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Abstract In this paper, we consider the unified optimal subsampling estimation and inference on the low-
dimensional parameter of main interest in the presence of the nuisance parameter for low/high-dimensional
generalized linear models (GLMs) with massive data. We first present a general subsampling decorrelated score
function to reduce the influence of the less accurate nuisance parameter estimation with the slow convergence
rate. The consistency and asymptotic normality of the resultant subsample estimator from a general decorrelated
score subsampling algorithm are established, and two optimal subsampling probabilities are derived under the
A- and L-optimality criteria to downsize the data volume and reduce the computational burden. The proposed
optimal subsampling probabilities provably improve the asymptotic efficiency of the subsampling schemes in the
low-dimensional GLMs and perform better than the uniform subsampling scheme in the high-dimensional GLMs.
A two-step algorithm is further proposed to implement, and the asymptotic properties of the corresponding
estimators are also given. Simulations show satisfactory performance of the proposed estimators, and two

applications to census income and Fashion-MNIST datasets also demonstrate its practical applicability.
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1 Introduction

With the rapid growth in modern science and technology, massive data have become ubiquitous in, such
as, sociology, biology, and physics. At the same time, the extraordinary amount of data also challenges
researchers in conducting data analysis since the traditional statistical methods are no longer applicable.
For example, the US census with large-sample data provides fundamental information for people to study
socio-economic issues (see [28]), but extracting useful information efficiently and quickly is notoriously
difficult. Let {(y;,x;),i = 1,...,n} be an independent and identically distributed (i.i.d.) sample from
(y,x), where y € R is a univariate response and & € R? is the covariate. For generalized linear models
(GLMs) with a canonical link, it is assumed that the conditional distribution of y given x is

fly|B,x) =h(y)exp{y(BTx) — ¥ (BTx)},
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where h(t) and v (t) are specific functions, 3 is the unknown parameter and assumed to be in a compact
set. Several approaches have been investigated to extract useful information from large-scale data for the
GLMs (see, e.g., [3,14,23,38]). Among these methods, the subsampling technique is an effective way of
taking random subsamples of small size from the massive data as a surrogate to downsize the data volume.
The key idea to subsampling is to find acceptable probabilities for each sample and draw observations
according to the chosen sampling scheme. Since the small subsample estimator will not be as accurate as
the full data estimator, it is crucial to design a good subsampling strategy. More specifically, Ma et al. [18]
proposed an efficient subsampling method for linear regression models based on normalized statistical
leverage scores. Wang et al. [28] developed an optimal subsampling procedure for logistic regression
based on A- and L-optimality criteria inspired by the optimal experimental design. Ma et al. [19]
conducted statistical inference of randomized numerical linear algebra algorithms to identify optimal
sampling probabilities. Ai et al. [3] and Wang and Ma [27] extended the idea of A- and L-optimality
criteria to GLMs and quantile regression, respectively. Zhang et al. [37] proposed optimal sampling under
measurement constraints for GLMs. Poisson subsampling (see, e.g., [1,33]) and distributed subsampling
(see [36]) frameworks have been gradually investigated. More literature can be found in [32] and the
references therein.

Recently, massive data with high-dimensional covariates are now routinely encountered in many
applications. For example, in a Fashion-MNIST dataset (see [30]), there are 12,000 grayscale images
of fashion products in two classes, i.e., sneakers and ankle boots, with 10 x 10 pixels represented by
a covariate vector. One important goal is to distinguish them by training a classifier. However, most
of these existing subsampling studies are based on the low-dimensional GLM assumption, and they
cannot be applied in the high-dimensional case, i.e., 100-dimensional pixels, due to the singularity of the
subsampling design matrix. On the other hand, it is well known that these two different fashion products
can be classified by some important low-dimensional pixels, and the rest of them are extraneous pixels of
secondary importance. Realizing that not all of the effects of the covariates are our concerned parameters,
many authors are interested in the problem of statistical inference on the low-dimensional parameters for
both the low-dimensional and high-dimensional regression models (see, e.g., [5,6,20]). In this paper, we
consider the covariate effects containing two components, i.e., x € RP contains low-dimensional covariates
of main interest z € R% and probably extraneous covariates u € R?, and 3 can be decomposed into two
parts @ and ~y, corresponding to z and w, respectively. Thus, the conditional distribution of y | & becomes

16,7, z,u) =h(y) exp{y(8"z + v u) — (0" z + v u)}. (1.1)

Our main interest is to estimate and make inference on the preconceived low-dimensional parameter 6
in the presence of some nuisance parameter v. Two scenarios that differ in whether ¢ is small or large
(comparable to or even much larger than the subsample size) are considered. On the one hand, when ¢
is smaller than the subsample size, although the popular optimal subsampling criteria for 3 = (8%,~4T)T
can still be implemented, it is worthwhile to point out that these existing subsampling probabilities
obtained by minimizing the total asymptotic variance of the targeted subsample estimator of 3 are no
longer the optimal subsampling probabilities for our concerned parameter 8, which can be verified from
our theory in Section 4 and simulation results in Section 5. On the other hand, when ¢ is large or even
larger than the subsample size, the existing subsampling schemes fail. Comparatively, attention to the
subsampling strategies for the estimation and inference on the low-dimensional parameter for both the
low-dimensional and high-dimensional GLMs is limited.

To alleviate the adverse influence caused by nuisance parameters, Zhang and Zhang [34], van de Geer
et al. [25], Javanmard and Montanari [13] and Ning and Liu [20] proposed the decorrelated score function,
which is uncorrelated with the score function of the nuisance parameter -, to conduct hypothesis tests or
construct confidence intervals for the preconceived low-dimensional parameter 8. Lately, Fang et al. [§]
applied this method to longitudinal data, Li et al. [17] studied the high-dimensional linear models with
the measurement error and Cheng et al. [5] extended the regularized projection score estimation method
to the high-dimensional quantile regression model. However, all these decorrelated score functions are
valid only when the underlying population is infinite. Hence, it is impossible to directly apply the existing
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decorrelated score method to the subsampling schemes within the finite population. Compared with Ning
and Liu [20], three difficulties described in Subsection 2.2 make both parameter estimation and statistical
inference for the subsampling schemes complicated and bring some technical challenges.

To our knowledge, this problem has not been previously investigated and is considerably more
complicated than the existing subsampling studies. Our main contributions are in two aspects.

(1) With the nuisance parameter 4, the first objective of our study is to propose a general subsampling
decorrelated score function to reduce the influence of the less accurate nuisance parameter estimation
with the slow convergence rate. To be specific, given general subsampling probabilities, we first propose
a new projection matrix in order to retain the asymptotic efficiency of our concerned parameter 8 and
then construct the general subsampling decorrelated score function naturally. We show that our proposed
subsample estimator enjoys consistency and asymptotic normality and also achieves statistical efficiency
as the weighted maximum likelihood estimator (MLE) in [3]. In addition, the proposed estimator is less
sensitive to small perturbations of the nuisance parameter.

(2) To pursue more efficient subsampling procedures, two optimal subsampling probabilities, i.e.,
A- and L-optimality criteria, are proposed by minimizing the asymptotic mean squared error of the
resulting subsample estimator and the trace of the asymptotic covariance matrix for a linearly transformed
subsample estimator. Compared with [3], it can be seen that our proposed subsample estimators achieve
smaller asymptotic variance for our concerned parameter @ in the low-dimensional case. Furthermore,
our method is also suitable for the high-dimensional case, which significantly promotes the study of the
high-dimensional subsampling schemes. A two-step algorithm is proposed to approximate the optimal
subsampling probabilities in practice, and the asymptotic properties of the resultant estimators are also
constructed.

The rest of this paper is organized as follows. In Section 2, we first review the optimal subsampling
procedures for the low-dimensional GLMs proposed by Ai et al. [3] and then propose a general subsampling
decorrelated score function for both the low-dimensional and high-dimensional cases. In Section 3, we
establish theoretical results for the proposed subsample estimators. In Section 4, we derive two optimal
decorrelated score subsampling strategies based on the A- and L-optimality criteria and further give a
two-step algorithm in practice. In Section 5, we present numerical studies to illustrate our method. In
Section 6, we show two real data applications to validate our proposed method further. We conclude this
paper in Section 7.

2 Methodology

To facilitate the presentation, denote the full data matrix by F, = (X,y), where X = (z1,...,x,)"
is the covariate matrix and y = (y1,...,yn)" is the vector of responses. Denote by #(t) and v(t) the
first and second derivatives of ¥(t), respectively, by Vs f(x) the gradient of f(x) with respect to s for
S C {1,...,p} and by 8¢ the complement of S. For a square matrix S, denote by tr(S) the trace of
S. For a vector v, denote by |[v|| the Euclidean norm and v®? = vv™. Given a,b € R, the maximum
and minimum of a and b are denoted by a V b and a A b, respectively. We first review the subsampling
algorithm for the GLMs in Subsection 2.1 and then propose a general subsampling decorrelated score
function based on a new projection matrix in Subsection 2.2.

2.1 Review of the subsampling algorithm for GLMs

Take a random subsample of size r using sampling with replacement from the full data {(y;,;),
i = 1,...,n} according to the probabilities m; satisfying > . m = 1. Here, 7; may depend on the
full data. Denote the subsample by {(y;,x}),i =1,...,r} with associated subsampling probabilities 7.
Wang et al. [28] and Ai et al. [3] obtained the subsample estimator for 3 via minimizing the following
weighted loss function:
s
L(B) = 3 Ly (BTa) + 6(8" )] (21)

nr &~ ¥
=1
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Equivalently, they solved the following weighted score function:

T

* 1 1 * j * *
VoL'(B) = — > —[-yi + (8 a})]a} = 0. (2:2)
i=1 1
Denote the MLE of B with the full data by
R
Br = argmin . 3y (87a) + 0(57 ) (23)

i=1

which is well defined for both low-dimensional and high-dimensional cases since n > p. Under some
conditions, [3, Theorem 2| concludes that the asymptotic covariance matrix of the resulting estimator of
B given F, is

T=J'2JT7,

where
n

n
7= LUt eel, D= n 3 - okt

Noticing that 3. depends on m;, they proposed to obtain two optimal subsampling probabilities by
minimizing tr(X) or tr(X.) and put forward a two-step optimal subsampling algorithm. It is worth
pointing out that their optimal subsampling schemes can only be established when the dimension of 3
is relatively smaller than the subsample size r. However, it remains challenging to develop subsampling
procedures for the high-dimensional 3, where the dimension of B can be much larger than r. In this
case, the subsample estimator in (2.2) is not well defined such that a sparsity assumption imposed on the
unknown parameter 3 is necessary, i.e., most components of 3 are zero. Unfortunately, it is notoriously
difficult to derive a tractable limiting distribution and an asymptotic covariance matrix for the regularized
estimator due to the existence of nuisance parameter v (see [7]).

Alternatively, we are interested in the problem of estimation and statistical inference on some
preconceived low-dimensional parameters in both the low-dimensional and high-dimensional regression
models. To be specific, we consider that B = (8T7,4T)T corresponding to = (2T, «™)T in (1.1) and
then the weighted loss function (2.1) can be rewritten as

* 1 - 1 * T _* T  x T _* T  x
L*(0,v) = EZF[_% (0727 +v uy) + (0 2] +v uj)l.
i=1 "t
Two scenarios are considered where ¢ is small or large (comparable to or even much larger than ). To
address these problems, we next construct a new type of subsampling score function for 8 and show that
the resulting subsample estimator of 8 is asymptotically normal in both scenarios. The key strategy of
our proposed procedure is a subsampling decorrelated score function to handle the impact of both the

low-dimensional and high-dimensional nuisance parameters.

2.2 General subsampling decorrelated score function

In this subsection, we propose a novel general subsampling decorrelated score function. Here, general
subsampling means that we do not impose distributions or specify values of the subsampling probability.
Inspired by the decorrelated score method (see [20]), we are motivated to find a projection matrix Wg €
R¥*4 and then construct the subsampling decorrelated score function for € such that the estimator solved
from this score function enjoys consistency and asymptotic normality. However, it is not easy to apply the
existing decorrelated score method to subsampling schemes directly based on the following three reasons.
(i) The population in the subsampling problem is finite, and all the theoretical results should be derived
based on F,,, which is different from the traditional infinite population results of Ning and Liu [20].
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(ii) A well-defined projection matrix for the finite population depends on the full data sample
{(yi,z;),i = 1,...,n} and model structure. Therefore, it should be pointed out that directly applying
the popular definition of the projection matrix

Wi = argvglinE(IIVeL*(ﬁF) — WYL (Br)|I” | Fn)

is unreasonable, since this type of projection matrix depends on the subsampling probability ;, i.e.,

Wi = E(VeL*(Br) VAL (Br)" | Fu)E(V4L*(Br) V4L (Br)T | Fn) ™

N -1
_ {; > i+ (R waniu?}{ > e+ (8 w»Pu;@?} :
i=1 !

v i=1

In this case, different subsampling probabilities 7; will result in different projection matrices for the finite
population. Thus W cannot be used in the subsampling schemes.

(iii) There is no explicit quantification of the benefit of the decorrelated score in a subsampling setting,
and many important inference-related questions remain unanswered.

To proceed, we construct the following weighted subsampling decorrelated score function based on a
novel projection matrix:

s

1 1
(0.9, Wi) =VoL* (8.7¢) — WeV L' (0.7) = 37 L[y 4 0(87 57 + 4w )](=7 ~ Wiew).
=1

where

Wpg = arg min E( Z 7,/1 Brxl)||zr — Wau|?
w

= [B(V3, L*(ﬁp)lf )][ (V3,L*(Br) | Fa)l ™!

%)
-1

[ Zw Brx:)z TH Zw (Biz;) ®2} : (2.4)

It is clear that Wg does not depend on m; and is different from WY{. The main reason is that in
the subsampling schemes E(V%ﬁL* (Br) | Fn) may not equal E(VgL*(Br)VgL*(Br)T | F,) anymore.
Furthermore, it should be pointed out that our proposed Wy and S*(0,~r, Wr) are suitable for both
the low-dimensional and high-dimensional models in the massive data (n > p).

Remark 2.1.  An important feature of S*(0,~r, Wr) is that it is essentially a weighted score function
and the corresponding weights are inverses of the subsampling probabilities, which coincides with classic
sampling techniques (see [11]).

Remark 2.2. It can be seen that Wy is the weighted least square regression coefficient between z and
u. Once we have Wr, it can be verified that Wy satisfies the following orthogonality property:

]:n>:07

which enables the convergence rate of the subsample estimator of 6 derived from the forthcoming
equation (2.8), not be affected by the initial estimator of 4. Compared with the projection matrix
Wy = [E@(Bfz)zub)][EW(BTz)u®?)]"! based on the infinite population in [20], where B, =
argming E[—y(87x) + (8T x)], it can be shown that Wy is \/n-consistent to Wy (see [15]). More
interpretations can also be referred to Li et al. [17], Han et al. [10] and Cheng et al. [5].

Although B and W7 in (2.3) and (2.4) are well defined, it is impractical to obtain By and Wg using
the entire data due to limited storage. Thus, we propose the following two kinds of subsample estimators

(2

8 : 1 * ] * * * *
E(@,),{ Z F[_yi + (O 27 + v u))](z - WFUZ)}
i=1

Y=IF
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ﬁ and W which differ in whether q is small or large. When ¢ is small, ,é is solved from (2.2) and W is
defined as

-1

a 17'1__A*** 17-1"A**
W S BT ) o e 2.5

When ¢ is large, however, 3 and W cannot be estimated as above due to the singularity of the design
matrix. In order to build sparse models and identify relevant predictors to the response variable, we need
to modify the initial estimators 3 and W. To be specific,

T

2 . 1 1 * * *
B argmin oY i (87) + (87D + A 81, (26)
=1
X T e 1 - . !
W =argmin > ;WﬁTﬂBf)\lzf —Wul [P+ 2 ) [lw, (2.7)
=1 j=1

where wj is the j-th column of W and A, and Ay are regularized parameters. It should be pointed out
that (2.6) is a weighted loss function with the LASSO (least absolute shrinkage and selection operator)
penalty (see [24]) such that a consistent initial estimate of Br conditional on F;, can be obtained based
on the subsample, while (2.7) is a weighted group LASSO for the multi-response regression (see, e.g.,

[21,29]). Finally, we propose to solve the decorrelated score subsample estimator of 8, namely 0, via
50,4, W) = VoL*(8,4) — WV,L*(8,%) = 0. (2.8)

We summarize the general decorrelated score subsampling procedure in Algorithm 1.

Algorithm 1  General decorrelated score subsampling algorithm

Step 1 (Sampling). Assign subsampling probabilities 7; (¢ = 1,...,n) for all the data points and draw a random subsample
of size r (& n) with replacement. Denote the subsample by (y},x]) with 7}, respectively, for i =1,...,r.

Step 2 (Estimation). Solve the subsampling decorrelated score function (2.8) to get the estimate 0 based on the subsample,

where 4 and W are solved by (2.2) and (2.5) for the low-dimensional case or by (2.6) and (2.7) for the high-dimensional
case, respectively.

3 Asymptotic properties

In this section, we establish the asymptotic properties of 0 obtained by Algorithm 1. When ¢ is fixed
and small, we need some regularity assumptions listed as follows.

Assumption 3.1.  The covariate x is bounded by a constant almost surely, i.e., there exists a constant
L > 0 such that ||x|| < L almost surely.

Assumption 3.2.  For all x € [-L, L?, BTz is an interior point of the parameter space

o- {e €R: /h(t) exp(08)u(dt) < oo}

with p being the dominating measure.

Assumption 3.3.  Assume 3 lies in a compact domain
Ap={BeRr:Vaxec|[-L LB zc®,|B| <B}

for some large constant B.

Assumption 3.4. As n — oo, the symmetric matriz
n ..
J=n""Y d(Brai)(zi — Wrw,)z!
i=1

goes to a positive-definite matriz in probability.
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Assumption 3.5. It holds that max;<;<,(nm;)~! = Op(1).

Assumptions 3.1-3.3 are commonly used in the literature (see, e.g., [4,35]). Assumption 3.4 is used
to derive the asymptotic covariance matrix. Assumption 3.5 imposes a sufficient condition for the
subsampling probabilities. The following theorem presents the consistency of 6 to the full data MLE 0.
Theorem 3.6.  Under Assumptions 3.1-3.5, as n — oo and r — 0o, 0 is consistent with the full data
MLE @ in the conditional probability given F,,. Moreover, the rate of convergence is r—/2
probability approaching one, for any € > 0, there exist finite A, and r. such that P(Hé — 05| = r~V2A, |
Fn) <€ for allr > re.

Remark 3.7.  Although Theorem 3.6 presents the result that @ — 8 = Op | Fn (r=1/2), it implies that
0 — O = Op(r—'/?) as well (see, e.g., [3,31]). Hence, Theorem 3.6 indicates that the proposed subsample
estimator is /r-consistent to the full data MLE under the unconditional distribution.

, i.e., with

Besides consistency, we derive the asymptotic distribution of 6 conditional on F,.
Theorem 3.8.  Under the assumptions of Theorem 3.6, as n — oo and r — oo, conditional on F,, in

probability,
VY20 -6y — N(0,1)

in distribution, where V.= J 'V, J~! and

n

J = E ;1/)( };wi)(zi - ‘/V]rrui)zgr7 V.= # z:zl %[yz _ ¢(ﬂ;$z)}2(zz _ WFUi)®2- (3.1)

n

Remark 3.9. Theorem 3.8 establishes asymptotic normality of the proposed estimator 0 given F,,. The
definition of Wy leads to a symmetric matrix J, and it is also known as the Schur complement in linear
algebra. It is worthwhile to point out that the asymptotic covariance matrix V is exactly the submatrix
of X corresponding to the subsample estimator of 0 in [3]. In other words, in the low-dimensional settings
and given the same general subsampling probabilities, our proposed estimator 0 solved from (2.8) follows
the same asymptotic distribution as the general subsample estimator in [3] without the decorrelated
score, which indicates that the decorrelated score subsampling method is in favor of constructing any sub-
estimator of 3 and deriving the explicit asymptotic covariance matrix immediately. Otherwise, to seek the
asymptotic covariance matrix of a sub-estimator, one may have to calculate the whole ¥ = 7 '2, 77!
and then find the corresponding submatrix, which is computationally expensive and may not be clearly
expressed in theory.

Next, we pursue the asymptotic properties of 0 obtained by Algorithm 1 when ¢ is large and some
further assumptions are needed.

Assumption 3.10.  Assume that
Bo = arg min E[~y(B"z) + (8" )]

is sparse with s; = |S;|, where Sy ={j : Bo; #0,5=1,...,p},

Wo = [E((8) =)zu")][E((B) z)uu’ )]~

is sparse with s, = |Sy|, where Sy, = {j 1 wo; #0,5=1,...,¢}, and (s; V sp)logp//1 = o(1).
Assumption 3.11.  For any set S C {1,...,p} and any vector v belonging to the cone

C(S,a) ={veRP: |vse

1 < aflvs|li},

it holds that
L*(Bo +v) — L*(Bo) — VL (Bo) v = 7lv]?,

where v > 0 is a constant.
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Assumption 3.12.  For any set 8’ C {1,...,q} and any vector v’ belonging to the cone

C'(S, ) ={v eR: v

1 < v}

it holds that -
! V L* /
inf (’U ) vy (/60)”
040/ €C’(S",a) [lv||?

>k > 0.

Assumption 3.10 emphasizes the sparsity for both By and Wy, which is widely used in the literature
(see, e.g., [5,20]). Assumption 3.11 is the restricted strong convexity condition (see [12, pp.310-311]),
which requires the weighted loss function to be a strongly convex function when restricted to the cone
C(S,a). Assumption 3.12 is the restricted eigenvalue condition (see, e.g., [5,8,22]) for the submatrix
V?WL* (Bo) corresponding to the nuisance parameter and provides the necessary curvature within a cone.

Theorem 3.13.  Under Assumptions 3.1-3.5 and 3.10-3.12, as n — oo and r — oo, 0 is consistent to

the full data MLE @ in the conditional probability given F,. Moreover, the rate of convergence is r—/2,
i.e., with probability approaching one, for any € > 0, there exist finite A, and r. such that
P(16 —0r] > r12Ac | Fo) <€
for allr > re.
Theorem 3.14.  Under the assumptions of Theorem 3.13, as n — oo and r — 0o, conditional on JFy,

in probability,
VY20 -6y — N(0,1)

in distribution, where V' is defined in Theorem 3.8.

Remark 3.15. Theorems 3.13 and 3.14 show that in the high-dimensional case 0 still has the same
consistency and asymptotic normality results as those in the low-dimensional case. Even the intermediate
estimators 3 in (2.6) and W in (2.7) have lower convergence rates than (2.2) and (2.5), respectively.
However, it should be pointed out that the subsampling method of Ai et al. [3] fails in high-dimensional
settings.

4 Optimal decorrelated score subsampling strategies

In this section, we consider optimal subsampling strategies. In Subsection 4.1, we present two subsampling
probabilities based on A- and L-optimality criteria. In Subsection 4.2, we discuss the implementation
issue.

4.1 Optimal subsampling probabilities

Considering that the asymptotic covariance matrix in (3.1) depends on the subsampling probability, in
this subsection, we propose some efficient subsampling procedures by choosing the optimal subsampling
probability. Notice that the asymptotic mean squared error of 0 equals tr(V'), and then the A-optimality
criterion is proposed to pursue the smallest value of tr(V). Besides, the L-optimality criterion is
considered further to minimize tr(V.), which reduces the computing time without sacrificing much
estimation efficiency. Theorems 4.1 and 4.2 establish two optimal subsampling probabilities based on
the A- and L-optimality criteria, respectively.

Theorem 4.1 (A-optimality). If the subsampling probability is chosen such that
dmV lyi — P(BE)[I|T (20 — Wrw)|

H )

7 n =1
Sy — G(BR) [T (2 - W)

sy T

then tr(V') attains its minimum.
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Theorem 4.2 (L-optimality). If the subsampling probability is chosen such that

7T_gthC — |y1 — ?’b( le)mzl WFU1|| 1= 1, Lo, n,

' >y — O(BEa;)lllz; — Wrug||

then tr(V.) attains its minimum.

Remark 4.3. It is worthwhile to point out that the optimal probabilities proposed in [3] are based on
minimizing the asymptotic covariance matrix for the subsample estimator of 3 in the low-dimensional
case. However, minimizing tr(X%) or tr(X.) with respect to 3 is not equivalent to minimizing tr(V') or
tr(V,) with respect to 6. To clarify this explicitly, we take tr(V') as an example. It can be shown that

7Tz

1 n n 1 B
= > > — [ — d(BF) 2T (2 — Wiews)
j=1  i=1

n

{Z| (BT Wpui)”}Q,

where the last inequality follows from the Cauchy-Schwarz inequality. Notice that the equality holds if
and only if m; o< |y; —(Bgx;)|||J 1 (2:—Wru;)| and thus our proposed subsampling probabilities achieve
the smallest asymptotic variance for the subsample estimator of 8. Moreover, the optimal probabilities
are suitable for the low-dimensional case and the high-dimensional case, which can be seen from our
simulation results in Section 5.

Remark 4.4. Compared with 78™V | the L-optimality subsampling probabilities 7{™Ve

on J~! and thus are easier to calculate in practice.

do not depend

4.2 Two-step practical algorithm

The optimal subsampling probabilities 78™V and 7¢™V¢ cannot be directly implemented since they depend

on the MLE Br and Wy based on the entire data. Thus, we propose a two-step algorithm. In the first step,
a subsample of size 7 is taken to get pilot estimates of Br and Wpg, which will be used to approximate
the optimal subsampling probability for drawing a more informative subsample of size ro in the second
step. We still denote these two intermediate estimators by B and W but the final estimator by 6. In
the high-dimensional case, (2.6) and (2.7) can be solved by R functions “glmnet” and “mvr” (see [5])
respectively in the R programming language. We present the following two-step algorithm in Algorithm
2 and Theorems 4.5 and 4.6 show the asymptotic properties of 6 obtained from Algorithm 2.

Algorithm 2  Optimal decorrelated score subsampling algorithm

Step 1. Run Algorithm 1 with the subsample size r; to obtain the estimates B and W using the uniform subsampling
probabilities. Replace Br and Wg with ﬁ and W, respectively, and then get the approximate optimal subsampling
probabilities corresponding to a chosen optimality criterion.

Step 2. Draw a subsample of size r2 using the approximate optimal subsampling probabilities calculated in Step 1 with
replacement. Obtain the estimate 0 based on the subsample of size r2 according to Algorithm 1.

Theorem 4.5. Under Assumptions 3.1-3.5 and \/rz/r1 — 0 in the low-dimensional case or
Assumptions 3.1-3.5, 3.10-3.12 and \/r2(s; V sp)logp/ri — 0 in the high-dimensional case, for the
estimator 0 obtained from Algorithm 2, as r1 — 00, ro — 00 and n — oo, with probability approaching
one, there exist finite A, and v, such that P(||0 —0g|| > r5 /> Ac | F) < e for any e > 0 and all ry > r..

Theorem 4.6.  Under the assumptions of Theorem 4.5, as 71 — 00, r9 — 00 and n — 0o, conditional
on F,,
Vopt 2(6 = 61) = N(0,1)
in distribution, where Vopi = Jfchﬁoth’ s
1 — ,8 x))?(zi — Wru;)®
fz‘ E —ZL% BB )T (2 — Wi,

yi = $(BFa)||T (2 — W)
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for the estimator obtained from Algorithm 2 based on the estimated subsampling probabilities for m¢mV,

and
n

U = BE ) — Wiw)®
‘/CO = - T z W
TP Dy 7 T njz'] Vil = Wes|

for the estimator obtained from Algorithm 2 based on the estimated subsampling probabilities for w&mVe,

In order to conduct statistical inference for the corresponding estimator, we adopt the method of
moments to estimate the covariance matrix of @ using V. = J'V.J T, where

N N X
J = 0T * 2T, * * * *T
3 LTS A - W)

and
o 1 2 1 c AT T I ®2
* - * * *
c= 2.2 (Aik)g[y;ﬁ ¢(0 Z; +Py ’U,)] (zi_Wui)
n?ry < (7;
Here, we refer to 7} as the estimator of 78™V or 7d™V¢ for the selected subsample {(y},x),i =1,...,72}

in the second subsampling step.

5 Numerical studies

In this section, we conduct simulation studies to assess the finite sample performance of the proposed
estimators. In Subsections 5.1 and 5.2, we present simulation results for linear regression and logistic
regression models, respectively, based on both the low-dimensional and high-dimensional settings.

5.1 Linear regression

We generate data of size n = 10° from the following linear regression model:
vi=a+0Tz,+~Tu;+¢, i=1,...,n,

where z; € R, u; € RI71 and (2], uf)T is generated from the multivariate normal distribution with
mean 0 and covariance matrix X, whose (7, k)-th element o, = 0. 50 for 1 < j ok <d+q—1.

In the low-dimensional case, we set d = 2, ¢ = 8 and all the elements of (a,BT,'yT)T to 1. The
random error ¢; is generated independently from one of the following four distributions respectively:
(i) the normal error: ¢; ~ N(0,22); (ii) the ¢ error: ¢; ~ t(3); (iii) the heteroscedastic normal error:
€; ~ |2:1|IN(0,32); (iv) the exponential error: €; ~ Exp(0.2). In the high-dimensional case, we set ¢ = 700
and the additional elements of v to 0. The random error ¢; is generated independently from one of the
following four distributions respectively: (i) the normal error: e; ~ N(0,1); (ii) the ¢ error: €; ~ #(3);
(iii) the heteroscedastic normal error: €; ~ |z;1|N(0,1); (iv) the exponential error: €; ~ Exp(1). Set rq
equaling 400 and ro equaling 400, 600, 800 and 1,000. We compare the following different subsampling
methods:

(a) Our proposed dmV and dmVec methods based on the decorrelated score subsampling probabilities
7dmV and 7dmVe defined in Subsection 4.2.

(b) The mV and mVc subsampling methods proposed by Ai et al. [3] with the optimal probabilities
through minimizing tr(X) or tr(X.), which are treated as benchmarks and only can be used in the
low-dimensional case.

(¢) The uniform subsampling method (unif) and uniform decorrelated score subsampling method
(dunif), which solves the decorrelated score subsample estimator via

5*(0,4, W) =VeL*(0,5) — WV,L*(0,4) =0

from (2.8) with the uniform subsampling probabilities.
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To be specific, we evaluate the mean squared error (MSE) based on the true parameter, the average
of the empirical coverage probabilities ACP = d~* 2?21 CP(0;) and the average length (AL) of the 95%
confidence intervals for each element 6; of 8. As in [27], in our simulations, we do not combine the two-
step subsamples to perform estimation since if we are willing to handle estimation under size r1 + 2, then
we could have chosen a better subsample by setting the second step subsample size to ry 4+ ro directly.
When ¢ = 700, we compare our proposed dmV and dmVc methods with the unif (using the LASSO
penalty) and dunif methods. Since there is no asymptotic distribution expression for the unif method,
we use the percentile bootstrap to obtain the ACP and AL based on 200 replications.

The simulation results are listed in Tables 1 and 2 based on 500 replications. In the low-dimensional
case,

(1) MSEs: it can be seen that (i) the proposed dmV subsampling strategy always results in the
smallest MSEs while the uniform subsampling strategy always results in the largest MSEs among all the
scenarios; (ii) compared with the mV and mVec subsampling strategies proposed by Ai et al. [3], our
proposed dmV and dmVc strategies always yield smaller MSEs, respectively. This finding agrees with
our theoretical results that we aim to minimize the asymptotic MSEs for the subsample estimator of 8
or the linearly transformed subsample estimator of 8 rather than the whole subsample estimator of 3;
(iii) the proposed dmV subsampling strategy performs better than the dmVe method in most cases since
the dmV method aims to minimize the asymptotic MSE for the subsample estimator of 8; (iv) when the
subsample size increases, the MSEs of all the subsampling methods decrease.

Table 1 MSE (x10), ACP and AL for low-dimensional linear regression

9 dmV  dmVec mV mVc unif dmV  dmVe mV mVc unif
B (i)
400 MSE 0.169 0.196 0.212 0.234 0.306 0.083 0.099 0.114 0.127 0.235
ACP 0.947 0.940 0.948 0.944 0.944 0.953 0.947 0.944 0.936 0.944
AL 0.180 0.191 0.207 0.212 0.244 0.128 0.135 0.147 0.151  0.206
600 MSE 0.122 0.129 0.137 0.144 0.214 0.059 0.067 0.077 0.085 0.154
ACP 0.947 0.947 0.953 0.950 0.939 0.939 0939 0942 0.930 0.950
AL 0.147 0.155 0.167 0.171  0.199 0.104 0.110 0.119 0.122 0.168
800 MSE 0.099 0.105 0.107 0.107 0.159 0.047 0.053 0.055 0.061 0.123
ACP 0.928 0.936 0.950 0.961 0.945 0.940 0933 0.946 0.948 0.950
AL 0.127 0.134 0.144 0.148 0.173 0.090 0.095 0.102 0.105 0.148
1,000 MSE 0.081 0.082 0.084 0.085 0.132 0.038 0.043 0.044 0.048 0.104
ACP 0.923 0.941 0.947 0.953 0.943 0.935 0.929 0.953 0.939 0.940
AL 0.114 0.120 0.129 0.132 0.154 0.080 0.085 0.091 0.093 0.133
(iii) (iv)
400 MSE 0.370 0.424 0.447 0.479 1.138 1.030 1.114 1.385 1.442 1.938
ACP 0.949 0.947 0.947 0.935 0.940 0.942 0.945 0.922 0.927 0.943
AL 0.265 0.282 0.295 0.303 0.458 0.417 0441 0.479 0.489 0.608
600 MSE 0.251  0.291 0.302 0.303 0.775 0.694 0.752 0.832 0.894 1.294
ACP 0.944 0.944 0.933 0.949 0.940 0.927 0934 0934 0.944 0.951
AL 0.215 0.229 0.237 0.243 0.376 0.339 0.358 0.386 0.396 0.496
800 MSE 0.188 0.220 0.228 0.234 0.585 0.521  0.560 0.600 0.638 0.999
ACP 0.943 0.935 0.942 0.944 0.944 0.933 0936 0944 0.944 0.938
AL 0.186 0.197 0.204 0.209 0.327 0.293 0.310 0.333 0.341 0.429
1,000 MSE 0.158 0.178 0.170 0.191 0.460 0.415 0.463 0.461 0.493 0.771
ACP 0.934 0.936 0.950 0.938 0.944 0.924 0925 0944 0.944 0.939

AL 0.166 0.176  0.181 0.186  0.293 0.262  0.277 0.297 0.304 0.384
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Table 2 MSE (x10), ACP and AL for high-dimensional linear regression

o dmV dmVe dunif unif dmV dmVe dunif unif
B (i)
400 MSE 0.044 0.050 0.080 0.151 0.104 0.110 0.227 0.431
ACP 0.930 0.936 0.932 0.763 0.927 0.938 0.954 0.753
AL 0.089 0.094 0.122 0.236 0.130 0.137 0.207 0.397
600 MSE 0.032 0.034 0.056 0.098 0.069 0.083 0.155 0.292
ACP 0.921 0.938 0.937 0.772 0.923 0.920 0.949 0.761
AL 0.073 0.077 0.099 0.192 0.106 0.112 0.169 0.322
800 MSE 0.026 0.026 0.044 0.072 0.057 0.063 0.113 0.213
ACP 0.910 0.934 0.932 0.783 0.913 0.916 0.956 0.767
AL 0.063 0.067 0.086 0.166 0.092 0.097 0.146 0.279
1,000 MSE 0.022 0.022 0.037 0.057 0.050 0.052 0.094 0.170
ACP 0.898 0.923 0.922 0.798 0.897 0.914 0.953 0.775
AL 0.056 0.059 0.077 0.148 0.082 0.087 0.132 0.250
(iii) (iv)
400 MSE 0.046 0.051 0.128 0.197 0.041 0.044 0.077 0.155
ACP 0.936 0.939 0.938 0.814 0.927 0.941 0.950 0.735
AL 0.089 0.095 0.153 0.285 0.083 0.088 0.122 0.235
600 MSE 0.031 0.034 0.093 0.135 0.028 0.031 0.051 0.099
ACP 0.922 0.928 0.933 0.843 0.920 0.935 0.948 0.765
AL 0.073 0.077 0.125 0.235 0.068 0.072 0.099 0.191
800 MSE 0.025 0.028 0.068 0.097 0.023 0.024 0.041 0.074
ACP 0.906 0.912 0.935 0.847 0.907 0.929 0.933 0.782
AL 0.063 0.067 0.109 0.205 0.059 0.062 0.086 0.165
1,000 MSE 0.020 0.023 0.057 0.078 0.019 0.020 0.035 0.059
ACP 0.909 0.901 0.926 0.860 0.898 0.923 0.919 0.783
AL 0.056 0.060 0.097 0.184 0.053 0.055 0.077 0.147

(2) ACPs: all the subsampling methods enjoy results close to 0.95, which coincides with the asymptotic
normal property and illustrates the reasonableness of the covariance matrix formula.

(3) ALSs: we find that (i) the proposed dmV and dmVec methods enjoy much smaller lengths, compared
with other methods; (ii) when the subsample size increases, the ALs of all the subsampling methods
decrease.

In the high-dimensional case, our proposed dmV and dmVc methods still result in much smaller MSEs,
compared with the unif and dunif methods. Moreover, the comparison of the dunif and unif methods
also shows that the decorrelated score subsampling method has obvious advantages in estimation and
statistical inference. In terms of ALs and ACPs, our methods also perform well. However, it can be seen
that the unif method has low ACPs and large ALs due to the large biases.

5.2 Logistic regression
We generate data of size n = 10° from the following logistic regression model:

Di

)za—l—BTzi—l—q'Tui, 1=1,...,n,
L —pi

y; ~ Bernoulli(p;), log <
where z; € R? and u; € R9~!. In the low-dimensional case, we set d = 2, ¢ = 4 and all the elements of
(a, 0T, 4T)T to 0.5. The covariate (2}, u})T is generated independently from one of the following four
distributions respectively: (i) N(0,%,/2) with o, = 0.5 (ii) N (0,2, /2) with o5 = 0.5707F); (iii)
t3(0,%,)/10 with o = 0.5V =*l; (iv) a mixture of 0.2N (1, 2, /2) and 0.2N (-1, X, /2) with o5, = 0.5/ %I
for 1 < j,k < d+¢—1. In the high-dimensional case, we set ¢ = 700 and the additional elements of 7y to 0.
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The covariate is generated independently from one of the following four distributions respectively: (i)
N(0,%,/2) with oj; = 0.5V 7Fl; (ii) N(0,%,/2) with o, = £V=F ¢ ~ U[0.1,0.3]; (iii) ¢5(0, =,)/2 with
ok = 0.519=Fl: (iv) a mixture of N(0.5,%,) and N(—-0.5,%,) with ok = 0.5k for 1 < j, k < d+q—1.
Tables 3 and 4 show the results for the logistic regression. It can be seen that we have similar conclusions
to those in the linear regression model.

6 Two real data applications

In this section, we evaluate the performance of our proposed methods using two real datasets in the
low-dimensional and high-dimensional cases, respectively.

6.1 Census income dataset

We use the census income dataset (see [16]) from the UCI Machine Learning Repository (https://
archive.ics.uci.edu/ml/datasets/Census+Income) to illustrate our methods in the low-dimensional case.
There are n = 32,561 observations, and the response variable is whether a person makes over 50,000 dollars
per year. We conduct logistic regression to investigate the effects on income based on five covariates:
the age (z1), capital loss (z2), final weight, highest level of education in the numerical form, and hours
worked per week. The first two covariates are treated as the variables of interest. The subsample size
is set to 1 equaling 400 and 79 equaling 400, 600, 800 and 1,000. Table 5 presents the estimation and
inference results for the full data estimate and five candidates described in Section 5.

Table 3 MSE (x10), ACP and AL for low-dimensional logistic regression

2 dmV  dmVec mV mVce unif dmV  dmVc mV mVce unif
@) (i)

400 MSE 0.497  0.542  0.606 0.686 0.857 0.582 0.638 0.716 0.759 0.961
ACP 0.961 0.960 0.951 0.943 0.950 0.948 0.947 0941 0.946 0.957

AL 0.320 0.333  0.346 0.357 0.410 0.343 0.344 0.367 0.377 0.445

600 MSE 0.351  0.385  0.418 0.453 0.556 0.401 0.422 0.468 0.495 0.650
ACP 0.951  0.952  0.946 0.946 0.962 0.950 0.948 0.951 0.943 0.954

AL 0.260  0.271  0.280 0.289 0.334 0.278  0.280 0.297 0.305 0.361

800 MSE 0.266  0.306  0.313 0.334 0.407 0.300 0.322 0.346 0.367 0.481
ACP 0.948 0.938  0.950 0.949 0.956 0.947 0.942 0.944 0.943 0.947

AL 0.225 0.235 0.241 0.249 0.288 0.241 0.242 0.256 0.263 0.312

1,000 MSE 0.223 0.249 0.252 0.266 0.338 0.244 0.263 0.277 0.297 0.399
ACP 0.943 0.934 0.946 0.942 0.950 0.953 0.927 0.953 0.943 0.941

AL 0.201  0.210 0.216 0.223 0.258 0.215 0.216 0.229 0.235 0.279

(iii) (iv)

400 MSE 8.199 9.111  9.639 13.200 14.960 6.274  6.719 7.136 7.900 8.445
ACP 0.960 0.954 0.956 0.952 0.953 0.945 0.962 0.947 0.951 0.938

AL 1.240 1.301  1.330 1.580 1.662 1.080 1.163 1.157 1.224 1.290

600 MSE 5.568 5.982  6.346 8.817 9.569 4.065 4.549 4975 5535 5.627
ACP 0.943 0.954 0.941 0.943 0.943 0.945 0.959 0.929 0.938 0.947

AL 1.002 1.047 1.063 1.265 1.335 0.877 0.946 0.938 0.993 1.049

800 MSE 4.488 4.676  4.820 6.174 6.561 3.175  3.621 3.661 3.936  4.327
ACP 0.935 0.946  0.939 0.948 0.957 0.936  0.938 0.931 0.944 0.953

AL 0.866  0.903 0.912 1.082 1.144 0.758 0.817 0.809 0.857 0.905

1,000 MSE 3.718  3.875  3.928 4.854 5.204 2.520 2.837 2997 3.106 3.421
ACP 0.933 0.943 0.929 0.950 0.951 0.939 0.939 0932 0945 0.951

AL 0.773  0.806  0.812 0.964 1.018 0.676 0.729 0.722 0.765 0.809
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Table 4 MSE (x10), ACP and AL for high-dimensional logistic regression

2 dmV dmVe dunif unif dmV dmVec dunif unif
0 (i)
400 MSE 0.503 0.522 0.798 1.563 0.338 0.342 0.563 2.101
ACP 0.941 0.945 0.920 0.677 0.955 0.958 0.921 0.398
AL 0.300 0.315 0.363 0.553 0.267 0.269 0.308 0.432
600 MSE 0.340 0.345 0.558 1.150 0.214 0.249 0.354 1.472
ACP 0.933 0.947 0.929 0.692 0.951 0.944 0.922 0.446
AL 0.245 0.257 0.300 0.516 0.218 0.220 0.254 0.424
800 MSE 0.266 0.282 0.453 0.926 0.182 0.199 0.297 1.120
ACP 0.928 0.933 0.919 0.672 0.945 0.943 0.927 0.469
AL 0.212 0.223 0.261 0.473 0.189 0.191 0.221 0.396
1,000 MSE 0.221 0.233 0.360 0.741 0.149 0.163 0.243 0.912
ACP 0.928 0.932 0.918 0.693 0.949 0.941 0.923 0.469
AL 0.190 0.199 0.234 0.440 0.169 0.170 0.199 0.366
(iii) (iv)
400 MSE 0.629 0.753 1.063 2.003 0.274 0.320 0.546 1.157
ACP 0.929 0.917 0.918 0.628 0.924 0.915 0.923 0.610
AL 0.327 0.343 0.406 0.555 0.210 0.222 0.282 0.483
600 MSE 0.460 0.536 0.743 1.548 0.195 0.234 0.364 0.814
ACP 0.913 0.912 0.912 0.652 0.911 0.900 0.919 0.642
AL 0.267 0.279 0.336 0.532 0.171 0.181 0.233 0.431
800 MSE 0.367 0.430 0.531 1.178 0.165 0.187 0.279 0.634
ACP 0.903 0.899 0.923 0.684 0.895 0.891 0.914 0.636
AL 0.231 0.242 0.292 0.512 0.148 0.157 0.203 0.389
1,000 MSE 0.300 0.338 0.432 0.965 0.142 0.159 0.239 0.525
ACP 0.905 0.903 0.928 0.689 0.880 0.886 0.899 0.634
AL 0.206 0.216 0.263 0.483 0.133 0.140 0.182 0.353

In view of point estimates, it can be seen that our proposed estimates are closer to the full data
estimate in general compared with other subsampling estimates. When the subsample size increases,
the standard errors (SEs) of all the subsampling estimates decrease. For any fixed subsample size, our
proposed methods produce smaller SEs than other subsampling methods, showing that the proposed
asymptotic covariance matrix formula works well in practice. Moreover, the dmV subsampling estimates
perform better than the dmVec subsampling estimates in terms of the SEs, which coincides with our
theoretical results. All the estimates show that the effects of 1 and x5 are significantly positive at level
0.05 according to the 95% confidence intervals (CIs). The positive effect of z; can be explained by the fact
that elder people may have rich experience and tend to have higher income. It is interesting that capital
loss has a positive effect on income. The possible reason is that people with high income are willing and
able to invest their money. The investigations on this real data example support our theoretical results
in the low-dimensional case.

6.2 Fashion-MNIST dataset

We further apply our methods to the high-dimensional Fashion-MNIST dataset (see [30]) for illustration.
There are n = 12,000 grayscale images of fashion products belonging to sneakers and ankle boots. The
response variable is whether an image belongs to the sneakers class, and the middle 10 x 10 = 100
pixels of the images are treated as a feature vector in [0,1]'1°. In this classification problem, we are
interested in pixel267 (x1) and pixel268 (z2) since they have essential effects on distinguishing between
sneakers and ankle boots. Therefore, the effects of pixel267 (x;) and pixel268 (z3) are viewed as
parameters of interest, and the remaining ones are nuisance parameters. We conduct logistic regression
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Table 5 Estimation and inference results for the census income dataset

T2 full dmV dmVc mV mVc unif
400 1 0.637 0.558 0.494 0.419 0.353 0.797
SE 0.016 0.096 0.105 0.114 0.130 0.149
CI  [0.606,0.669] [0.370,0.745]  [0.289,0.700] [0.195,0.643] [0.097,0.609]  [0.504,1.090]
T2 0.234 0.361 0.252 0.394 0.451 0.438
SE 0.013 0.067 0.084 0.120 0.111 0.137
CI  [0.209,0.260] [0.229,0.493]  [0.088,0.416]  [0.159,0.628]  [0.234,0.668]  [0.170,0.706]
600 T1 0.637 0.540 0.535 0.495 0.411 0.765
SE 0.016 0.080 0.091 0.097 0.103 0.118
CI  [0.606,0.669] [0.384,0.696] [0.357,0.713]  [0.305,0.684] [0.210,0.613]  [0.534,0.996]
9 0.234 0.364 0.229 0.301 0.387 0.368
SE 0.013 0.054 0.066 0.095 0.087 0.115
CI  [0.209,0.260] [0.259,0.469] [0.099,0.359] [0.115,0.488] [0.216,0.558]  [0.142,0.595]
800 1 0.637 0.545 0.566 0.474 0.442 0.781
SE 0.016 0.065 0.069 0.084 0.089 0.102
CI  [0.606,0.669] [0.418,0.671]  [0.431,0.700] [0.310,0.639] [0.267,0.617] [0.582,0.980]
9 0.234 0.342 0.230 0.299 0.357 0.358
SE 0.013 0.045 0.053 0.081 0.079 0.110
CI  [0.209,0.260] [0.253,0.431] [0.125,0.335] [0.141,0.457] [0.202,0.512] [0.143,0.574]
1,000 =z 0.637 0.568 0.561 0.419 0.388 0.697
SE 0.016 0.057 0.061 0.077 0.087 0.087
CI  [0.606,0.669] [0.457,0.679] [0.442,0.681] [0.268,0.570] [0.218,0.558]  [0.527,0.868]
T2 0.234 0.320 0.245 0.348 0.355 0.229
SE 0.013 0.040 0.046 0.071 0.072 0.086

CI  [0.209,0.260] [0.241,0.399]  [0.154,0.336]  [0.209,0.487]  [0.214,0.497]  [0.060,0.397]

and the subsample size is set to r; equaling 200 and ry equaling 400, 600, 800 and 1,000. Table 6
presents the estimation and inference results for the full data estimate and three candidates described
in Section 5. The SE of the unif method is constructed using the bootstrap with replication size 200.
For parameter point estimates, we find that our proposed estimates are closer to the full data approach
in most cases compared with the unif and dunif methods. When the subsample size increases, the total
SEs decrease for all the subsampling methods. For any fixed subsample size, our proposed two estimates
have smaller SEs than the unif and dunif estimates. Moreover, the dmV estimates yield smaller SEs
than the dmVc estimates since the dmV subsampling strategy aims to minimize the asymptotic MSE.
Our proposed two estimates show that the effects of 1 and x5 are significantly negative at level 0.05
according to the 95% Cls, consistent with those from the full data approach. However, the dunif method
indicates that x; is insignificant when ro = 600 because of the relatively large SE caused by the uniform
subsampling probabilities. The experiments on this real data example support our theoretical findings in
the high-dimensional case.

7 Conclusions

In this paper, we investigate the nonuniform decorrelated score subsampling methods of GLMs to
overcome the computation bottleneck and influence of the potential low convergence rate. The asymptotic
properties for the general decorrelated score subsample estimator are derived, and then two optimal
subsampling probabilities are proposed according to the A- and L-optimality criteria. Furthermore, we
develop a two-step algorithm to approximate the optimal decorrelated score subsampling strategies. We
fix the first step subsampling size r; and vary the second step subsampling size 79 in our simulation
studies and real data applications. One may adopt an increasing r; with respect to ro to obtain
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Table 6 Estimation and inference results for the Fashion-MNIST dataset
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9 full dmV dmVec dunif unif
400 1 —1.494 —1.444 —1.699 —1.927 —1.277
SE 0.220 0.410 0.557 0.878 0.741
CI  [-1.925,—-1.063] [—2.248,—0.640] [—2.790,—0.608] [—3.647,—0.207] [—2.850, 0.000]
T2 —1.290 —1.638 —1.536 —1.564 —1.472
SE 0.188 0.310 0.315 0.555 0.697
CI [-1.659,—0.922] [—2.246,—1.030] [—2.154,—0.919] [—2.653,—0.475] [—2.513,0.000]
600 z1 —1.494 —1.363 —1.760 —1.473 —1.606
SE 0.220 0.352 0.469 0.847 0.755
CI [-1.925,—-1.063] [—2.054,—0.672] [—2.679,—0.842] [—3.134,0.187] [—2.898, 0.000]
T2 —1.290 —1.685 —1.765 —1.406 —1.108
SE 0.188 0.260 0.276 0.471 0.683
ClI [-1.659,-0.922] [-2.195,—1.175] [-2.306,—1.223] [—2.328,—0.483] [—2.351, 0.000]
800 1 —1.494 —1.502 —1.642 —1.487 —1.772
SE 0.220 0.308 0.387 0.745 0.751
CI  [-1.925,—1.063] [-2.106,—0.898] [—2.400,—0.884] [—2.947,—0.028] [—3.346,—0.451]
T2 —1.290 —1.582 —1.732 —1.338 —1.283
SE 0.188 0.213 0.225 0.451 0.576
CI  [~1.659,-0.922] [-1.999,—1.166] [-2.174,—1.200] [-2.221,—0.455]  [—2.125,0.000]
1,000 1 —1.494 —1.315 —1.403 —1.484 —1.827
SE 0.220 0.267 0.323 0.673 0.649
ClI  [-1.925,-1.063] [-1.838,—0.792] [-2.037,—0.770] [—2.803,—0.165] [—2.975,—0.463]
T2 —1.290 —1.567 —1.772 —1.543 —1.367
SE 0.188 0.193 0.208 0.402 0.553
CI [-1.659,—0.922] [-1.945,—1.189] [-—2.180,—1.365] [—2.331,—0.754] [—2.309,—0.240]

better MSEs and CPs. However, from the perspective of balancing statistical results and implementation
costs, we still suggest a relatively small and fixed 71 to obtain fair intermediate estimates in the first step.
Some interesting issues still merit further research. First, the proposed methods focus on the
subsampling with replacement and require that all the optimal probabilities be calculated at once.
However, due to the memory constraint, it is infeasible to implement if n is extremely large. To solve
this problem, we can apply the Poisson subsampling framework (see, e.g., [1,33]) to select the data points
one by one or block by block. Second, due to the storage or transmission burden, large-scale data are
usually scattered at multiple locations. In this case, a distributed subsampling method is more useful.
Third, it should be pointed out that the formulas in Theorems 4.1 and 4.2 are based on the i.i.d. random
errors. However, when the random errors are not i.i.d., the optimal probabilities are different. Fourth,
the proposed method has the potential to be extended to quantile regression and some other models.
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Appendix A

Let |Wl21 = ?:1 lw;| for any matrix W € R4*%, where w; is the j-th column of W, and ||v|| is the
standard £, norm for any vector v € R?. For an index set S € {1,...,¢} and a matrix W € R¥*9, W
denotes the submatrix of W containing columns of W with indices in S. For a vector v, vg denotes the
subvector of v containing elements of v with indices in S. The notation p,, < ¢, means that there exists
some constant C' > 0 such that p, < Cq, holds for sufficiently large n. For notational simplicity, we use
C to denote a generic constant, whose value may change from line to line.

Lemma A.1. Under Assumptions 3.1-3.5, as n — oo and r — oo, conditional on F, in probability,
‘j/—v‘/F:Op‘]:"(’l"_l/Q)7 (A 1)
J—J=0p 5, (r?), (A.2)
K:Op‘fn(r_l/Q), (A 3)
S*(0p, 5, W) = Op | 5, (r /%), (A4)
where
F _ 8‘§ (9F7 7Fa * * *\T
J = 00T = m,z ¢ /3 Wuz)(zz) )
o aS (eFv ’\/F7 * *«\T
K=—"76#——/—/—/—"/ — Wu! ).
= WZ (g} i) ()

Proof of Lemma A.1. (i) To show W — Wg = Op| £, (r~'/2), define

7&”..T>>T 73"..T4®2
== ;wﬁwz)zzui . Wr, = ;wﬁpwz)ui :

5 1 <~ 1 -
== — BTNz (u)T ==Y (BT (u)®?
Wl - nr Zz:; wa(ﬁ mz )zz (uz) 9 W2 nr ’Lz:; ﬂ_;kw(ﬁ ch)('u,z) 5

1 - 1 . T % *\ ®2
EZFW pay)(ug)®”.
i=1 "t

i 1 : L. Tk % (o %\ T I
W, = o ; ﬂl/}(ﬁFwi)zi (uj)™, Ws

It can be seen that N

BOW1 | F) = = Y (Bt zul = We,.

i=1

For any component VV]”2 of Wi where 1 < j1,j2 < p,

E(le1j2 _ nglljz | ]_-n)Q

1 . I - T, )\ % 172
:E(T; |:')’L7(':‘ ( Fwi)zml ija —W]‘;lj :| ‘f)

R

1 1 1 -
[E— E _ i)z ; _ = 1)[7]1]2 2
n P 7'(' BFm Zjluh] ’I"( Fy )

2
12
ﬁF Ti)Zij, Uij, — Wil ]

( |-73'L|| ) Z %(¢(ngz))2 _ %(Wg}lh)Q — Op(’l“_l).

1<z<n nm; —
1=
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By Chebyshev’s inequality,
I —1/2
Wi — Wg, = Op | 7, (r~'/?).

It can be calculated that

T

Wi W= 3 e — el ) = D L Ta 6 e )

where 9 (t) is the third-order derivative of 1(t) and 3 lies between 8 and Bp. Since 9 (t) is bound by a
constant and 3 — Br = Op | £, (r~1/2) implied by [2, Theorem 1], we have

W, - W, = Op |7, (r=1/%)
by the Cauchy-Schwarz inequality and Chebyshev’s inequality. Thus,

Wi =Wy, = Op | £,(r /).
Similarly, it can be proved that

Wy — WF2 = OP‘]:” (T71/2).
Since

Wyt = Wi = Wi [(Wa = Wi, )Wy ! = Op 7, (%),
we have
W — Wy = WiW, ' — Wy, Wi !
= (Wi = Wi )(Wy ' = Wi,!) + We, (W5 = Wi!) + (Wh — We, )Wy !

= Op |7, (r/?).

This completes the proof of (A.1).
(ii) To show J — J = Op | 7, (r~*/?) and K = Op | 7, (r~/?), define

T

=iy %d}(ﬁgm;‘)(zf — Wrul)(2))".

=1

By calculation,
n

B(T | F) =+ 3 d(8Ea:) (2~ Wiewo)2F = J.

=1

For any component Jii2 of J where 1 < J1,J2 < p,

=54 » e[ 1 - o 2
E(Jid2 — Jiiz | F)2 = E(r Z {Ww(ﬁgw;‘)(z;‘ - Wyu))j, 25, — J]1]2:| ‘]:n>
i=1 i
1 & 1 - 92
= ; Zﬂ'i {nﬂw(ﬂng)(zz — WFui)jlzijg _ JJ1J2:|
i=1 d
1 M1 . T , 1 in B
=2 Z ;[w(ﬁF zi)(zi — Wru,)j, zij,]° — ;(J )2 =Op(r ).
i=1 "'

By Chebyshev’s inequality, we have
J—J=0p 7 (2.

Since

D(BEZ) (W — W)ul ()T = Op 7, (r~1/2),

K2 7
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we have

j — J = OP‘]:H(T_l/2>.
Define

- 85 (9F7’7FaWF o * *\T
K = Oy nrz Z”‘/’ 5 (2 — Wru;)(u;) .

Similar arguments lead to
K =0p 7, (r'/?).

This completes the proof of (A.2) and (A.3).
(iii) To show S*(8,vr, W) = Op | 7, (r~1/?), we first note that

1 4
E<nS*(0F77F7 WF)

]:n) = %Z[—yi +4(Bpai)](zi — Wruy) =0,

i=1

1
V&I‘(ns (OF,’)’F, WF

) = i 2 9B - Wi = i)

where the convergence rate in the second equality is implied by [2, Lemma 2]. By Chebyshev’s inequality,
we have
S*(0p,vp, Wr) = Op | £, (r™ /).

Noting that

T

. - 1 1 4
S*(eFaIYF)W) S (0F7’7FaWF 72 TL’]T yz +,(/)(/6' )](WF - W)’U/:7
i=1

=

T

1 1 .
B(3Y bt + bk lu

i=1

1 - 1 * j T, *
(02 el + bt | 7

n) %Z y2+¢ ﬂsz)] i =0,

i=1

)}12; d(BEw)Pui” = Op(r),

by Chebyshev’s inequality, we have

1le~ 1 . . .
r ; - [~y; +9(Brz))]u; = Op | 7, (r /?),

and thus
S*(6p,yr, W) — S*(8p,vr, Wr) = Op | 7, (r ).
Hence,
S*(8p,vp, W) = Op | £, (r /?).
This completes the proof of (A.4), and the proof of Lemma A.1 is completed. O

Proof of Theorem 3.6. By the consistency of 4 and W, it can be shown that

Crsx A OXx * ~ 1 - 1 7 * ~ * x * —
50,9, W) = VoL (0.4) = — > — [y — (0" = + 7 u])|Wui = Op £, (r"/?).

nr ¥

i=1 1
Applying [26, Theorem 5.9], we obtain ||@ — 8| = op|r,(1). By the proof of [2, Theorem 1], we have
16 — 6p| = op|7,(1). Thus, it leads to 16 — 0r| = op|,(1). Using Taylor’s theorem for random
variables (see [9]), we have

M rF o - . 8%y, yp, W) - 5% (O, yr, W)
0= 5](0.4. W) = 5] (0p, e, W) + —-—50m——(0 = 05) + —L— (3 — ) + Ry,
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where the subscript j denotes the j-th element of a vector, the j-th Lagrange remainder

L0285 (Be + (B - ), W)
=@ -pey [ [ TP i - )

and 3 = (8%,4T)T. By the consistency of W and boundedness of 1 (t), we have

0255 (8, W) ~ (8 a; ; .
|| = o | Y e - Wasai(an)T| = Oey -, 1)
for all 3. Thus
10285 (Be + uv(B — Br), W)
H// - 9BIBT - vdudv|| = Op| 7, (1).

Combining the above equations with the Taylor’s expansion, we have
A A1 A .
6 — Op = _{85’ (agé:p:’ W)} {S*(9F77F,W) + 5 (0;;¥F,W) (¥ =) + R}

= —J 5 (6r, v, W) + K(¥ — 1) + Op | 7, (18 — B [*)}

= Op 7, %) +op| 5,(16 — 6xl),
which implies that

6 —0p =Op |7, (r'/?).

This completes the proof of Theorem 3.6.
Proof of Theorem 3.8.  Note that

I 1
S* (0, vr, Wr) = ;Zm —y; +9(Bre))|(z] — W) Zm
i=1
It can be seen that given F,, 11,...,n, are i.i.d. random variables with mean 0 and variance

ﬁ‘»—t

1 n
var(n | Fo) = — Z (BEz)|2 (2 — W) ¥ = Op | £, (1)

from [2, Lemma 2]. For some § and every € > 0,

T _ 1 r
DB 0PIl > r26) | Fo) < gz 2Bl Il > /%) [ Fa)
i=1 i=1

1 - 2+6

< s O Bl Fa)
i=1

1 "1 .

S Jnatee a1 +3 [yi — (Bra:))* 0|2z — Weu |2+
1= 1
L NE s W Z lyi — D (BEa))**

S 7“6/265 <n (TL7T1')1+6 n .

i=1
Then we obtain
- _ 1
SO 2P > 126) | Fa) < <755 0p (108 (1) = 0p(1).
i=1
By the Lindeberg-Feller central limit theorem,

.
V.28 (O, v, We) = 7'V V2 Y T = N(0, 1)

i=1
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in distribution. Noticing that V, = Op| £, (r™*) and S*(Op, vp, W) — 5*(0p,vr, Wr) = Op (7, (r71), we
have
V285 (0p,vp, W) — V, /280, vr, W) = Op | 7, (r/?).

Applying Slutsky’s theorem, conditional on F,,
‘/'cfl/QSV* (0F7 YF, W) - N(07 I)

in distribution. It can be seen that

R . 1
J' T =T T - DT =0 £, (V) V=T VI = ;J*1(7~V0)J*1 = Op(r1).
Thus, we have

V20 - 0) = —V V25715 (O, v, W) + Op | £, (r1/2)
= —‘/—1/2,]—15’*(0}77’)’F7 W) — V—I/Q(j—l _ J_1>S*(0F77Fa W) + OP\]:n (7“_1/2)
_ 7V71/2J71V61/2V;1/2S*(0F’PYF,W) + OP|].‘7L(7"71/2).

Using the fact that
(V—l/QJ—l‘/'01/2)(V—1/2J—1‘/;1/2)T 71

and applying Slutsky’s theorem, we obtain
VY26 - 0r) — N(0,1)

in distribution. To further illustrate Remark 3.9, rewrite

R 2% zul J11 T2
T==>d@f=)| T = :
nia wiz; u; T21 T2
1 - 1 H Z®2 Z‘UT b3 11 3 12
Y- 2y — T2 [ A . c c12 )
rn ; e o= ) <uiz;f uf® ) (2021 Y22

Applying the inverse of the block matrix, we obtain

P I 0\ ((Ju-TudnTn)" 0\ (I -T1:75
T T T (0] T ) \O I
Then simple calculation gives the submatrix of J 'X.J ' corresponding to the estiamted 6, denoted

by J~1V,J !, where

J=T1 - T12T5 T2,
V=31 — BeoT on To1 — T 12T 53 Bea1 + T 12T 53 Beoa T a9 T 21.-

Take Wy = T 12T 521 and the proof is completed. O

Lemma A.2. Under Assumptions 3.1-3.5 and 3.10-3.11, as n — oo and r — oo, conditional on F,

B—Br= Op |7, (\/silogp/r).

Proof.  Define I' = 3 — Bg. By the definitions of L*(3) in (2.1) and 8 in (2.6), we have

in probability,

L*(8) + MBIl < L*(Br) + Ml|Br1-

By the convexity of L*(3), we obtain

L*(B) > L*(Br) + VpL"(Br) T
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In the event {||[VgL*(Br)|lcc < A1/2}, we have
* Tr 1 I
IVaL*(Br) T'| < 5)\1||FH1~

Hence,
1 - A
—5 Tl + 1181l < 118ell-

Let
S={j:Bo; #0,j=1,....p}
Using the fact that B — By = Op(1/v/n) (see [26]) and

1Be +Tll1 = [|(Br + D)s,ll1 + 1B + T)selly = 18rlly — ITs, 11 + [ITs¢ ll1 + Op(p/v/n),

we obtain
[Tselly < 3|ITs, |11 + Or(p/v/n),

which implies that there exists an a such that rec (81, ). Applying the restricted strong convexity
condition, we have

YIT)? < L*(Bo + T) — L*(Bo) — VaL*(Bo) T < L*(B) — L*(Br) — VL*(Br) T + Op(1/+/n)
< MllBrll = MBI + S IE + Op(1/vi) < 1+ Op(p/v/m)
< DaEIT] + Op(p/ V).

This concludes that

N w

) 1 .
Al Ts [l — §>‘1||F8f

. 3
T < %\/5)\1

with probability approaching one. It remains to calculate the probability of the event

{ivaz e < 3}

By [2, Lemma 2], we have

nr nm
i=1

V”(éZ;[—yzwwEw:)]wz ) =3 ol DB = Op(r ),

=1

By the union bound and Bernstein’s inequality, we have
R — =y x| x:
71';( Yi Fq [

i=1

1
> =
21

o0

fn)

1
A
>21

T

1 .
> el v (B )]

_ 2
Fn) g 2pexp {C;r/\l}v
where C' is a large constant. Thus,

A —Cr\?
P(IVaL Br)l < ) 21— 2pe { G

Taking A; = /logp/r, we have the rate of convergence

B—B=0p 5, (vslogp/r).

This completes the proof. O
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Lemma A.3. Under Assumptions 3.1-3.5 and 3.10-3.12, as n — oo and r — o0,
in probability,

W —Wp= Op| 7, (\V/snlogq/r),

J-J= Op| 7, (Vsnlogq/r),

K =Op | 7,(\/snlogg/r),

51*(0F7 YF, W) = OP\]:TL (r_l/Q)a

where

s

j_ 08 Or W) L~ L g g T
J = —nrzﬂ:"‘/’(,@F%)(zi Wu)(z)",

86T i=1
~ 85*(01:,71:, o 1 " 1 T
K = T an* N(zk — Waul)(ul)".

Proof.  To show W — Wy = Op | 7 \/m), we observe that
4T 2 2
Ez Zi/Jﬂ x;)||zf — Wl +)\222||’w]|| Z 1¢ Ta)|z; — Weu?||
J

Let A = W — Wy. The above inequality can be written as

72 (B ;) (Aup)" Au;
nr

T

<2 Z (BT (= — W) TAu] + A

Trz

A2|[W 2,0
j=1 i=1 "1

where 5j = Ww; — wy; is the j-th column of A. Similar to the proof of (A.2), we have

%) =onte

2 a 1. * * K\ ok
Var<w Z; Fji/’(ﬁgwi )(z] — Wru; )uij

Applying Bernstein’s inequality, we have

Z 1,/},8 (27 — Wru)uj; >t‘fn>
nr

2 N * * * *
o Z ;?1/)(5;531‘)(21' = Wruj)puj;

i=1

max
1<j<q

< dg max max P
1<k<d 1<j<q

where C' > 0 is a large constant. Thus, taking ¢t = 4/log ¢/r, we have

max
1<j<q

2 . T A * * *Y\, K
o Z ;w(ﬂ%i )(z] — Wru; )uij
i=1 "1

with probability approaching one. Notice that

WZ w (2] — Wru]

conditional on F,

+/\22 [[we; -

j=1

nr
q r . A~

5 T (2" — Wew)u®, a2||We |21 — Ao |W
<D {II J”Han F*ib(ﬁ z;)(z; FUZ)UZJII}Jr 2[Well21 = A2 W21,

t Crt?
= n §2 - )
>\/g'}"> dqexp< 2d)

Jui;|| < /logg/r

1 < .
Wy = argming Zw(,ﬁgwi)ﬂzi —Wu|> and W, = argmmE( (BLx) ||z — Wul?).
w
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Based on the results of Koenker and Portnoy [15], we have Wy = Wy + Op(1/4/n). Let

Sp={j:wo; #0,j=1,...,q}.

We have
W21 > [[(Wr)s,ll21 — | As, 21 + | Ase |21 + Op(g/v/n).

Taking A2 = O(y/log q/r), we obtain

DN | —

E Z — (BT x)) (Au)) T Auf < SXof| Allzy + Aol |Wellza — Aol W20

w

< X2 As, |2 — *>\2||AS,§||2,1 + Op(q/V/n),

[\

which implies that there exists an o’ such that ||A5ﬁ||271 < || As, |21 and A € C'(Sp,a’). Noticing
that ||As, [l2,1 < /Shl|A||, we have

T

- 1 <1 - ~ 1 1 A
Al < — (BT (Au < — - T Aq
wlA| W;ﬁwﬁo ) S (Bl (Au)’ A
L=l TAus < 3. 1A L., a 3 A
< HZ — = (B ) (Au;)" Au; 2l As,ll21 = S A2llAsgllz e < SAev/snll AL
i=1 "1
This concludes that
IA] S VarAe,
and furthermore,
1A]2,1 < 4] As, 21 S suhe.

The proof of (A.5) is completed. Furthermore, the proof of (A.6)—(A.8) is similar to that of
(A.2)—(A.4) and thus we omit them to save space. O

Proof of Theorems 3.13 and 3.14.  The proof of Theorems 3.13 and 3.14 is similar to the proof of
Theorems 3.6 and 3.8, which differs in the convergence rate of 4, W,J and K. Thus, the proof of
Theorems 3.13 and 3.14 is direct by combining Lemmas A.2 and A.3 and Theorems 3.6 and 3.8. O

Proof of Theorem 4.1. It holds that

=2 Z tr{;[%‘ —P(Brx)P T (2 — WFui)®2J1}

[y — (BRI (2 — W)

i=1 "
1 < “ 1
= 5> m Y bR T (=~ Wew)|
=1 =1 "
1 (o 2
S = bt s - Wew )
=1

where the last step is from the Cauchy-Schwarz inequality and the equality in it holds if and only if
i o |yi — P(Bra) || T~ (2 — W)l O
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Proof of Theorem 4.2. It holds that
(V) = L Ztr{ D(BEe (e~ Wew)*? |
= mg Z D(Br )|z — Wiu|®
= Tng Z Z . P(Brz:)llz — W |?

2
W{Dyi—¢<ﬂ5xi>||zi—WFui||} ,
i=1

where the 1abt step is from the Cauchy-Schwarz inequality and the equality in it holds if and only if
|yz (/31:‘-731)|||z7 WF'IMH O

Proof of Theorems 4.5 and 4.6.  For convenience, we only prove the result for the A-optimality criterion
in the low-dimensional case. It is clear that Assumption 3.5 is satisfied for uniform subsampling. Together
with Assumptions 3.1-3.5, we can obtain the consistent results for ,5’ and W, which further indicates that
the estimated 7#{™V satisfies Assumption 3.5. Using the additional condition VT2/m1 — 0, we complete
the proof of Theorem 4.5 by applying the proof of Theorem 3.6 carefully. Notice that #8™V has the same
expression as 8™V except that B and W are replaced by ,é' and W, and the proof of Theorem 4.6 is
completed through the proof of Theorem 3.8 and the continuous mapping theory. O
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