^{\frac{1}{0.90}}}^{N^{\frac{1}{3.3}}} \frac{1}{u \log u} F\left(5.465 - 10.93\delta - 10.93 \frac{\log u}{\log N}\right) du$$

$$= (1 + o(1)) \frac{8C(N, q)}{1 - 2\delta} \frac{N}{\varphi(q) \log^{2} N} \left(\log \frac{8.93 - 21.86\delta}{1.3 - 6.6\delta} + \int_{2}^{3.465 - 10.93\delta} \frac{\log(s - 1)}{s} \log \frac{(4.465 - 10.93\delta)(4.465 - 10.93\delta - s)}{s + 1} ds\right)$$

$$\leq 17.70495 \frac{C(N, q)N}{\varphi(q) \log^{2} N}. \tag{3.7}$$

3) The upper bounds for S_2 , S_3 .

By the definition of $\rho_2(a)$ we have

$$S_2 = \sum_{N^{\frac{1}{N^{0.30}}} \in P_1 < N^{\frac{1}{N^{3}}} \le P_2 < \left(\frac{N}{P_1}\right)^{\frac{1}{2}} \sum_{a \in \mathcal{A}, \ a = p_1 p_2 p_3}^{\frac{1}{2}} 1 = \sum_{N^{\frac{1}{N^{0.30}}} \le P_1 < N^{\frac{1}{N^{3}}} \le P_2 < \left(\frac{N}{P_1}\right)^{\frac{1}{2}}} \sum_{\substack{p = N - p_1 p_2 p_3, \ p = l_1 \pmod{q} \\ (p, p_1, Nq) = 1}} 1.$$

Consider the sets

$$\mathcal{E} = \left\{ e \mid e = p_1 p_2, \ N^{\frac{1}{10.93}} \leq p_1 < N^{\frac{1}{3.3}} \leq p_2 < \left(\frac{N}{p_1}\right)^{\frac{1}{2}}, \ (p_1 p_2, Nq) = 1 \right\},$$

$$\mathcal{E} = \left\{ l \mid l = N - ep, e \in \mathcal{E}, \ ep < N, \ (p, Nq) = 1, \ l \equiv l_1 \pmod{q} \right\}.$$

We have

$$|\mathcal{E}| \leq \sum_{N^{\frac{1}{00.93}} \leq p_1 < N^{\frac{1}{33}}} \left(\frac{N}{p_1}\right)^{\frac{1}{2}} < N^{\frac{43}{66}},$$

$$e \geq N^{\frac{13}{33}}, e \in \mathcal{E}.$$

The number of elements in the set \mathscr{L} which are less than $N^{\frac{13}{33}}$ does not exceed $N^{\frac{43}{66}}$. S_2 does not exceed the number of primes in \mathscr{L} . Therefore

$$S_2 \leq S(\mathcal{L}, \mathcal{P}, z) + O(N^{\frac{43}{66}}) z \leq N^{\frac{13}{33}}.$$
 (3.8)

Now we employ Lemma 1 to estimate the upper bound of $S(\mathcal{L}, \mathcal{P}, z)$. For the set \mathcal{L} ,

$$X = \sum_{e \in \mathcal{E}} \frac{1}{\varphi(q)} \cdot \operatorname{Li}\left(\frac{N}{e}\right),$$

$$\omega(d) = \frac{d}{\varphi(d)}, \quad \mu(d) \neq 0, \quad (d, Nq) = 1,$$

$$D = \frac{N^{\frac{1}{2}}}{\log^{B} N}, \quad z = \left(\frac{D}{q}\right)^{\frac{1}{2}},$$

where B = B(5) > 0 (see Lemma 4). Then by Lemma 1 we get

$$S(\mathcal{L}, \mathcal{P}, z) \leq \frac{8}{1 - 2\delta} (1 + o(1)) C(N, q) \frac{X}{\log N} + R_1 + R_2,$$
 (3.9)

where

$$R_{1} = \sum_{\substack{d \in \frac{D}{q}, (d, Nq) = 1}} \left| \sum_{e \in \mathcal{E}, (e, d) = 1} \left(\pi(N; e, dq, l) - \frac{\operatorname{Li}\left(\frac{N}{e}\right)}{\varphi(dq)} \right) \right|,$$

$$R_{2} = \sum_{\substack{d \in \frac{D}{q}, (d, Nq) = 1}} \frac{1}{\varphi(dq)} \sum_{e \in \mathcal{E}, (e, d) > 1} \operatorname{Li}\left(\frac{N}{e}\right).$$

In view of $N^{\frac{13}{33}} \le e < N^{\frac{2}{3.3}}$ for $e \in \mathscr{E}$, we have

$$R_{1} \leq \sum_{d \leq \frac{D}{q}} \max_{y \leq N} \max_{(l,dq)=1} \left| \sum_{N^{\frac{1}{13}} \leq a < N^{\frac{1}{23}}, (a,d)=1} g(a) \left(\pi(y;a,dq,l) - \frac{\operatorname{Li}\left(\frac{y}{a}\right)}{\varphi(dq)} \right) \right|,$$

where

$$g(a) = \sum_{a=e,e\in\mathscr{E}} 1 \ll 1.$$

By Lemma 4 we get

$$R_1 \ll \frac{N^{\frac{36}{37}}}{\log^5 N}. (3.10)$$

Now

$$\begin{split} R_2 \ll & \frac{N}{\varphi(q) \log N} \sum_{d \leq \frac{D}{q}} \frac{1}{\varphi(d)} \sum_{a < N^{\frac{1}{13}}, (a,d) \geq N^{\frac{1}{10.93}}} \frac{1}{a} \\ \ll & \frac{N}{\varphi(q) \log N} \sum_{d \leq D} \frac{1}{\varphi(d)} \sum_{m \mid d, m \geq N^{\frac{1}{10.93}} q < N^{\frac{1}{13}}, (a,d) = m} \frac{1}{a} \end{split}$$

$$\ll \frac{N}{\varphi(q)} \sum_{d \leqslant D} \frac{1}{\varphi(d)} \sum_{\substack{m \mid d, m \geqslant N^{\frac{1}{20} \cdot 5}}} \frac{1}{m}$$

$$\ll \frac{N}{\varphi(q)} \sum_{\substack{m \mid m > 5^{D} \\ m \mid m > 5^{D}}} \frac{1}{m} \sum_{\substack{d \leqslant D, m \mid d}} \frac{1}{\varphi(d)} \ll \frac{N^{\frac{21}{22}}}{\varphi(q)}.$$
(3.11)

By the prime number theorem and integration by parts we have

$$X = (1 + o(1)) \frac{1}{\varphi(q)} \sum_{e \in \mathcal{E}} \frac{N}{e \log \frac{N}{\varepsilon}}$$

$$= (1 + o(1)) \frac{N}{\varphi(q)} \int_{N^{\frac{1}{10.93}}}^{N^{\frac{1}{3.3}}} \frac{\mathrm{d}t}{l \log t} \int_{N^{\frac{1}{5.3}}}^{\left(\frac{N}{t}\right)^{\frac{1}{2}}} \frac{\mathrm{d}u}{u \log u \log \frac{N}{ut}}$$

$$= (1 + o(1)) \frac{N}{\varphi(q) \log N} \int_{2.3}^{9.93} \frac{\log(2.3 - \frac{3.3}{s+1})}{s} ds.$$
 (3.12)

By (3.8)—(3.12) we get

$$S_2 \le 6.48743 C(N,q) \frac{N}{\varphi(q) \log^2 N}.$$
 (3.13)

Similarly, we have

$$S_{3} \leq (1 + o(1)) \frac{8C(N,q)N}{(1 - 2\delta)\varphi(q)\log^{2}N} \int_{2}^{2.3} \frac{\log(s - 1)}{s} ds$$

$$\leq 0.15823C(N,q) \frac{N}{\varphi(q)\log^{2}N}.$$
(3.14)

By (3.4), (3.7), (3.13), (3.14) and (3.1), we have

$$S(N,q) \ge \left(12.2598 - \frac{17.70495}{2} - \frac{6.48743}{2} - 0.15823\right) C(N,q) \frac{N}{\varphi(q) \log^2 N}$$

$$\ge 0.001 \frac{C(N,q)N}{\varphi(q) \log^2 N}.$$

The proof of Theorem 2 is completed.

References

- 1 Vinogradov, I. M., Representation of odd numbers as the sum of three primes, Dokl. SSSR, 1937, 15; 291.
- 2 Tames, R. D., Weyl, H., Elementary note on prime-number problems of Vinogradov's type, Amer. J. Math., 1942, 64: 539.
- 3 Richert, H. E., Aus der additiven Primzahltheorie, J. für Math., 1953, 191; 179.
- 4 Van der Corput, J. G., Proprietes addives, Acta Arith., 1939, 33: 181.
- 5 Zulauf, A., Beweis einer Erweiterung des Satzes von Goldbach-Vinogradov, J. Reine Angew. Math., 1952, 190: 169.
- 6 Liu Ming-chit, Zhan Tao, The Goldbach problem with primes in arithmetical progressions, in Lecture Notes Math. 247, Cambridge; Cambridge University Press, 227—252.
- 7 Liu Jianya, Zhan Tao, The ternary Goldbach problem in arithmetical progressions, Acta Arith., 1997, 82: 197.
- 8 Chen Jingrun, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Kexue Tongbao, 1966, 17: 385.
- 9 Chen Jingrun, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Sci. Sin., 1973, 16: 157.
- 10 Chen Jingrun, On the representation of a large even integer as the sum of a prime and the preduct of at most two primes, Scin. Sin., 1978, 21: 421.
- 11 Iwaniec, H., Rosser's Sieve, Recent Progress in Analytic Number Theory II, New York; Academic Press, 1981, 203-230.
- 12 Pan Chengdong, Pan Chengbiao, Goldbach Conjecture (in Chinese), Beijing: Science Press, 1981.