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Abstract In this paper, we consider the unified optimal subsampling estimation and inference on the low-

dimensional parameter of main interest in the presence of the nuisance parameter for low/high-dimensional

generalized linear models (GLMs) with massive data. We first present a general subsampling decorrelated score

function to reduce the influence of the less accurate nuisance parameter estimation with the slow convergence

rate. The consistency and asymptotic normality of the resultant subsample estimator from a general decorrelated

score subsampling algorithm are established, and two optimal subsampling probabilities are derived under the

A- and L-optimality criteria to downsize the data volume and reduce the computational burden. The proposed

optimal subsampling probabilities provably improve the asymptotic efficiency of the subsampling schemes in the

low-dimensional GLMs and perform better than the uniform subsampling scheme in the high-dimensional GLMs.

A two-step algorithm is further proposed to implement, and the asymptotic properties of the corresponding

estimators are also given. Simulations show satisfactory performance of the proposed estimators, and two

applications to census income and Fashion-MNIST datasets also demonstrate its practical applicability.
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1 Introduction

With the rapid growth in modern science and technology, massive data have become ubiquitous in, such

as, sociology, biology, and physics. At the same time, the extraordinary amount of data also challenges

researchers in conducting data analysis since the traditional statistical methods are no longer applicable.

For example, the US census with large-sample data provides fundamental information for people to study

socio-economic issues (see [28]), but extracting useful information efficiently and quickly is notoriously

difficult. Let {(yi,xi), i = 1, . . . , n} be an independent and identically distributed (i.i.d.) sample from

(y,x), where y ∈ R is a univariate response and x ∈ Rp is the covariate. For generalized linear models

(GLMs) with a canonical link, it is assumed that the conditional distribution of y given x is

f(y | β,x) = h(y) exp{y(βTx)− ψ(βTx)},
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where h(t) and ψ(t) are specific functions, β is the unknown parameter and assumed to be in a compact

set. Several approaches have been investigated to extract useful information from large-scale data for the

GLMs (see, e.g., [3, 14, 23, 38]). Among these methods, the subsampling technique is an effective way of

taking random subsamples of small size from the massive data as a surrogate to downsize the data volume.

The key idea to subsampling is to find acceptable probabilities for each sample and draw observations

according to the chosen sampling scheme. Since the small subsample estimator will not be as accurate as

the full data estimator, it is crucial to design a good subsampling strategy. More specifically, Ma et al. [18]

proposed an efficient subsampling method for linear regression models based on normalized statistical

leverage scores. Wang et al. [28] developed an optimal subsampling procedure for logistic regression

based on A- and L-optimality criteria inspired by the optimal experimental design. Ma et al. [19]

conducted statistical inference of randomized numerical linear algebra algorithms to identify optimal

sampling probabilities. Ai et al. [3] and Wang and Ma [27] extended the idea of A- and L-optimality

criteria to GLMs and quantile regression, respectively. Zhang et al. [37] proposed optimal sampling under

measurement constraints for GLMs. Poisson subsampling (see, e.g., [1, 33]) and distributed subsampling

(see [36]) frameworks have been gradually investigated. More literature can be found in [32] and the

references therein.

Recently, massive data with high-dimensional covariates are now routinely encountered in many

applications. For example, in a Fashion-MNIST dataset (see [30]), there are 12,000 grayscale images

of fashion products in two classes, i.e., sneakers and ankle boots, with 10 × 10 pixels represented by

a covariate vector. One important goal is to distinguish them by training a classifier. However, most

of these existing subsampling studies are based on the low-dimensional GLM assumption, and they

cannot be applied in the high-dimensional case, i.e., 100-dimensional pixels, due to the singularity of the

subsampling design matrix. On the other hand, it is well known that these two different fashion products

can be classified by some important low-dimensional pixels, and the rest of them are extraneous pixels of

secondary importance. Realizing that not all of the effects of the covariates are our concerned parameters,

many authors are interested in the problem of statistical inference on the low-dimensional parameters for

both the low-dimensional and high-dimensional regression models (see, e.g., [5, 6, 20]). In this paper, we

consider the covariate effects containing two components, i.e., x ∈ Rp contains low-dimensional covariates

of main interest z ∈ Rd and probably extraneous covariates u ∈ Rq, and β can be decomposed into two

parts θ and γ, corresponding to z and u, respectively. Thus, the conditional distribution of y | x becomes

f(y | θ,γ, z,u) = h(y) exp{y(θTz + γTu)− ψ(θTz + γTu)}. (1.1)

Our main interest is to estimate and make inference on the preconceived low-dimensional parameter θ

in the presence of some nuisance parameter γ. Two scenarios that differ in whether q is small or large

(comparable to or even much larger than the subsample size) are considered. On the one hand, when q

is smaller than the subsample size, although the popular optimal subsampling criteria for β = (θT,γT)T

can still be implemented, it is worthwhile to point out that these existing subsampling probabilities

obtained by minimizing the total asymptotic variance of the targeted subsample estimator of β are no

longer the optimal subsampling probabilities for our concerned parameter θ, which can be verified from

our theory in Section 4 and simulation results in Section 5. On the other hand, when q is large or even

larger than the subsample size, the existing subsampling schemes fail. Comparatively, attention to the

subsampling strategies for the estimation and inference on the low-dimensional parameter for both the

low-dimensional and high-dimensional GLMs is limited.

To alleviate the adverse influence caused by nuisance parameters, Zhang and Zhang [34], van de Geer

et al. [25], Javanmard and Montanari [13] and Ning and Liu [20] proposed the decorrelated score function,

which is uncorrelated with the score function of the nuisance parameter γ, to conduct hypothesis tests or

construct confidence intervals for the preconceived low-dimensional parameter θ. Lately, Fang et al. [8]

applied this method to longitudinal data, Li et al. [17] studied the high-dimensional linear models with

the measurement error and Cheng et al. [5] extended the regularized projection score estimation method

to the high-dimensional quantile regression model. However, all these decorrelated score functions are

valid only when the underlying population is infinite. Hence, it is impossible to directly apply the existing
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decorrelated score method to the subsampling schemes within the finite population. Compared with Ning

and Liu [20], three difficulties described in Subsection 2.2 make both parameter estimation and statistical

inference for the subsampling schemes complicated and bring some technical challenges.

To our knowledge, this problem has not been previously investigated and is considerably more

complicated than the existing subsampling studies. Our main contributions are in two aspects.

(1) With the nuisance parameter γ, the first objective of our study is to propose a general subsampling

decorrelated score function to reduce the influence of the less accurate nuisance parameter estimation

with the slow convergence rate. To be specific, given general subsampling probabilities, we first propose

a new projection matrix in order to retain the asymptotic efficiency of our concerned parameter θ and

then construct the general subsampling decorrelated score function naturally. We show that our proposed

subsample estimator enjoys consistency and asymptotic normality and also achieves statistical efficiency

as the weighted maximum likelihood estimator (MLE) in [3]. In addition, the proposed estimator is less

sensitive to small perturbations of the nuisance parameter.

(2) To pursue more efficient subsampling procedures, two optimal subsampling probabilities, i.e.,

A- and L-optimality criteria, are proposed by minimizing the asymptotic mean squared error of the

resulting subsample estimator and the trace of the asymptotic covariance matrix for a linearly transformed

subsample estimator. Compared with [3], it can be seen that our proposed subsample estimators achieve

smaller asymptotic variance for our concerned parameter θ in the low-dimensional case. Furthermore,

our method is also suitable for the high-dimensional case, which significantly promotes the study of the

high-dimensional subsampling schemes. A two-step algorithm is proposed to approximate the optimal

subsampling probabilities in practice, and the asymptotic properties of the resultant estimators are also

constructed.

The rest of this paper is organized as follows. In Section 2, we first review the optimal subsampling

procedures for the low-dimensional GLMs proposed by Ai et al. [3] and then propose a general subsampling

decorrelated score function for both the low-dimensional and high-dimensional cases. In Section 3, we

establish theoretical results for the proposed subsample estimators. In Section 4, we derive two optimal

decorrelated score subsampling strategies based on the A- and L-optimality criteria and further give a

two-step algorithm in practice. In Section 5, we present numerical studies to illustrate our method. In

Section 6, we show two real data applications to validate our proposed method further. We conclude this

paper in Section 7.

2 Methodology

To facilitate the presentation, denote the full data matrix by Fn = (X,y), where X = (x1, . . . ,xn)
T

is the covariate matrix and y = (y1, . . . , yn)
T is the vector of responses. Denote by ψ̇(t) and ψ̈(t) the

first and second derivatives of ψ(t), respectively, by ∇Sf(x) the gradient of f(x) with respect to xS for

S ⊂ {1, . . . , p} and by Sc the complement of S. For a square matrix S, denote by tr(S) the trace of

S. For a vector v, denote by ∥v∥ the Euclidean norm and v⊗2 = vvT. Given a, b ∈ R, the maximum

and minimum of a and b are denoted by a ∨ b and a ∧ b, respectively. We first review the subsampling

algorithm for the GLMs in Subsection 2.1 and then propose a general subsampling decorrelated score

function based on a new projection matrix in Subsection 2.2.

2.1 Review of the subsampling algorithm for GLMs

Take a random subsample of size r using sampling with replacement from the full data {(yi,xi),

i = 1, . . . , n} according to the probabilities πi satisfying
∑n

i=1 πi = 1. Here, πi may depend on the

full data. Denote the subsample by {(y∗i ,x∗
i ), i = 1, . . . , r} with associated subsampling probabilities π∗

i .

Wang et al. [28] and Ai et al. [3] obtained the subsample estimator for β via minimizing the following

weighted loss function:

L∗(β) =
1

nr

r∑
i=1

1

π∗
i

[−y∗i (βTx∗
i ) + ψ(βTx∗

i )]. (2.1)
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Equivalently, they solved the following weighted score function:

∇βL
∗(β) =

1

nr

r∑
i=1

1

π∗
i

[−y∗i + ψ̇(βTx∗
i )]x

∗
i = 0. (2.2)

Denote the MLE of β with the full data by

βF = argmin
β

1

n

n∑
i=1

[−yi(βTxi) + ψ(βTxi)], (2.3)

which is well defined for both low-dimensional and high-dimensional cases since n ≫ p. Under some

conditions, [3, Theorem 2] concludes that the asymptotic covariance matrix of the resulting estimator of

β given Fn is

Σ = J −1ΣcJ−1,

where

J =
1

n

n∑
i=1

ψ̈(βT
Fxi)x

⊗2
i , Σc =

1

rn2

n∑
i=1

1

πi
[yi − ψ̇(βT

Fxi)]
2x⊗2

i .

Noticing that Σc depends on πi, they proposed to obtain two optimal subsampling probabilities by

minimizing tr(Σ) or tr(Σc) and put forward a two-step optimal subsampling algorithm. It is worth

pointing out that their optimal subsampling schemes can only be established when the dimension of β

is relatively smaller than the subsample size r. However, it remains challenging to develop subsampling

procedures for the high-dimensional β, where the dimension of β can be much larger than r. In this

case, the subsample estimator in (2.2) is not well defined such that a sparsity assumption imposed on the

unknown parameter β is necessary, i.e., most components of β are zero. Unfortunately, it is notoriously

difficult to derive a tractable limiting distribution and an asymptotic covariance matrix for the regularized

estimator due to the existence of nuisance parameter γ (see [7]).

Alternatively, we are interested in the problem of estimation and statistical inference on some

preconceived low-dimensional parameters in both the low-dimensional and high-dimensional regression

models. To be specific, we consider that β = (θT,γT)T corresponding to x = (zT,uT)T in (1.1) and

then the weighted loss function (2.1) can be rewritten as

L∗(θ,γ) =
1

nr

r∑
i=1

1

π∗
i

[−y∗i (θTz∗
i + γTu∗

i ) + ψ(θTz∗
i + γTu∗

i )].

Two scenarios are considered where q is small or large (comparable to or even much larger than r). To

address these problems, we next construct a new type of subsampling score function for θ and show that

the resulting subsample estimator of θ is asymptotically normal in both scenarios. The key strategy of

our proposed procedure is a subsampling decorrelated score function to handle the impact of both the

low-dimensional and high-dimensional nuisance parameters.

2.2 General subsampling decorrelated score function

In this subsection, we propose a novel general subsampling decorrelated score function. Here, general

subsampling means that we do not impose distributions or specify values of the subsampling probability.

Inspired by the decorrelated score method (see [20]), we are motivated to find a projection matrix WF ∈
Rd×q and then construct the subsampling decorrelated score function for θ such that the estimator solved

from this score function enjoys consistency and asymptotic normality. However, it is not easy to apply the

existing decorrelated score method to subsampling schemes directly based on the following three reasons.

(i) The population in the subsampling problem is finite, and all the theoretical results should be derived

based on Fn, which is different from the traditional infinite population results of Ning and Liu [20].
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(ii) A well-defined projection matrix for the finite population depends on the full data sample

{(yi,xi), i = 1, . . . , n} and model structure. Therefore, it should be pointed out that directly applying

the popular definition of the projection matrix

W ′
F = argmin

W
E(∥∇θL

∗(βF)−W∇γL
∗(βF)∥2 | Fn)

is unreasonable, since this type of projection matrix depends on the subsampling probability πi, i.e.,

W ′
F = E(∇θL

∗(βF)∇γL
∗(βF)

T | Fn)E(∇γL
∗(βF)∇γL

∗(βF)
T | Fn)

−1

=

{
1

rn2

n∑
i=1

1

πi
[−yi + ψ̇(βT

Fxi)]
2ziu

T
i

}{
1

rn2

n∑
i=1

1

πi
[−yi + ψ̇(βT

Fxi)]
2u⊗2

i

}−1

.

In this case, different subsampling probabilities πi will result in different projection matrices for the finite

population. Thus W ′
F cannot be used in the subsampling schemes.

(iii) There is no explicit quantification of the benefit of the decorrelated score in a subsampling setting,

and many important inference-related questions remain unanswered.

To proceed, we construct the following weighted subsampling decorrelated score function based on a

novel projection matrix:

S∗(θ,γF,WF) =∇θL
∗(θ,γF)−WF∇γL

∗(θ,γF) =
1

nr

r∑
i=1

1

π∗
i

[−y∗i + ψ̇(θTz∗
i + γT

Fu
∗
i )](z

∗
i −WFu

∗
i ),

where

WF = argmin
W

E

(
1

nr

r∑
i=1

1

π∗
i

ψ̈(βT
Fx

∗
i )∥z∗

i −Wu∗
i ∥2
∣∣∣∣Fn

)
= [E(∇2

θγL
∗(βF) | Fn)][E(∇2

γγL
∗(βF) | Fn)]

−1

=

[
1

n

n∑
i=1

ψ̈(βT
Fxi)ziu

T
i

][
1

n

n∑
i=1

ψ̈(βT
Fxi)u

⊗2
i

]−1

. (2.4)

It is clear that WF does not depend on πi and is different from W ′
F. The main reason is that in

the subsampling schemes E(∇2
ββL

∗(βF) | Fn) may not equal E(∇βL
∗(βF)∇βL

∗(βF)
T | Fn) anymore.

Furthermore, it should be pointed out that our proposed WF and S∗(θ,γF,WF) are suitable for both

the low-dimensional and high-dimensional models in the massive data (n≫ p).

Remark 2.1. An important feature of S∗(θ,γF,WF) is that it is essentially a weighted score function

and the corresponding weights are inverses of the subsampling probabilities, which coincides with classic

sampling techniques (see [11]).

Remark 2.2. It can be seen that WF is the weighted least square regression coefficient between z and

u. Once we have WF, it can be verified that WF satisfies the following orthogonality property:

E

(
∂

∂γ

{ r∑
i=1

1

π∗
i

[−y∗i + ψ̇(θT
Fz

∗
i + γTu∗

i )](z
∗
i −WFu

∗
i )

} ∣∣∣∣
γ=γF

∣∣∣∣Fn

)
= 0,

which enables the convergence rate of the subsample estimator of θ derived from the forthcoming

equation (2.8), not be affected by the initial estimator of γ. Compared with the projection matrix

W0 = [E(ψ̈(βT
0 x)zu

T)][E(ψ̈(βT
0 x)u

⊗2)]−1 based on the infinite population in [20], where β0 =

argminβ E[−y(βTx) + ψ(βTx)], it can be shown that WF is
√
n-consistent to W0 (see [15]). More

interpretations can also be referred to Li et al. [17], Han et al. [10] and Cheng et al. [5].

Although βF and WF in (2.3) and (2.4) are well defined, it is impractical to obtain βF and WF using

the entire data due to limited storage. Thus, we propose the following two kinds of subsample estimators



410 Gao J Z et al. Sci China Math February 2024 Vol. 67 No. 2

β̂ and Ŵ which differ in whether q is small or large. When q is small, β̂ is solved from (2.2) and Ŵ is

defined as

Ŵ =

[
1

nr

r∑
i=1

1

π∗
i

ψ̈(β̂Tx∗
i )z

∗
i (u

∗
i )

T

][
1

nr

r∑
i=1

1

π∗
i

ψ̈(β̂Tx∗
i )(u

∗
i )

⊗2

]−1

. (2.5)

When q is large, however, β and W cannot be estimated as above due to the singularity of the design

matrix. In order to build sparse models and identify relevant predictors to the response variable, we need

to modify the initial estimators β̂ and Ŵ . To be specific,

β̂ = argmin
β

1

nr

r∑
i=1

1

π∗
i

[−y∗i (βTx∗
i ) + ψ(βTx∗

i )] + λ1∥β∥1, (2.6)

Ŵ = argmin
W

1

nr

r∑
i=1

1

π∗
i

ψ̈(β̂Tx∗
i )∥z∗

i −Wu∗
i ∥2 + λ2

q∑
j=1

∥wj∥, (2.7)

where wj is the j-th column of W and λ1 and λ2 are regularized parameters. It should be pointed out

that (2.6) is a weighted loss function with the LASSO (least absolute shrinkage and selection operator)

penalty (see [24]) such that a consistent initial estimate of βF conditional on Fn can be obtained based

on the subsample, while (2.7) is a weighted group LASSO for the multi-response regression (see, e.g.,

[21, 29]). Finally, we propose to solve the decorrelated score subsample estimator of θ, namely θ̃, via

Ŝ∗(θ, γ̂, Ŵ ) = ∇θL
∗(θ, γ̂)− Ŵ∇γL

∗(θ, γ̂) = 0. (2.8)

We summarize the general decorrelated score subsampling procedure in Algorithm 1.

Algorithm 1 General decorrelated score subsampling algorithm

Step 1 (Sampling). Assign subsampling probabilities πi (i = 1, . . . , n) for all the data points and draw a random subsample

of size r (≪ n) with replacement. Denote the subsample by (y∗i ,x
∗
i ) with π∗

i , respectively, for i = 1, . . . , r.

Step 2 (Estimation). Solve the subsampling decorrelated score function (2.8) to get the estimate θ̃ based on the subsample,

where γ̂ and Ŵ are solved by (2.2) and (2.5) for the low-dimensional case or by (2.6) and (2.7) for the high-dimensional

case, respectively.

3 Asymptotic properties

In this section, we establish the asymptotic properties of θ̃ obtained by Algorithm 1. When q is fixed

and small, we need some regularity assumptions listed as follows.

Assumption 3.1. The covariate x is bounded by a constant almost surely, i.e., there exists a constant

L > 0 such that ∥x∥ 6 L almost surely.

Assumption 3.2. For all x ∈ [−L,L]p, βTx is an interior point of the parameter space

Θ =

{
θ ∈ R :

∫
h(t) exp(θt)µ(dt) <∞

}
with µ being the dominating measure.

Assumption 3.3. Assume β lies in a compact domain

ΛB = {β ∈ Rp : ∀x ∈ [−L,L]p,βTx ∈ Θ, ∥β∥ 6 B}

for some large constant B.

Assumption 3.4. As n→ ∞, the symmetric matrix

J = n−1
n∑

i=1

ψ̈(βT
Fxi)(zi −WFui)z

T
i

goes to a positive-definite matrix in probability.
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Assumption 3.5. It holds that max16i6n(nπi)
−1 = OP(1).

Assumptions 3.1–3.3 are commonly used in the literature (see, e.g., [4, 35]). Assumption 3.4 is used

to derive the asymptotic covariance matrix. Assumption 3.5 imposes a sufficient condition for the

subsampling probabilities. The following theorem presents the consistency of θ̃ to the full data MLE θF.

Theorem 3.6. Under Assumptions 3.1–3.5, as n → ∞ and r → ∞, θ̃ is consistent with the full data

MLE θF in the conditional probability given Fn. Moreover, the rate of convergence is r−1/2, i.e., with

probability approaching one, for any ϵ > 0, there exist finite ∆ϵ and rϵ such that P(∥θ̃− θF∥ > r−1/2∆ϵ |
Fn) < ϵ for all r > rϵ.

Remark 3.7. Although Theorem 3.6 presents the result that θ̃ − θF = OP | Fn
(r−1/2), it implies that

θ̃−θF = OP(r
−1/2) as well (see, e.g., [3,31]). Hence, Theorem 3.6 indicates that the proposed subsample

estimator is
√
r-consistent to the full data MLE under the unconditional distribution.

Besides consistency, we derive the asymptotic distribution of θ̃ conditional on Fn.

Theorem 3.8. Under the assumptions of Theorem 3.6, as n → ∞ and r → ∞, conditional on Fn in

probability,

V −1/2(θ̃ − θF) → N(0, I)

in distribution, where V = J−1VcJ
−1 and

J =
1

n

n∑
i=1

ψ̈(βT
Fxi)(zi −WFui)z

T
i ,Vc =

1

rn2

n∑
i=1

1

πi
[yi − ψ̇(βT

Fxi)]
2(zi −WFui)

⊗2. (3.1)

Remark 3.9. Theorem 3.8 establishes asymptotic normality of the proposed estimator θ̃ given Fn. The

definition of WF leads to a symmetric matrix J , and it is also known as the Schur complement in linear

algebra. It is worthwhile to point out that the asymptotic covariance matrix V is exactly the submatrix

of Σ corresponding to the subsample estimator of θ in [3]. In other words, in the low-dimensional settings

and given the same general subsampling probabilities, our proposed estimator θ̃ solved from (2.8) follows

the same asymptotic distribution as the general subsample estimator in [3] without the decorrelated

score, which indicates that the decorrelated score subsampling method is in favor of constructing any sub-

estimator of β and deriving the explicit asymptotic covariance matrix immediately. Otherwise, to seek the

asymptotic covariance matrix of a sub-estimator, one may have to calculate the whole Σ = J−1ΣcJ−1

and then find the corresponding submatrix, which is computationally expensive and may not be clearly

expressed in theory.

Next, we pursue the asymptotic properties of θ̃ obtained by Algorithm 1 when q is large and some

further assumptions are needed.

Assumption 3.10. Assume that

β0 = argmin
β

E[−y(βTx) + ψ(βTx)]

is sparse with sl = |Sl|, where Sl = {j : β0j ̸= 0, j = 1, . . . , p},

W0 = [E(ψ̈(βT
0 x)zu

T)][E(ψ̈(βT
0 x)uu

T)]−1

is sparse with sh = |Sh|, where Sh = {j : w0j ̸= 0, j = 1, . . . , q}, and (sl ∨ sh) log p/
√
r = o(1).

Assumption 3.11. For any set S ⊂ {1, . . . , p} and any vector v belonging to the cone

C(S, α) = {v ∈ Rp : ∥vSc∥1 6 α∥vS∥1},

it holds that

L∗(β0 + v)− L∗(β0)−∇βL
∗(β0)

Tv > γ∥v∥2,

where γ > 0 is a constant.



412 Gao J Z et al. Sci China Math February 2024 Vol. 67 No. 2

Assumption 3.12. For any set S ′ ⊂ {1, . . . , q} and any vector v′ belonging to the cone

C′(S ′, α′) = {v′ ∈ Rq : ∥v′
S′c∥1 6 α′∥v′

S′∥1},

it holds that

inf
0̸=v′∈C′(S′,α′)

(v′)T∇2
γγL

∗(β0)v
′

∥v′∥2
> κ > 0.

Assumption 3.10 emphasizes the sparsity for both β0 and W0, which is widely used in the literature

(see, e.g., [5, 20]). Assumption 3.11 is the restricted strong convexity condition (see [12, pp. 310–311]),

which requires the weighted loss function to be a strongly convex function when restricted to the cone

C(S, α). Assumption 3.12 is the restricted eigenvalue condition (see, e.g., [5, 8, 22]) for the submatrix

∇2
γγL

∗(β0) corresponding to the nuisance parameter and provides the necessary curvature within a cone.

Theorem 3.13. Under Assumptions 3.1–3.5 and 3.10–3.12, as n→ ∞ and r → ∞, θ̃ is consistent to

the full data MLE θF in the conditional probability given Fn. Moreover, the rate of convergence is r−1/2,

i.e., with probability approaching one, for any ϵ > 0, there exist finite ∆ϵ and rϵ such that

P(∥θ̃ − θF∥ > r−1/2∆ϵ | Fn) < ϵ

for all r > rϵ.

Theorem 3.14. Under the assumptions of Theorem 3.13, as n → ∞ and r → ∞, conditional on Fn

in probability,

V −1/2(θ̃ − θF) → N(0, I)

in distribution, where V is defined in Theorem 3.8.

Remark 3.15. Theorems 3.13 and 3.14 show that in the high-dimensional case θ̃ still has the same

consistency and asymptotic normality results as those in the low-dimensional case. Even the intermediate

estimators β̂ in (2.6) and Ŵ in (2.7) have lower convergence rates than (2.2) and (2.5), respectively.

However, it should be pointed out that the subsampling method of Ai et al. [3] fails in high-dimensional

settings.

4 Optimal decorrelated score subsampling strategies

In this section, we consider optimal subsampling strategies. In Subsection 4.1, we present two subsampling

probabilities based on A- and L-optimality criteria. In Subsection 4.2, we discuss the implementation

issue.

4.1 Optimal subsampling probabilities

Considering that the asymptotic covariance matrix in (3.1) depends on the subsampling probability, in

this subsection, we propose some efficient subsampling procedures by choosing the optimal subsampling

probability. Notice that the asymptotic mean squared error of θ̃ equals tr(V ), and then the A-optimality

criterion is proposed to pursue the smallest value of tr(V ). Besides, the L-optimality criterion is

considered further to minimize tr(Vc), which reduces the computing time without sacrificing much

estimation efficiency. Theorems 4.1 and 4.2 establish two optimal subsampling probabilities based on

the A- and L-optimality criteria, respectively.

Theorem 4.1 (A-optimality). If the subsampling probability is chosen such that

πdmV
i =

|yi − ψ̇(βT
Fxi)|∥J−1(zi −WFui)∥∑n

j=1 |yj − ψ̇(βT
Fxj)|∥J−1(zj −WFuj)∥

, i = 1, . . . , n,

then tr(V ) attains its minimum.
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Theorem 4.2 (L-optimality). If the subsampling probability is chosen such that

πdmVc
i =

|yi − ψ̇(βT
Fxi)|∥zi −WFui∥∑n

j=1 |yj − ψ̇(βT
Fxj)|∥zj −WFuj∥

, i = 1, . . . , n,

then tr(Vc) attains its minimum.

Remark 4.3. It is worthwhile to point out that the optimal probabilities proposed in [3] are based on

minimizing the asymptotic covariance matrix for the subsample estimator of β in the low-dimensional

case. However, minimizing tr(Σ) or tr(Σc) with respect to β is not equivalent to minimizing tr(V ) or

tr(Vc) with respect to θ. To clarify this explicitly, we take tr(V ) as an example. It can be shown that

tr(V ) =
1

rn2

n∑
j=1

πj

n∑
i=1

1

πi
[yi − ψ̇(βT

Fxi)]
2∥J−1(zi −WFui)∥2

> 1

rn2

{ n∑
i=1

|yi − ψ̇(βT
Fxi)|∥J−1(zi −WFui)∥

}2

,

where the last inequality follows from the Cauchy-Schwarz inequality. Notice that the equality holds if

and only if πi ∝ |yi−ψ̇(βT
Fxi)|∥J−1(zi−WFui)∥ and thus our proposed subsampling probabilities achieve

the smallest asymptotic variance for the subsample estimator of θ. Moreover, the optimal probabilities

are suitable for the low-dimensional case and the high-dimensional case, which can be seen from our

simulation results in Section 5.

Remark 4.4. Compared with πdmV
i , the L-optimality subsampling probabilities πdmVc

i do not depend

on J−1 and thus are easier to calculate in practice.

4.2 Two-step practical algorithm

The optimal subsampling probabilities πdmV
i and πdmVc

i cannot be directly implemented since they depend

on the MLE βF andWF based on the entire data. Thus, we propose a two-step algorithm. In the first step,

a subsample of size r1 is taken to get pilot estimates of βF and WF, which will be used to approximate

the optimal subsampling probability for drawing a more informative subsample of size r2 in the second

step. We still denote these two intermediate estimators by β̂ and Ŵ but the final estimator by θ̆. In

the high-dimensional case, (2.6) and (2.7) can be solved by R functions “glmnet” and “mvr” (see [5])

respectively in the R programming language. We present the following two-step algorithm in Algorithm

2 and Theorems 4.5 and 4.6 show the asymptotic properties of θ̆ obtained from Algorithm 2.

Algorithm 2 Optimal decorrelated score subsampling algorithm

Step 1. Run Algorithm 1 with the subsample size r1 to obtain the estimates β̂ and Ŵ using the uniform subsampling

probabilities. Replace βF and WF with β̂ and Ŵ , respectively, and then get the approximate optimal subsampling

probabilities corresponding to a chosen optimality criterion.

Step 2. Draw a subsample of size r2 using the approximate optimal subsampling probabilities calculated in Step 1 with

replacement. Obtain the estimate θ̆ based on the subsample of size r2 according to Algorithm 1.

Theorem 4.5. Under Assumptions 3.1–3.5 and
√
r2/r1 → 0 in the low-dimensional case or

Assumptions 3.1–3.5, 3.10–3.12 and
√
r2(sl ∨ sh) log p/r1 → 0 in the high-dimensional case, for the

estimator θ̆ obtained from Algorithm 2, as r1 → ∞, r2 → ∞ and n → ∞, with probability approaching

one, there exist finite ∆ϵ and rϵ such that P(∥θ̆−θF∥ > r
−1/2
2 ∆ϵ | Fn) < ϵ for any ϵ > 0 and all r2 > rϵ.

Theorem 4.6. Under the assumptions of Theorem 4.5, as r1 → ∞, r2 → ∞ and n→ ∞, conditional

on Fn,

V
−1/2
opt (θ̆ − θF) → N(0, I)

in distribution, where Vopt = J−1Vc,optJ
−1,

Vc,opt =
1

nr2

n∑
i=1

[yi − ψ̇(βT
Fxi)]

2(zi −WFui)
⊗2

|yi − ψ̇(βT
Fxi)|∥J−1(zi −WFui)∥

· 1
n

n∑
j=1

|yj − ψ̇(βT
Fxj)|∥J−1(zj −WFuj)∥
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for the estimator obtained from Algorithm 2 based on the estimated subsampling probabilities for πdmV
i ,

and

Vc,opt =
1

nr2

n∑
i=1

[yi − ψ̇(βT
Fxi)]

2(zi −WFui)
⊗2

|yi − ψ̇(βT
Fxi)|∥zi −WFui∥

· 1
n

n∑
j=1

|yj − ψ̇(βT
Fxj)|∥zj −WFuj∥

for the estimator obtained from Algorithm 2 based on the estimated subsampling probabilities for πdmVc
i .

In order to conduct statistical inference for the corresponding estimator, we adopt the method of

moments to estimate the covariance matrix of θ̆ using V̆ = J̆−1V̆cJ̆
−T, where

J̆ =
1

nr2

r2∑
i=1

1

π̂∗
i

ψ̈(θ̆Tz∗
i + γ̂Tu∗

i )(z
∗
i − Ŵu∗

i )z
∗T
i

and

V̆c =
1

n2r22

r2∑
i=1

1

(π̂∗
i )

2
[y∗i − ψ̇(θ̆Tz∗

i + γ̂Tu∗
i )]

2(z∗
i − Ŵu∗

i )
⊗2.

Here, we refer to π̂∗
i as the estimator of πdmV

i or πdmVc
i for the selected subsample {(y∗i ,x∗

i ), i = 1, . . . , r2}
in the second subsampling step.

5 Numerical studies

In this section, we conduct simulation studies to assess the finite sample performance of the proposed

estimators. In Subsections 5.1 and 5.2, we present simulation results for linear regression and logistic

regression models, respectively, based on both the low-dimensional and high-dimensional settings.

5.1 Linear regression

We generate data of size n = 105 from the following linear regression model:

yi = α+ θTzi + γTui + ϵi, i = 1, . . . , n,

where zi ∈ Rd, ui ∈ Rq−1 and (zT
i ,u

T
i )

T is generated from the multivariate normal distribution with

mean 0 and covariance matrix Σx whose (j, k)-th element σjk = 0.5|j−k| for 1 6 j, k 6 d+ q − 1.

In the low-dimensional case, we set d = 2, q = 8 and all the elements of (α,θT,γT)T to 1. The

random error ϵi is generated independently from one of the following four distributions respectively:

(i) the normal error: ϵi ∼ N(0, 22); (ii) the t error: ϵi ∼ t(3); (iii) the heteroscedastic normal error:

ϵi ∼ |zi1|N(0, 32); (iv) the exponential error: ϵi ∼ Exp(0.2). In the high-dimensional case, we set q = 700

and the additional elements of γ to 0. The random error ϵi is generated independently from one of the

following four distributions respectively: (i) the normal error: ϵi ∼ N(0, 1); (ii) the t error: ϵi ∼ t(3);

(iii) the heteroscedastic normal error: ϵi ∼ |zi1|N(0, 1); (iv) the exponential error: ϵi ∼ Exp(1). Set r1
equaling 400 and r2 equaling 400, 600, 800 and 1,000. We compare the following different subsampling

methods:

(a) Our proposed dmV and dmVc methods based on the decorrelated score subsampling probabilities

πdmV
i and πdmVc

i defined in Subsection 4.2.

(b) The mV and mVc subsampling methods proposed by Ai et al. [3] with the optimal probabilities

through minimizing tr(Σ) or tr(Σc), which are treated as benchmarks and only can be used in the

low-dimensional case.

(c) The uniform subsampling method (unif) and uniform decorrelated score subsampling method

(dunif), which solves the decorrelated score subsample estimator via

Ŝ∗(θ, γ̂, Ŵ ) = ∇θL
∗(θ, γ̂)− Ŵ∇γL

∗(θ, γ̂) = 0

from (2.8) with the uniform subsampling probabilities.
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To be specific, we evaluate the mean squared error (MSE) based on the true parameter, the average

of the empirical coverage probabilities ACP = d−1
∑d

j=1 CP(θj) and the average length (AL) of the 95%

confidence intervals for each element θj of θ. As in [27], in our simulations, we do not combine the two-

step subsamples to perform estimation since if we are willing to handle estimation under size r1+r2, then

we could have chosen a better subsample by setting the second step subsample size to r1 + r2 directly.

When q = 700, we compare our proposed dmV and dmVc methods with the unif (using the LASSO

penalty) and dunif methods. Since there is no asymptotic distribution expression for the unif method,

we use the percentile bootstrap to obtain the ACP and AL based on 200 replications.

The simulation results are listed in Tables 1 and 2 based on 500 replications. In the low-dimensional

case,

(1) MSEs: it can be seen that (i) the proposed dmV subsampling strategy always results in the

smallest MSEs while the uniform subsampling strategy always results in the largest MSEs among all the

scenarios; (ii) compared with the mV and mVc subsampling strategies proposed by Ai et al. [3], our

proposed dmV and dmVc strategies always yield smaller MSEs, respectively. This finding agrees with

our theoretical results that we aim to minimize the asymptotic MSEs for the subsample estimator of θ

or the linearly transformed subsample estimator of θ rather than the whole subsample estimator of β;

(iii) the proposed dmV subsampling strategy performs better than the dmVc method in most cases since

the dmV method aims to minimize the asymptotic MSE for the subsample estimator of θ; (iv) when the

subsample size increases, the MSEs of all the subsampling methods decrease.

Table 1 MSE (×10), ACP and AL for low-dimensional linear regression

r2 dmV dmVc mV mVc unif dmV dmVc mV mVc unif

(i) (ii)

400 MSE 0.169 0.196 0.212 0.234 0.306 0.083 0.099 0.114 0.127 0.235

ACP 0.947 0.940 0.948 0.944 0.944 0.953 0.947 0.944 0.936 0.944

AL 0.180 0.191 0.207 0.212 0.244 0.128 0.135 0.147 0.151 0.206

600 MSE 0.122 0.129 0.137 0.144 0.214 0.059 0.067 0.077 0.085 0.154

ACP 0.947 0.947 0.953 0.950 0.939 0.939 0.939 0.942 0.930 0.950

AL 0.147 0.155 0.167 0.171 0.199 0.104 0.110 0.119 0.122 0.168

800 MSE 0.099 0.105 0.107 0.107 0.159 0.047 0.053 0.055 0.061 0.123

ACP 0.928 0.936 0.950 0.961 0.945 0.940 0.933 0.946 0.948 0.950

AL 0.127 0.134 0.144 0.148 0.173 0.090 0.095 0.102 0.105 0.148

1,000 MSE 0.081 0.082 0.084 0.085 0.132 0.038 0.043 0.044 0.048 0.104

ACP 0.923 0.941 0.947 0.953 0.943 0.935 0.929 0.953 0.939 0.940

AL 0.114 0.120 0.129 0.132 0.154 0.080 0.085 0.091 0.093 0.133

(iii) (iv)

400 MSE 0.370 0.424 0.447 0.479 1.138 1.030 1.114 1.385 1.442 1.938

ACP 0.949 0.947 0.947 0.935 0.940 0.942 0.945 0.922 0.927 0.943

AL 0.265 0.282 0.295 0.303 0.458 0.417 0.441 0.479 0.489 0.608

600 MSE 0.251 0.291 0.302 0.303 0.775 0.694 0.752 0.832 0.894 1.294

ACP 0.944 0.944 0.933 0.949 0.940 0.927 0.934 0.934 0.944 0.951

AL 0.215 0.229 0.237 0.243 0.376 0.339 0.358 0.386 0.396 0.496

800 MSE 0.188 0.220 0.228 0.234 0.585 0.521 0.560 0.600 0.638 0.999

ACP 0.943 0.935 0.942 0.944 0.944 0.933 0.936 0.944 0.944 0.938

AL 0.186 0.197 0.204 0.209 0.327 0.293 0.310 0.333 0.341 0.429

1,000 MSE 0.158 0.178 0.170 0.191 0.460 0.415 0.463 0.461 0.493 0.771

ACP 0.934 0.936 0.950 0.938 0.944 0.924 0.925 0.944 0.944 0.939

AL 0.166 0.176 0.181 0.186 0.293 0.262 0.277 0.297 0.304 0.384
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Table 2 MSE (×10), ACP and AL for high-dimensional linear regression

r2 dmV dmVc dunif unif dmV dmVc dunif unif

(i) (ii)

400 MSE 0.044 0.050 0.080 0.151 0.104 0.110 0.227 0.431

ACP 0.930 0.936 0.932 0.763 0.927 0.938 0.954 0.753

AL 0.089 0.094 0.122 0.236 0.130 0.137 0.207 0.397

600 MSE 0.032 0.034 0.056 0.098 0.069 0.083 0.155 0.292

ACP 0.921 0.938 0.937 0.772 0.923 0.920 0.949 0.761

AL 0.073 0.077 0.099 0.192 0.106 0.112 0.169 0.322

800 MSE 0.026 0.026 0.044 0.072 0.057 0.063 0.113 0.213

ACP 0.910 0.934 0.932 0.783 0.913 0.916 0.956 0.767

AL 0.063 0.067 0.086 0.166 0.092 0.097 0.146 0.279

1,000 MSE 0.022 0.022 0.037 0.057 0.050 0.052 0.094 0.170

ACP 0.898 0.923 0.922 0.798 0.897 0.914 0.953 0.775

AL 0.056 0.059 0.077 0.148 0.082 0.087 0.132 0.250

(iii) (iv)

400 MSE 0.046 0.051 0.128 0.197 0.041 0.044 0.077 0.155

ACP 0.936 0.939 0.938 0.814 0.927 0.941 0.950 0.735

AL 0.089 0.095 0.153 0.285 0.083 0.088 0.122 0.235

600 MSE 0.031 0.034 0.093 0.135 0.028 0.031 0.051 0.099

ACP 0.922 0.928 0.933 0.843 0.920 0.935 0.948 0.765

AL 0.073 0.077 0.125 0.235 0.068 0.072 0.099 0.191

800 MSE 0.025 0.028 0.068 0.097 0.023 0.024 0.041 0.074

ACP 0.906 0.912 0.935 0.847 0.907 0.929 0.933 0.782

AL 0.063 0.067 0.109 0.205 0.059 0.062 0.086 0.165

1,000 MSE 0.020 0.023 0.057 0.078 0.019 0.020 0.035 0.059

ACP 0.909 0.901 0.926 0.860 0.898 0.923 0.919 0.783

AL 0.056 0.060 0.097 0.184 0.053 0.055 0.077 0.147

(2)ACPs: all the subsampling methods enjoy results close to 0.95, which coincides with the asymptotic

normal property and illustrates the reasonableness of the covariance matrix formula.

(3) ALs: we find that (i) the proposed dmV and dmVc methods enjoy much smaller lengths, compared

with other methods; (ii) when the subsample size increases, the ALs of all the subsampling methods

decrease.

In the high-dimensional case, our proposed dmV and dmVc methods still result in much smaller MSEs,

compared with the unif and dunif methods. Moreover, the comparison of the dunif and unif methods

also shows that the decorrelated score subsampling method has obvious advantages in estimation and

statistical inference. In terms of ALs and ACPs, our methods also perform well. However, it can be seen

that the unif method has low ACPs and large ALs due to the large biases.

5.2 Logistic regression

We generate data of size n = 105 from the following logistic regression model:

yi ∼ Bernoulli(pi), log

(
pi

1− pi

)
= α+ θTzi + γTui, i = 1, . . . , n,

where zi ∈ Rd and ui ∈ Rq−1. In the low-dimensional case, we set d = 2, q = 4 and all the elements of

(α,θT,γT)T to 0.5. The covariate (zT
i ,u

T
i )

T is generated independently from one of the following four

distributions respectively: (i) N(0,Σx/2) with σjk = 0.5|j−k|; (ii) N(0,Σx/2) with σjk = 0.5I(j ̸=k); (iii)

t3(0,Σx)/10 with σjk = 0.5|j−k|; (iv) a mixture of 0.2N(1,Σx/2) and 0.2N(−1,Σx/2) with σjk = 0.5|j−k|

for 1 6 j, k 6 d+q−1. In the high-dimensional case, we set q = 700 and the additional elements of γ to 0.
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The covariate is generated independently from one of the following four distributions respectively: (i)

N(0,Σx/2) with σjk = 0.5|j−k|; (ii) N(0,Σx/2) with σjk = ξ|j−k|, ξ ∼ U [0.1, 0.3]; (iii) t5(0,Σx)/2 with

σjk = 0.5|j−k|; (iv) a mixture of N(0.5,Σx) and N(−0.5,Σx) with σjk = 0.5|j−k| for 1 6 j, k 6 d+q−1.

Tables 3 and 4 show the results for the logistic regression. It can be seen that we have similar conclusions

to those in the linear regression model.

6 Two real data applications

In this section, we evaluate the performance of our proposed methods using two real datasets in the

low-dimensional and high-dimensional cases, respectively.

6.1 Census income dataset

We use the census income dataset (see [16]) from the UCI Machine Learning Repository (https://

archive.ics.uci.edu/ml/datasets/Census+Income) to illustrate our methods in the low-dimensional case.

There are n = 32,561 observations, and the response variable is whether a person makes over 50,000 dollars

per year. We conduct logistic regression to investigate the effects on income based on five covariates:

the age (x1), capital loss (x2), final weight, highest level of education in the numerical form, and hours

worked per week. The first two covariates are treated as the variables of interest. The subsample size

is set to r1 equaling 400 and r2 equaling 400, 600, 800 and 1,000. Table 5 presents the estimation and

inference results for the full data estimate and five candidates described in Section 5.

Table 3 MSE (×10), ACP and AL for low-dimensional logistic regression

r2 dmV dmVc mV mVc unif dmV dmVc mV mVc unif

(i) (ii)

400 MSE 0.497 0.542 0.606 0.686 0.857 0.582 0.638 0.716 0.759 0.961

ACP 0.961 0.960 0.951 0.943 0.950 0.948 0.947 0.941 0.946 0.957

AL 0.320 0.333 0.346 0.357 0.410 0.343 0.344 0.367 0.377 0.445

600 MSE 0.351 0.385 0.418 0.453 0.556 0.401 0.422 0.468 0.495 0.650

ACP 0.951 0.952 0.946 0.946 0.962 0.950 0.948 0.951 0.943 0.954

AL 0.260 0.271 0.280 0.289 0.334 0.278 0.280 0.297 0.305 0.361

800 MSE 0.266 0.306 0.313 0.334 0.407 0.300 0.322 0.346 0.367 0.481

ACP 0.948 0.938 0.950 0.949 0.956 0.947 0.942 0.944 0.943 0.947

AL 0.225 0.235 0.241 0.249 0.288 0.241 0.242 0.256 0.263 0.312

1,000 MSE 0.223 0.249 0.252 0.266 0.338 0.244 0.263 0.277 0.297 0.399

ACP 0.943 0.934 0.946 0.942 0.950 0.953 0.927 0.953 0.943 0.941

AL 0.201 0.210 0.216 0.223 0.258 0.215 0.216 0.229 0.235 0.279

(iii) (iv)

400 MSE 8.199 9.111 9.639 13.200 14.960 6.274 6.719 7.136 7.900 8.445

ACP 0.960 0.954 0.956 0.952 0.953 0.945 0.962 0.947 0.951 0.938

AL 1.240 1.301 1.330 1.580 1.662 1.080 1.163 1.157 1.224 1.290

600 MSE 5.568 5.982 6.346 8.817 9.569 4.065 4.549 4.975 5.535 5.627

ACP 0.943 0.954 0.941 0.943 0.943 0.945 0.959 0.929 0.938 0.947

AL 1.002 1.047 1.063 1.265 1.335 0.877 0.946 0.938 0.993 1.049

800 MSE 4.488 4.676 4.820 6.174 6.561 3.175 3.621 3.661 3.936 4.327

ACP 0.935 0.946 0.939 0.948 0.957 0.936 0.938 0.931 0.944 0.953

AL 0.866 0.903 0.912 1.082 1.144 0.758 0.817 0.809 0.857 0.905

1,000 MSE 3.718 3.875 3.928 4.854 5.204 2.520 2.837 2.997 3.106 3.421

ACP 0.933 0.943 0.929 0.950 0.951 0.939 0.939 0.932 0.945 0.951

AL 0.773 0.806 0.812 0.964 1.018 0.676 0.729 0.722 0.765 0.809
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Table 4 MSE (×10), ACP and AL for high-dimensional logistic regression

r2 dmV dmVc dunif unif dmV dmVc dunif unif

(i) (ii)

400 MSE 0.503 0.522 0.798 1.563 0.338 0.342 0.563 2.101

ACP 0.941 0.945 0.920 0.677 0.955 0.958 0.921 0.398

AL 0.300 0.315 0.363 0.553 0.267 0.269 0.308 0.432

600 MSE 0.340 0.345 0.558 1.150 0.214 0.249 0.354 1.472

ACP 0.933 0.947 0.929 0.692 0.951 0.944 0.922 0.446

AL 0.245 0.257 0.300 0.516 0.218 0.220 0.254 0.424

800 MSE 0.266 0.282 0.453 0.926 0.182 0.199 0.297 1.120

ACP 0.928 0.933 0.919 0.672 0.945 0.943 0.927 0.469

AL 0.212 0.223 0.261 0.473 0.189 0.191 0.221 0.396

1,000 MSE 0.221 0.233 0.360 0.741 0.149 0.163 0.243 0.912

ACP 0.928 0.932 0.918 0.693 0.949 0.941 0.923 0.469

AL 0.190 0.199 0.234 0.440 0.169 0.170 0.199 0.366

(iii) (iv)

400 MSE 0.629 0.753 1.063 2.003 0.274 0.320 0.546 1.157

ACP 0.929 0.917 0.918 0.628 0.924 0.915 0.923 0.610

AL 0.327 0.343 0.406 0.555 0.210 0.222 0.282 0.483

600 MSE 0.460 0.536 0.743 1.548 0.195 0.234 0.364 0.814

ACP 0.913 0.912 0.912 0.652 0.911 0.900 0.919 0.642

AL 0.267 0.279 0.336 0.532 0.171 0.181 0.233 0.431

800 MSE 0.367 0.430 0.531 1.178 0.165 0.187 0.279 0.634

ACP 0.903 0.899 0.923 0.684 0.895 0.891 0.914 0.636

AL 0.231 0.242 0.292 0.512 0.148 0.157 0.203 0.389

1,000 MSE 0.300 0.338 0.432 0.965 0.142 0.159 0.239 0.525

ACP 0.905 0.903 0.928 0.689 0.880 0.886 0.899 0.634

AL 0.206 0.216 0.263 0.483 0.133 0.140 0.182 0.353

In view of point estimates, it can be seen that our proposed estimates are closer to the full data

estimate in general compared with other subsampling estimates. When the subsample size increases,

the standard errors (SEs) of all the subsampling estimates decrease. For any fixed subsample size, our

proposed methods produce smaller SEs than other subsampling methods, showing that the proposed

asymptotic covariance matrix formula works well in practice. Moreover, the dmV subsampling estimates

perform better than the dmVc subsampling estimates in terms of the SEs, which coincides with our

theoretical results. All the estimates show that the effects of x1 and x2 are significantly positive at level

0.05 according to the 95% confidence intervals (CIs). The positive effect of x1 can be explained by the fact

that elder people may have rich experience and tend to have higher income. It is interesting that capital

loss has a positive effect on income. The possible reason is that people with high income are willing and

able to invest their money. The investigations on this real data example support our theoretical results

in the low-dimensional case.

6.2 Fashion-MNIST dataset

We further apply our methods to the high-dimensional Fashion-MNIST dataset (see [30]) for illustration.

There are n = 12,000 grayscale images of fashion products belonging to sneakers and ankle boots. The

response variable is whether an image belongs to the sneakers class, and the middle 10 × 10 = 100

pixels of the images are treated as a feature vector in [0, 1]100. In this classification problem, we are

interested in pixel267 (x1) and pixel268 (x2) since they have essential effects on distinguishing between

sneakers and ankle boots. Therefore, the effects of pixel267 (x1) and pixel268 (x2) are viewed as

parameters of interest, and the remaining ones are nuisance parameters. We conduct logistic regression
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Table 5 Estimation and inference results for the census income dataset

r2 full dmV dmVc mV mVc unif

400 x1 0.637 0.558 0.494 0.419 0.353 0.797

SE 0.016 0.096 0.105 0.114 0.130 0.149

CI [0.606, 0.669] [0.370, 0.745] [0.289, 0.700] [0.195, 0.643] [0.097, 0.609] [0.504, 1.090]

x2 0.234 0.361 0.252 0.394 0.451 0.438

SE 0.013 0.067 0.084 0.120 0.111 0.137

CI [0.209, 0.260] [0.229, 0.493] [0.088, 0.416] [0.159, 0.628] [0.234, 0.668] [0.170, 0.706]

600 x1 0.637 0.540 0.535 0.495 0.411 0.765

SE 0.016 0.080 0.091 0.097 0.103 0.118

CI [0.606, 0.669] [0.384, 0.696] [0.357, 0.713] [0.305, 0.684] [0.210, 0.613] [0.534, 0.996]

x2 0.234 0.364 0.229 0.301 0.387 0.368

SE 0.013 0.054 0.066 0.095 0.087 0.115

CI [0.209, 0.260] [0.259, 0.469] [0.099, 0.359] [0.115, 0.488] [0.216, 0.558] [0.142, 0.595]

800 x1 0.637 0.545 0.566 0.474 0.442 0.781

SE 0.016 0.065 0.069 0.084 0.089 0.102

CI [0.606, 0.669] [0.418, 0.671] [0.431, 0.700] [0.310, 0.639] [0.267, 0.617] [0.582, 0.980]

x2 0.234 0.342 0.230 0.299 0.357 0.358

SE 0.013 0.045 0.053 0.081 0.079 0.110

CI [0.209, 0.260] [0.253, 0.431] [0.125, 0.335] [0.141, 0.457] [0.202, 0.512] [0.143, 0.574]

1,000 x1 0.637 0.568 0.561 0.419 0.388 0.697

SE 0.016 0.057 0.061 0.077 0.087 0.087

CI [0.606, 0.669] [0.457, 0.679] [0.442, 0.681] [0.268, 0.570] [0.218, 0.558] [0.527, 0.868]

x2 0.234 0.320 0.245 0.348 0.355 0.229

SE 0.013 0.040 0.046 0.071 0.072 0.086

CI [0.209, 0.260] [0.241, 0.399] [0.154, 0.336] [0.209, 0.487] [0.214, 0.497] [0.060, 0.397]

and the subsample size is set to r1 equaling 200 and r2 equaling 400, 600, 800 and 1,000. Table 6

presents the estimation and inference results for the full data estimate and three candidates described

in Section 5. The SE of the unif method is constructed using the bootstrap with replication size 200.

For parameter point estimates, we find that our proposed estimates are closer to the full data approach

in most cases compared with the unif and dunif methods. When the subsample size increases, the total

SEs decrease for all the subsampling methods. For any fixed subsample size, our proposed two estimates

have smaller SEs than the unif and dunif estimates. Moreover, the dmV estimates yield smaller SEs

than the dmVc estimates since the dmV subsampling strategy aims to minimize the asymptotic MSE.

Our proposed two estimates show that the effects of x1 and x2 are significantly negative at level 0.05

according to the 95% CIs, consistent with those from the full data approach. However, the dunif method

indicates that x1 is insignificant when r2 = 600 because of the relatively large SE caused by the uniform

subsampling probabilities. The experiments on this real data example support our theoretical findings in

the high-dimensional case.

7 Conclusions

In this paper, we investigate the nonuniform decorrelated score subsampling methods of GLMs to

overcome the computation bottleneck and influence of the potential low convergence rate. The asymptotic

properties for the general decorrelated score subsample estimator are derived, and then two optimal

subsampling probabilities are proposed according to the A- and L-optimality criteria. Furthermore, we

develop a two-step algorithm to approximate the optimal decorrelated score subsampling strategies. We

fix the first step subsampling size r1 and vary the second step subsampling size r2 in our simulation

studies and real data applications. One may adopt an increasing r1 with respect to r2 to obtain
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Table 6 Estimation and inference results for the Fashion-MNIST dataset

r2 full dmV dmVc dunif unif

400 x1 −1.494 −1.444 −1.699 −1.927 −1.277

SE 0.220 0.410 0.557 0.878 0.741

CI [−1.925,−1.063] [−2.248,−0.640] [−2.790,−0.608] [−3.647,−0.207] [−2.850, 0.000]

x2 −1.290 −1.638 −1.536 −1.564 −1.472

SE 0.188 0.310 0.315 0.555 0.697

CI [−1.659,−0.922] [−2.246,−1.030] [−2.154,−0.919] [−2.653,−0.475] [−2.513, 0.000]

600 x1 −1.494 −1.363 −1.760 −1.473 −1.606

SE 0.220 0.352 0.469 0.847 0.755

CI [−1.925,−1.063] [−2.054,−0.672] [−2.679,−0.842] [−3.134, 0.187] [−2.898, 0.000]

x2 −1.290 −1.685 −1.765 −1.406 −1.108

SE 0.188 0.260 0.276 0.471 0.683

CI [−1.659,−0.922] [−2.195,−1.175] [−2.306,−1.223] [−2.328,−0.483] [−2.351, 0.000]

800 x1 −1.494 −1.502 −1.642 −1.487 −1.772

SE 0.220 0.308 0.387 0.745 0.751

CI [−1.925,−1.063] [−2.106,−0.898] [−2.400,−0.884] [−2.947,−0.028] [−3.346,−0.451]

x2 −1.290 −1.582 −1.732 −1.338 −1.283

SE 0.188 0.213 0.225 0.451 0.576

CI [−1.659,−0.922] [−1.999,−1.166] [−2.174,−1.290] [−2.221,−0.455] [−2.125, 0.000]

1,000 x1 −1.494 −1.315 −1.403 −1.484 −1.827

SE 0.220 0.267 0.323 0.673 0.649

CI [−1.925,−1.063] [−1.838,−0.792] [−2.037,−0.770] [−2.803,−0.165] [−2.975,−0.463]

x2 −1.290 −1.567 −1.772 −1.543 −1.367

SE 0.188 0.193 0.208 0.402 0.553

CI [−1.659,−0.922] [−1.945,−1.189] [−2.180,−1.365] [−2.331,−0.754] [−2.309,−0.240]

better MSEs and CPs. However, from the perspective of balancing statistical results and implementation

costs, we still suggest a relatively small and fixed r1 to obtain fair intermediate estimates in the first step.

Some interesting issues still merit further research. First, the proposed methods focus on the

subsampling with replacement and require that all the optimal probabilities be calculated at once.

However, due to the memory constraint, it is infeasible to implement if n is extremely large. To solve

this problem, we can apply the Poisson subsampling framework (see, e.g., [1,33]) to select the data points

one by one or block by block. Second, due to the storage or transmission burden, large-scale data are

usually scattered at multiple locations. In this case, a distributed subsampling method is more useful.

Third, it should be pointed out that the formulas in Theorems 4.1 and 4.2 are based on the i.i.d. random

errors. However, when the random errors are not i.i.d., the optimal probabilities are different. Fourth,

the proposed method has the potential to be extended to quantile regression and some other models.
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25 van de Geer S, Bühlmann P, Ritov Y, et al. On asymptotically optimal confidence regions and tests for high-dimensional

models. Ann Statist, 2014, 42: 1166–1202

26 van der Vaart A W. Asymptotic Statistics. Cambridge: Cambridge University Press, 1998

27 Wang H Y, Ma Y Y. Optimal subsampling for quantile regression in big data. Biometrika, 2021, 108: 99–112

28 Wang H Y, Zhu R, Ma P. Optimal subsampling for large sample logistic regression. J Amer Statist Assoc, 2018, 113:

829–844

29 Wang W G, Liang Y B, Xing E P. Block regularized Lasso for multivariate multi-response linear regression. J Mach

Learn Res, 2013, 14: 608–617

30 Xiao H, Rasul K, Vollgraf R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms.

arXiv:1708.07747, 2017

31 Xiong S F, Li G Y. Some results on the convergence of conditional distributions. Statist Probab Lett, 2008, 78:

3249–3253

32 Yao Y Q, Wang H Y. A review on optimal subsampling methods for massive datasets. J Data Sci, 2021, 19: 151–172

33 Yu J, Wang H Y, Ai M Y, et al. Optimal distributed subsampling for maximum quasi-likelihood estimators with

massive data. J Amer Statist Assoc, 2022, 117: 265–276

34 Zhang C-H, Zhang S S. Confidence intervals for low dimensional parameters in high dimensional linear models. J R

Stat Soc Ser B Stat Methodol, 2014, 76: 217–242

35 Zhang H M, Jia J Z. Elastic-net regularized high-dimensional negative binomial regression: Consistency and weak

signal detection. Statist Sinica, 2022, 32: 181–207

36 Zhang H X, Wang H Y. Distributed subdata selection for big data via sampling-based approach. Comput Statist Data

Anal, 2021, 153: 107072

37 Zhang T, Ning Y, Ruppert D. Optimal sampling for generalized linear models under measurement constraints. J



422 Gao J Z et al. Sci China Math February 2024 Vol. 67 No. 2

Comput Graph Stat, 2021, 30: 106–114

38 Zhang Y C, Duchi J C, Wainwright M J. Communication-efficient algorithms for statistical optimization. J Mach

Learn Res, 2013, 14: 3321–3363

Appendix A

Let ∥W ∥2,1 =
∑p

j=1 ∥wj∥ for any matrix W ∈ Rd×q, where wj is the j-th column of W , and ∥v∥ is the

standard ℓ2 norm for any vector v ∈ Rq. For an index set S ∈ {1, . . . , q} and a matrix W ∈ Rd×q, WS

denotes the submatrix of W containing columns of W with indices in S. For a vector v, vS denotes the

subvector of v containing elements of v with indices in S. The notation pn . qn means that there exists

some constant C > 0 such that pn 6 Cqn holds for sufficiently large n. For notational simplicity, we use

C to denote a generic constant, whose value may change from line to line.

Lemma A.1. Under Assumptions 3.1–3.5, as n→ ∞ and r → ∞, conditional on Fn in probability,

Ŵ −WF = OP | Fn
(r−1/2), (A.1)

Ĵ − J = OP | Fn
(r−1/2), (A.2)

K̂ = OP | Fn
(r−1/2), (A.3)

Ŝ∗(θF,γF, Ŵ ) = OP | Fn
(r−1/2), (A.4)

where

Ĵ =
∂Ŝ∗(θF,γF, Ŵ )
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Proof of Lemma A.1. (i) To show Ŵ −WF = OP | Fn
(r−1/2), define
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By Chebyshev’s inequality,

W̃1 −WF1 = OP | Fn
(r−1/2).

It can be calculated that
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where
...
ψ(t) is the third-order derivative of ψ(t) and β̄ lies between β̂ and βF. Since

...
ψ(t) is bound by a

constant and β̂ − βF = OP | Fn
(r−1/2) implied by [2, Theorem 1], we have

Ŵ1 − W̃1 = OP | Fn
(r−1/2)

by the Cauchy-Schwarz inequality and Chebyshev’s inequality. Thus,

Ŵ1 −WF1 = OP | Fn
(r−1/2).

Similarly, it can be proved that
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This completes the proof of (A.1).

(ii) To show Ĵ − J = OP | Fn
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By calculation,
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By Chebyshev’s inequality, we have
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we have

Ĵ − J = OP | Fn
(r−1/2).

Define
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Similar arguments lead to

K̂ = OP | Fn
(r−1/2).

This completes the proof of (A.2) and (A.3).

(iii) To show Ŝ∗(θF,γF, Ŵ ) = OP | Fn
(r−1/2), we first note that
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where the convergence rate in the second equality is implied by [2, Lemma 2]. By Chebyshev’s inequality,

we have

Ŝ∗(θF,γF,WF) = OP | Fn
(r−1/2).

Noting that

Ŝ∗(θF,γF, Ŵ )− Ŝ∗(θF,γF,WF) =
1

r

r∑
i=1

1

nπ∗
i

[−y∗i + ψ̇(βT
Fx

∗
i )](WF − Ŵ )u∗

i ,

E

(
1

r

r∑
i=1

1

nπ∗
i

[−y∗i + ψ̇(βT
Fx

∗
i )]u

∗
i

∣∣∣∣Fn

)
=

1

n

n∑
i=1

[−yi + ψ̇(βT
Fxi)]ui = 0,

var

(
1

r

r∑
i=1

1

nπ∗
i

[−y∗i + ψ̇(βT
Fx

∗
i )]u

∗
i

∣∣∣∣Fn

)
=

1

rn2

n∑
i=1

1

πi
[yi − ψ̇(βT

Fxi)]
2u⊗2

i = OP(r
−1),

by Chebyshev’s inequality, we have

1

r

r∑
i=1

1

nπ∗
i

[−y∗i + ψ̇(βT
Fx

∗
i )]u

∗
i = OP | Fn

(r−1/2),

and thus

Ŝ∗(θF,γF, Ŵ )− Ŝ∗(θF,γF,WF) = OP | Fn
(r−1).

Hence,

Ŝ∗(θF,γF, Ŵ ) = OP | Fn
(r−1/2).

This completes the proof of (A.4), and the proof of Lemma A.1 is completed.

Proof of Theorem 3.6. By the consistency of γ̂ and Ŵ , it can be shown that

Ŝ∗(θ, γ̂, Ŵ )−∇θL
∗(θ, γ̂) =

1

nr

r∑
i=1

1

π∗
i

[yi − ψ̇(θTz∗
i + γ̂Tu∗

i )]Ŵu∗
i = OP | Fn

(r−1/2).

Applying [26, Theorem 5.9], we obtain ∥θ̃ − θ̂∥ = oP | Fn
(1). By the proof of [2, Theorem 1], we have

∥θ̂ − θF∥ = oP | Fn
(1). Thus, it leads to ∥θ̃ − θF∥ = oP | Fn

(1). Using Taylor’s theorem for random

variables (see [9]), we have

0 = Ŝ∗
j (θ̃, γ̂, Ŵ ) = Ŝ∗

j (θF,γF, Ŵ ) +
∂Ŝ∗

j (θF,γF, Ŵ )

∂θT
(θ̃ − θF) +

∂Ŝ∗
j (θF,γF, Ŵ )

∂γT
(γ̂ − γF) +Rj ,
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where the subscript j denotes the j-th element of a vector, the j-th Lagrange remainder

Rj = (β̃ − βF)
T

∫ 1

0

∫ 1

0

∂2Ŝ∗
j (βF + uv(β̃ − βF), Ŵ )

∂β∂βT
vdudv(β̃ − βF)

and β̃ = (θ̃T, γ̂T)T. By the consistency of Ŵ and boundedness of
...
ψ(t), we have∥∥∥∥∂2Ŝ∗

j (β, Ŵ )

∂β∂βT

∥∥∥∥ =
1

nr

∥∥∥∥ r∑
i=1

...
ψ(βTx∗

i )

π∗
i

(xi − Ŵui)jx
∗
i (x

∗
i )

T

∥∥∥∥ = OP | Fn
(1)

for all β. Thus ∥∥∥∥ ∫ 1

0

∫ 1

0

∂2Ŝ∗
j (βF + uv(β̃ − βF), Ŵ )

∂β∂βT
vdudv

∥∥∥∥ = OP | Fn
(1).

Combining the above equations with the Taylor’s expansion, we have

θ̃ − θF = −
{
∂Ŝ∗(θF,γF, Ŵ )

∂θT

}−1{
Ŝ∗(θF,γF, Ŵ ) +

∂Ŝ∗(θF,γF, Ŵ )

∂γT
(γ̂ − γF) +R

}
= −Ĵ−1{Ŝ∗(θF,γF, Ŵ ) + K̂(γ̂ − γF) +OP | Fn

(∥β̃ − βF∥2)}

= OP | Fn
(r−1/2) + oP | Fn

(∥θ̃ − θF∥),

which implies that

θ̃ − θF = OP | Fn
(r−1/2).

This completes the proof of Theorem 3.6.

Proof of Theorem 3.8. Note that

Ŝ∗(θF,γF,WF) =
1

r

r∑
i=1

1

nπ∗
i

[−y∗i + ψ̇(βT
Fx

∗
i )](z

∗
i −WFu

∗
i ) =:

1

r

r∑
i=1

ηi.

It can be seen that given Fn, η1, . . . ,ηr are i.i.d. random variables with mean 0 and variance

var(η1 | Fn) =
1

n2

n∑
i=1

1

πi
[yi − ψ̇(βT

Fxi)]
2(zi −WFui)

⊗2 = OP | Fn
(1)

from [2, Lemma 2]. For some δ and every ϵ > 0,

r∑
i=1

E(∥r−1/2ηi∥2I(∥ηi∥ > r1/2ϵ) | Fn) 6
1

r1+δ/2ϵδ

r∑
i=1

E(∥ηi∥2+δI(∥ηi∥ > r1/2ϵ) | Fn)

6 1

r1+δ/2ϵδ

r∑
i=1

E(∥ηi∥2+δ | Fn)

6 1

rδ/2n2+δϵδ

n∑
i=1

1

π1+δ
i

[yi − ψ̇(βFxi)]
2+δ∥zi −WFui∥2+δ

6 1

rδ/2ϵδ

(
max
16i6n

∥zi −WFui∥2+δ

(nπi)1+δ

) n∑
i=1

[yi − ψ̇(βT
Fxi)]

2+δ

n
.

Then we obtain

r∑
i=1

E(∥r−1/2ηi∥2I(∥ηi∥ > r1/2ϵ) | Fn) 6
1

rδ/2ϵδ
OP(1)OP(1) = oP (1).

By the Lindeberg-Feller central limit theorem,

V −1/2
c Ŝ∗(θF,γF,WF) = r−1V −1/2

c

r∑
i=1

ηi → N(0, I)
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in distribution. Noticing that Vc = OP | Fn
(r−1) and Ŝ∗(θF,γF, Ŵ )− Ŝ∗(θF,γF,WF) = OP | Fn

(r−1), we

have

V −1/2
c Ŝ∗(θF,γF, Ŵ )− V −1/2

c Ŝ∗(θF,γF,WF) = OP | Fn
(r−1/2).

Applying Slutsky’s theorem, conditional on Fn,

V −1/2
c Ŝ∗(θF,γF, Ŵ ) → N(0, I)

in distribution. It can be seen that

Ĵ−1 − J−1 = −J−1(Ĵ − J)Ĵ−1 = OP | Fn
(r−1/2),V = J−1VcJ

−1 =
1

r
J−1(rVc)J

−1 = OP(r
−1).

Thus, we have

V −1/2(θ̃ − θF) = −V −1/2Ĵ−1Ŝ∗(θF,γF, Ŵ ) +OP | Fn
(r−1/2)

= −V −1/2J−1Ŝ∗(θF,γF, Ŵ )− V −1/2(Ĵ−1 − J−1)Ŝ∗(θF,γF, Ŵ ) +OP | Fn
(r−1/2)

= −V −1/2J−1V 1/2
c V −1/2

c Ŝ∗(θF,γF, Ŵ ) +OP | Fn
(r−1/2).

Using the fact that

(V −1/2J−1V 1/2
c )(V −1/2J−1V 1/2

c )T = I

and applying Slutsky’s theorem, we obtain

V −1/2(θ̃ − θF) → N(0, I)

in distribution. To further illustrate Remark 3.9, rewrite

J =
1

n

n∑
i=1

ψ̈(βT
Fxi)

(
z⊗2
i ziu

T
i

uiz
T
i u⊗2

i

)
:=

(
J 11 J 12

J 21 J 22

)
,

Σc =
1

rn2

n∑
i=1

1

πi
[yi − ψ̇(βT

Fxi)]
2

(
z⊗2
i ziu

T
i

uiz
T
i u⊗2

i

)
:=

(
Σc11 Σc12

Σc21 Σc22

)
.

Applying the inverse of the block matrix, we obtain

J−1 =

(
I O

−J−1
22 J 21 I

)(
(J 11 −J 12J −1

22 J 21)
−1 O

O J −1
22

)(
I −J 12J−1

22

O I

)
.

Then simple calculation gives the submatrix of J−1ΣcJ−1 corresponding to the estiamted θ, denoted

by J−1VcJ
−1, where

J = J 11 −J 12J −1
22 J 21,

Vc = Σc11 −Σc12J −1
22 J 21 −J 12J−1

22 Σc21 +J 12J −1
22 Σc22J−1

22 J 21.

Take WF = J 12J−1
22 and the proof is completed.

Lemma A.2. Under Assumptions 3.1–3.5 and 3.10–3.11, as n → ∞ and r → ∞, conditional on Fn

in probability,

β̂ − βF = OP | Fn
(
√
sl log p/r).

Proof. Define Γ̂ = β̂ − βF. By the definitions of L∗(β) in (2.1) and β̂ in (2.6), we have

L∗(β̂) + λ1∥β̂∥1 6 L∗(βF) + λ1∥βF∥1.

By the convexity of L∗(β), we obtain

L∗(β̂) > L∗(βF) +∇βL
∗(βF)

TΓ̂.



Gao J Z et al. Sci China Math February 2024 Vol. 67 No. 2 427

In the event {∥∇βL
∗(βF)∥∞ 6 λ1/2}, we have

|∇βL
∗(βF)

TΓ̂| 6 1

2
λ1∥Γ̂∥1.

Hence,

−1

2
∥Γ̂∥1 + ∥β̂∥1 6 ∥βF∥1.

Let

Sl = {j : β0j ̸= 0, j = 1, . . . , p}.

Using the fact that βF − β0 = OP(1/
√
n) (see [26]) and

∥βF + Γ̂∥1 = ∥(βF + Γ̂)Sl
∥1 + ∥(βF + Γ̂)Sc

l
∥1 > ∥βF∥1 − ∥Γ̂Sl

∥1 + ∥Γ̂Sc
l
∥1 +OP(p/

√
n),

we obtain

∥Γ̂Sc
l
∥1 6 3∥Γ̂Sl

∥1 +OP(p/
√
n),

which implies that there exists an α such that Γ̂ ∈ C(Sl, α). Applying the restricted strong convexity

condition, we have

γ∥Γ̂∥2 6 L∗(β0 + Γ̂)− L∗(β0)−∇βL
∗(β0)

TΓ̂ 6 L∗(β̂)− L∗(βF)−∇βL
∗(βF)

TΓ̂+OP(1/
√
n)

6 λ1∥βF∥1 − λ1∥β̂∥1 +
1

2
λ1∥Γ̂∥1 +OP(1/

√
n) 6 3

2
λ1∥Γ̂Sl

∥1 −
1

2
λ1∥Γ̂Sc

l
∥1 +OP(p/

√
n)

6 3

2
λ1

√
sl∥Γ̂∥+OP(p/

√
n).

This concludes that

∥Γ̂∥ 6 3

2γ

√
slλ1

with probability approaching one. It remains to calculate the probability of the event{
∥∇βL

∗(βF)∥∞ 6 λ1
2

}
.

By [2, Lemma 2], we have

var

(
1

nr

r∑
i=1

1

π∗
i

[−y∗i + ψ̇(βT
Fx

∗
i )]x

∗
i

∣∣∣∣Fn

)
=

1

nr

n∑
i=1

1

nπi
[−yi + ψ̇(βT

Fxi)]
2x⊗2

i = OP(r
−1).

By the union bound and Bernstein’s inequality, we have

P

(∥∥∥∥ 1

nr

r∑
i=1

1

π∗
i

[−y∗i + ψ̇(βT
Fx

∗
i )]x

∗
i

∥∥∥∥
∞
>

1

2
λ1

∣∣∣∣Fn

)

6
p∑

j=1

P

(∣∣∣∣ 1nr
r∑

i=1

1

π∗
i

[−y∗i + ψ̇(βT
Fx

∗
i )]x

∗
ij

∣∣∣∣ > 1

2
λ1

∣∣∣∣Fn

)
6 2p exp

{
−Crλ21

8

}
,

where C is a large constant. Thus,

P

(
∥∇βL

∗(βF)∥∞ 6 λ1
2

)
> 1− 2p exp

{
−Crλ21

8

}
.

Taking λ1 =
√
log p/r, we have the rate of convergence

β̂ − β = OP | Fn
(
√
sl log p/r).

This completes the proof.



428 Gao J Z et al. Sci China Math February 2024 Vol. 67 No. 2

Lemma A.3. Under Assumptions 3.1–3.5 and 3.10–3.12, as n → ∞ and r → ∞, conditional on Fn

in probability,

Ŵ −WF = OP | Fn
(
√
sh log q/r), (A.5)

Ĵ − J = OP | Fn
(
√
sh log q/r), (A.6)

K̂ = OP | Fn
(
√
sh log q/r), (A.7)

Ŝ∗(θF,γF, Ŵ ) = OP | Fn
(r−1/2), (A.8)

where

Ĵ =
∂Ŝ∗(θF,γF, Ŵ )

∂θT
=

1

nr

r∑
i=1

1

π∗
i

ψ̈(βT
Fx

∗
i )(z

∗
i − Ŵu∗

i )(z
∗
i )

T,

K̂ =
∂Ŝ∗(θF,γF, Ŵ )

∂γT
=

1

nr

r∑
i=1

1

π∗
i

ψ̈(βT
Fx

∗
i )(z

∗
i − Ŵu∗

i )(u
∗
i )

T.

Proof. To show Ŵ −WF = OP | Fn
(
√
sh log p/r), we observe that

1

nr

r∑
i=1

1

π∗
i

ψ̈(β̂Txi)∥z∗
i − Ŵu∗

i ∥2 + λ2

q∑
j=1

∥wj∥ 6 1

nr

r∑
i=1

1

π∗
i

ψ̈(β̂Txi)∥z∗
i −WFu

∗
i ∥2 + λ2

q∑
j=1

∥wFj∥.

Let ∆̂ = Ŵ −WF. The above inequality can be written as

1

nr

r∑
i=1

1

π∗
i

ψ̈(β̂Tx∗
i )(∆̂u∗

i )
T∆̂u∗

i

6 2

nr

r∑
i=1

1

π∗
i

ψ̈(β̂Tx∗
i )(z

∗
i −WFu

∗
i )

T∆̂u∗
i + λ2∥WF∥2,1 − λ2∥Ŵ ∥2,1

6
q∑

j=1

{
∥δ̂j∥∥

2

nr

r∑
i=1

1

π∗
i

ψ̈(β̂Tx∗
i )(z

∗
i −WFu

∗
i )u

∗
ij∥
}
+ λ2∥WF∥2,1 − λ2∥Ŵ ∥2,1,

where δ̂j = ŵj −wFj is the j-th column of ∆̂. Similar to the proof of (A.2), we have

var

(
2

nr

r∑
i=1

1

π∗
i

ψ̈(βT
Fx

∗
i )(z

∗
i −WFu

∗
i )u

∗
ij

∣∣∣∣Fn

)
= OP(r

−1).

Applying Bernstein’s inequality, we have

P

(
max
16j6q

∥∥∥∥ 2

nr

r∑
i=1

1

π∗
i

ψ̈(βT
Fx

∗
i )(z

∗
i −WFu

∗
i )u

∗
ij

∥∥∥∥ > t

∣∣∣∣Fn

)

6 dq max
16k6d

max
16j6q

P

(∣∣∣∣ 2nr
r∑

i=1

1

π∗
i

ψ̈(βT
Fx

∗
i )(z

∗
i −WFu

∗
i )ku

∗
ij

∣∣∣∣ > t√
d

∣∣∣∣Fn

)
6 2dq exp

(
− Crt2

2d

)
,

where C > 0 is a large constant. Thus, taking t =
√

log q/r, we have

max
16j6q

∥∥∥∥ 2

nr

r∑
i=1

1

π∗
i

ψ̈(β̂Tx∗
i )(z

∗
i −WFu

∗
i )u

∗
ij

∥∥∥∥ . max
16j6q

∥∥∥∥ 2

nr

r∑
i=1

1

π∗
i

ψ̈(βT
Fx

∗
i )(z

∗
i −WFu

∗
i )u

∗
ij

∥∥∥∥ 6
√
log q/r

with probability approaching one. Notice that

WF = argmin
W

1

n

n∑
i=1

ψ̈(βT
Fxi)∥zi −Wui∥2 and W0 = argmin

W
E(ψ̈(βT

0 x)∥z −Wu∥2).
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Based on the results of Koenker and Portnoy [15], we have WF = W0 +OP(1/
√
n). Let

Sh = {j : w0j ̸= 0, j = 1, . . . , q}.

We have

∥Ŵ ∥2,1 > ∥(WF)Sh
∥2,1 − ∥∆̂Sh

∥2,1 + ∥∆̂Sc
h
∥2,1 +OP(q/

√
n).

Taking λ2 = O(
√
log q/r), we obtain

1

nr

r∑
i=1

1

π∗
i

ψ̈(β̂Tx∗
i )(∆̂u∗

i )
T∆̂u∗

i 6 1

2
λ2∥∆̂∥2,1 + λ2∥WF∥2,1 − λ2∥Ŵ ∥2,1

6 3

2
λ2∥∆̂Sh

∥2,1 −
1

2
λ2∥∆̂Sc

h
∥2,1 +OP(q/

√
n),

which implies that there exists an α′ such that ∥∆̂Sc
h
∥2,1 6 α′∥∆̂Sh

∥2,1 and ∆̂ ∈ C′(Sh, α
′). Noticing

that ∥∆̂Sh
∥2,1 6 √

sh∥∆̂∥, we have

κ∥∆̂∥2 6 1

nr

r∑
i=1

1

π∗
i

ψ̈(βT
0 x

∗
i )(∆̂u∗

i )
T∆̂u∗

i . 1

nr

r∑
i=1

1

π∗
i

ψ̈(βT
Fx

∗
i )(∆̂u∗

i )
T∆̂u∗

i

6 1

nr

r∑
i=1

1

π∗
i

ψ̈(β̂Tx∗
i )(∆̂u∗

i )
T∆̂u∗

i . 3

2
λ2∥∆̂Sh

∥2,1 −
1

2
λ2∥∆̂Sc

h
∥2,1 6 3

2
λ2

√
sh∥∆̂∥.

This concludes that

∥∆̂∥ . √
shλ2,

and furthermore,

∥∆̂∥2,1 6 4∥∆̂Sh
∥2,1 . shλ2.

The proof of (A.5) is completed. Furthermore, the proof of (A.6)–(A.8) is similar to that of

(A.2)–(A.4) and thus we omit them to save space.

Proof of Theorems 3.13 and 3.14. The proof of Theorems 3.13 and 3.14 is similar to the proof of

Theorems 3.6 and 3.8, which differs in the convergence rate of γ̂, Ŵ , Ĵ and K̂. Thus, the proof of

Theorems 3.13 and 3.14 is direct by combining Lemmas A.2 and A.3 and Theorems 3.6 and 3.8.

Proof of Theorem 4.1. It holds that

tr(V ) = tr(J−1VcJ
−1)

=
1

rn2

n∑
i=1

tr

{
1

πi
[yi − ψ̇(βT

Fxi)]
2J−1(zi −WFui)

⊗2J−1

}

=
1

rn2

n∑
i=1

1

πi
[yi − ψ̇(βT

Fxi)]
2∥J−1(zi −WFui)∥2

=
1

rn2

n∑
j=1

πj

n∑
i=1

1

πi
[yi − ψ̇(βT

Fxi)]
2∥J−1(zi −WFui)∥2

> 1

rn2

{ n∑
i=1

|yi − ψ̇(βT
Fxi)|∥J−1(zi −WFui)∥

}2

,

where the last step is from the Cauchy-Schwarz inequality and the equality in it holds if and only if

πi ∝ |yi − ψ̇(βT
Fxi)|∥J−1(zi −WFui)∥.
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Proof of Theorem 4.2. It holds that

tr(Vc) =
1

rn2

n∑
i=1

tr

{
1

πi
[yi − ψ̇(βT

Fxi)]
2(zi −WFui)

⊗2

}

=
1

rn2

n∑
i=1

1

πi
[yi − ψ̇(βT

Fxi)]
2∥zi −WFui∥2

=
1

rn2

n∑
j=1

πj

n∑
i=1

1

πi
[yi − ψ̇(βT

Fxi)]
2∥zi −WFui∥2

> 1

rn2

{ n∑
i=1

|yi − ψ̇(βT
Fxi)|∥zi −WFui∥

}2

,

where the last step is from the Cauchy-Schwarz inequality and the equality in it holds if and only if

πi ∝ |yi − ψ̇(βT
Fxi)|∥zi −WFui∥.

Proof of Theorems 4.5 and 4.6. For convenience, we only prove the result for the A-optimality criterion

in the low-dimensional case. It is clear that Assumption 3.5 is satisfied for uniform subsampling. Together

with Assumptions 3.1–3.5, we can obtain the consistent results for β̂ and Ŵ , which further indicates that

the estimated π̂dmV
i satisfies Assumption 3.5. Using the additional condition

√
r2/r1 → 0, we complete

the proof of Theorem 4.5 by applying the proof of Theorem 3.6 carefully. Notice that π̂dmV
i has the same

expression as πdmV
i except that βF and WF are replaced by β̂ and Ŵ , and the proof of Theorem 4.6 is

completed through the proof of Theorem 3.8 and the continuous mapping theory.
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