※工艺技术 **Q品科学** 2009, Vol. 30, No. 10 127

玉米膳食纤维挤出功能化及粒度对其 物性的影响研究

张艳荣,卜佳莹,杨小盈,王大为* (吉林农业大学食品科学与工程学院,吉林 长春 130118)

摘 要:以玉米非淀粉组分玉米皮为原料制备玉米膳食纤维,并采用挤出技术进行功能化处理,研究不同粒度对功能化玉米膳食纤维吸脂力、膨胀性、持水力及结合水力的影响,筛选最佳挤出条件。结果表明:膳食纤维粒度 0.125mm 时,玉米纤维的综合物性最佳。当玉米膳食纤维加水量 110%、温度 180℃、喂料速度 10kg/h、1次挤出功能化处理时玉米膳食纤维膨胀性与吸脂力均最佳,可溶性成分含量最高,显示其可作为减肥功能食品基料。 关键词:玉米膳食纤维;粒度;挤出;功能化;物性

Extrusion Functionalization of Corn Dietary Fiber and Effects of Particle Size on Its Physical Properties

ZHANG Yan-rong, BU Jia-ying, YANG Xiao-ying, WANG Da-wei*
(College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China)

Abstract: Wet corn bran was washed with flowing water to remove residual starch and endosperm, centrifugalized, and dried. The dried corn bran was crushed and sieved into different particle sizes (60, 80, 100, 120 and 140 mesh) to prepare dietary fiber by removing fat, colored substances and odorous substances with supercritical carbon dioxide. Furthermore, the prepared corn dietary fiber was functionally treated by extrusion technology under 7 different combinations of water addition, extrusion temperature, feed rate and extrusion times. Effects of particle size of corn bran powder on oil retention capacity, expansion property, water holding capacity and water bonding capacity of prepared corn dietary fiber were investigated. The results showed that the comprehensive physical property of corn dietary fiber prepared from the corn bran powder with the particle size of 120 mesh (the particle size is 0.125 mm) was the best. When the extrusion was finished once under the conditions of water addition in corn dietary fiber 110%, temperature 180 °C, feed speed 10 kg/h, the oil retention capacity and expansion property of extruded dietary fiber were the best, and the amount of soluble component was the highest.

Key words:corn dietary fiber;particle size;extrusion;functionalization;physical properties中图分类号:TS210.4文献标识码:A文章编号:1002-6630(2009)10-0127-04

膳食纤维被称为第七大营养素,能鳌合消化道中的 胆固醇、重金属等有害杂质,减少致癌物的产生,促 进肠蠕动,预防结肠癌和便秘,同时在预防和改善冠状 动脉硬化造成的心脏病,调节糖尿病的血糖水平,以及 预防肥胖病和胆结石等方面,具有独特的保健作用[1]。 膳食纤维包括普通膳食纤维和高品质膳食纤维。普通膳 食纤维只是一种无能量添充剂,其食品加工学特性不理 想且生理活性较低,食入过多还会引起胃肠不适[2]。高 品质膳食纤维可溶性纤维含量高,持油力、膨胀性、 持水力等物性指标均高于普通膳食纤维,具有理想的加 工工艺性能及较高的生理活性,在维持人体健康方面具有独特的作用^[3]。玉米皮作为玉米非淀粉组分,其主要成分是玉米膳食纤维(corn dietary fiber, CDF),未经处理的玉米膳食纤维是一种普通膳食纤维。目前将普通膳食纤维改进为高品质膳食纤维的生产方法有酸碱法、酶法、高压蒸煮法、超细粉碎等^[4-6]。酸碱法处理时由于反应强烈几乎损失了全部的水溶性纤维,产品品质及生理活性均较低,而且环境污染严重;酶法作用条件温和,有利于最大限度地保留功效成分,但耗时长,设备投资大;普通膳食纤维超细粉碎虽然物料粒度极大降

收稿日期: 2009-02-05

基金项目: 国家"863"计划项目(2007AA10Z336)

作者简介: 张艳荣(1965-), 女, 教授, 博士, 主要从事粮油精深加工研究与开发。E-mail: xcpyfzx@163.com * 通讯作者: 王大为(1960-), 男, 教授, 博士, 主要从事功能食品研究与开发。E-mail: xcpyfzx@163.com

低,但其刚性未减弱,溶胀能力无明显增加。挤出处理不但明显提高可溶性纤维含量,增加膨胀力与持水力,而且不会引起膳食纤维过度降解或破坏^[2,7]。本实验以玉米非淀粉组分玉米皮为原料制备玉米膳食纤维,并采用挤出技术进行功能化处理,研究不同粒度对功能化玉米膳食纤维吸脂力、膨胀性、持水力及结合水力的影响,旨在为玉米皮纤维功能化处理及最大限度节能式粉碎操作提供科学依据。

1 材料与方法

1.1 材料与试剂

湿玉米皮 长春大成实业集团;玉米油 黄龙食品 工业有限公司。

无水乙醇(分析纯) 北京北化精细化学品有限责任 公司。

1.2 仪器与设备

JC-60型单螺杆挤出机 长春市盛达食品工业研究 所;WF-250B型万能粉碎机 中国上海蓝深制药机械有限公司;HA121-50-02型超临界CO2流体萃取装置 江苏南通华安超临界萃取有限公司;CT15RT型高速冷冻离心机 上海天美生化仪器设备工程有限公司;LXJ-II型离心沉淀机 上海医用分析仪器厂;101A-2E型数显式电热鼓风干燥箱 上海实验仪器厂。

1.3 方法

1.3.1 玉米皮预处理

将湿玉米皮用流动水充分漂洗,除去残余淀粉、小颗粒胚乳等非纤维成分及不可食杂质。所得湿玉米皮在转速为3000r/min 的条件下离心脱水5min,使其含水量低于26%。然后60℃以下热风烘干,使其含水量低于12%,粉碎,筛分出粒度分别为0.246mm(60目)、0.175mm(80目)、0.147mm(100目)、0.125mm(120目)及0.105mm(140目)的CDF粉备用。

1.3.2 CDF 超临界 CO2 流体萃取

采用超临界 CO_2 流体萃取技术对上述 CDF 进行脱脂、脱色及脱异味处理。萃取压力 25MPa,萃取温度 45 °C,萃取时间 90min, CO_2 流量 22L/h。超临界 CO_2 流体萃取后 CDF 脂肪含量低于 0.1%,色泽乳白,无异杂味。

1.3.3 挤出功能化实验设计

超临界 CO₂ 流体萃取纯化后 CDF 疏水性降低,增强挤出摩擦力,提高挤出剪切降解程度,适当挤出条件处理后得到挤出玉米膳食纤维(extrusion corn dietary fiber, ECDF),挤出物粉碎成粒度为 0.246~0.105mm 粉末,测定其持水力、膨胀力、吸水力,吸脂力,分析不同粒度对不同挤出条件功能化处理玉米膳食纤维物性的影响。具体挤出实验设计见表 1。因预实验中挤出温度 185℃时物料发生焦糊, 145℃时物料流变性差发生堵塞,因此最低挤出温度为 150℃、最高挤出温度为 180℃。

物料含水量越高,挤出时温降程度越大,不溶性纤维 断裂增溶效果越差,而且水分含量过大还会导致挤出机 螺杆打滑。水分含量减少有益于增强纤维挤出降解功能 化作用,但水分含量过少易导致温度急剧升高引起物料 在挤出腔内发生焦糊现象。喂料速度过大降温迅速,易 发生堵塞, 而喂料速度过小则易引起断流, 挤出操作 中断。因此为保证挤出过程中操作条件的稳定及顺利进 行,纤维加水量、喂料速度、挤出温度之间要协调。 增加纤维加水量,则应提高挤出温度,减小喂料速度, 保证物料在挤出腔内的停留时间, 使水分有机会充分汽 化,维持适当温度促进不溶性纤维降解,提高功能化 程度; 反之,减少纤维加水量,则应降低温度,增 加喂料速度。预实验中纤维加水量小于20%及大于 110%、喂料速度小于 10kg/h 及大于 40kg/h 时挤出操作 均无法正常进行。增加挤出次数一方面可使未降解功能 化的部分不溶性纤维有机会发生改性作用,另一方面可 能会导致已降解功能化的有益膳食纤维劣变,失去原有 功能,而这种劣变易发生于较干燥物料或高温长时间作 用条件, 因此本实验中低水分含量样及高温低喂料速度 操作条件样均采用1次挤出,其他条件采用2次挤出。

表 1 挤出功能化处理实验设计

Table 1 Design of extrusion test of corn dietary fiber

样品序号	纤维加水量(%)	挤出温度(℃) 喂料速度(kg/h)		挤出次数	
对照	_	-	-		
1	20	150	40	1	
2	35	155	35	2	
3	50	160	30	2	
4	65	165	25	2	
5	80	170	20	2	
6	95	175	15	1	
7	110	180	10	1	

1.3.4 CDF 膳食纤维物性测定方法

1.3.4.1 膳食纤维膨胀力测定

称取 0.10g 干燥样品,置于 50ml 量筒中,摇匀,记录干燥样品体积,加 10ml 蒸馏水,振荡混合均匀后在 25℃密封放置 24h,记录物料溶胀后的体积。按下式计算膨胀力,取 3 次检测结果的平均值作为最终结果[²⁻⁸]:

1.3.4.2 膳食纤维持水力测定

称取 2.00g 样品置于 100ml 烧杯中,加入 20℃蒸馏水 40ml,25℃密封浸泡 1h后,用定量滤纸沥干样品水分,迅速移入干燥平皿中称其湿重。按下式计算持水力,取 3 次检测结果的平均值作为最终结果^[2,8]:

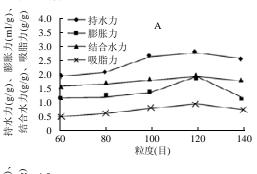
1.3.4.3 膳食纤维结合水力测定

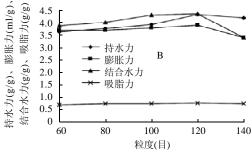
称取 1.00g 样品,置于干燥平皿中,加蒸馏水 20ml, 25℃密封保存 1h 后移置定量滤纸上沥干水分,湿样移入 10ml 刻度离心管中,在 4000r/min 条件下离心 5min,倾 除上层水分,剩余湿样称重。按下式计算结合水力, 取 3 次检测结果的平均值作为最终结果^[2,8]:

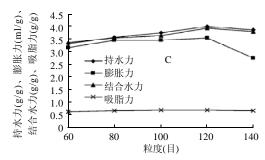
1.3.4.4 膳食纤维吸脂力测定

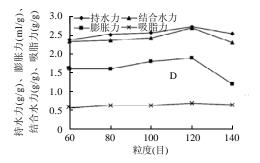
取1.00g膳食纤维置于离心管中,加入食用油9.00g,摇匀,36~37℃密封静置1h,4000r/min离心10min,去掉上层液态油脂,并用滤纸吸干试样所含游离油脂,得到吸脂样,记录其质量。按下式计算吸脂力,取3次检测结果的平均值作为最终结果^[9]:

1.3.4.5 玉米膳食纤维功能化特性的判定方法


膳食纤维的减肥调脂、降血糖等功能作用主要与其吸脂性、膨胀性等物性密切相关。本研究采用加权系数分析方法计算其综合物性指标,对最佳功能化条件进行筛选,根据吸脂力、膨胀性、持水力、结合水力对膳食纤维减肥调脂作用的影响程度设吸脂力系数为0.60,膨胀力系数为0.25,持水力系数为0.10,结合水力系数为0.05,系数总和为1(综合物性值=吸脂力×0.60+膨胀力×0.25+持水力×0.10+结合水力×0.05)。分别用各加权系数乘以各试样的吸脂力、膨胀力、持水力以及结合水力的测定值,所得乘积和作为玉米膳食纤维综合物性评定指标,取3次测定结果平均值作为最终结果,数值越大说明其功能化处理结果越理想,产品的品质越好。


1.3.5 可溶性多糖测定


玉米膳食纤维干燥样品按1:20 料水比(W/W)加水混合均匀,功率600W、时间3min 微波处理,离心分离,提取液真空浓缩至浓度大于80%,按3~4倍体积比加入无水乙醇,常温下密封放置5~6h,有白色沉淀生成,抽滤得沉淀物,脱醇、105℃烘至恒重。按下式计算玉米膳食纤维可溶性粗多糖含量:


2 结果与分析

2.1 不同粒度挤出功能化玉米膳食纤维物性测定结果 由图1可以看得出,不同处理条件下获得的功能化 玉米膳食纤维粒度为0.125mm 时吸脂力、膨胀力、持水 力、结合水力都为最大,粒度过大或过小各物性指标均有所下降。纤维粒度过大时,其堆积密度小,空间结构空隙较大[10-11],对油脂及水分的吸附力不足以抵抗离心力对油脂与水分的脱除作用,致使吸脂力和结合水力减小。另一方面,较大粒度的纤维更易呈现天然纤维的刚性,柔软度、膨松能力及溶胀能力均较差,纤维立体网状结构出现空洞,对脂肪及水分的包容能力下降,导致膨胀力、持水力降低。纤维粒度过小,其堆积过大,空间几何空隙过小,组织密实,油脂及水份的吸附量较少,致使吸脂力、膨胀力、持水力、结合水力均呈现下降趋势。另外粒度过小,膳食纤维网状结构被严重破坏,相互堆叠、搭桥构成立体网状交织结构能力降低,甚至消失[7.10-11]。

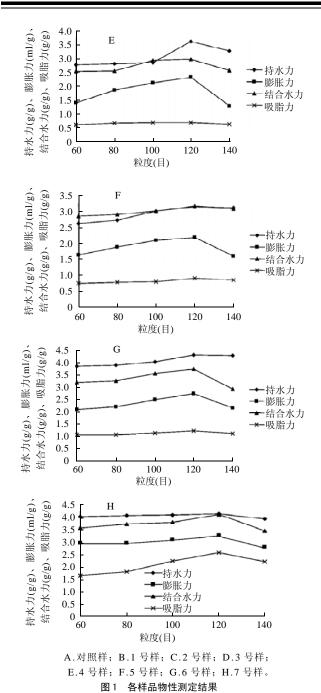


Fig.1 Effects of particle size of corn bran powder on oil retention capacity, expansion property, water holding capacity and water bonding capacity of extruded corn bran dietary fiber under different conditions

2.2 玉米膳食纤维最佳挤出功能化条件的确定

按 1.3.4.5 玉米膳食纤维功能化特性的判定方法考察 各试样的综合物性的优劣,由实验结果可知当粒度为 0.125mm(120 目)时各试样综合物性值最高(表 2)。

由表 2 可知, 7 号样综合物性最佳, 即当纤维加水量 110%、挤出温度 180℃、喂料速度 10kg/h、挤出 1 次时,挤出功能化处理效果最佳,综合物性值为对照样的 2.3 倍,吸脂力(7 号样吸脂力 2.52g/g)是对照样的 3.1 倍

(对照样吸脂力 0.81g/g),可溶性粗多糖含量 12.82%,几乎是对照样的 50 倍(对照样可溶性粗多糖含量 0.26%)。另外并非挤出处理次数越多,挤出物的物性越好。由实验结果可知,2 次挤出样的物性均劣于 1 次挤出样。这可能是因多次挤出使膳食纤维的空间网络结构受到破坏而出现空洞,对介质的融合能力降低,导致膳食纤维的吸脂性及溶胀能力下降[2,10],使其物性变劣。本研究所用单螺杆挤出机具有较强的剪切熔融能力,有利于纤维质物料的降解、增加可溶性膳食纤维的含量。但对高含量纤维的物料输送能力差,当物料含水量过低时易发生堵塞,导致挤出操作无法正常进行。增加物料含水量,提高物料高温下的柔韧度,有利于剪切熔融作用的发生,使刚性大分子物质降解,可溶性成分增加。

表 2 挤出样综合物性值(120目)

Table 2 Comprehensive physical property values of extruded corn bran dietary fiber samples under 7 different condition combinations listed in Table 1

项目	样品序号							
	对照样	1	2	3	4	5	6	7
综合物性值	1.26	2.12	1.94	1.30	1.50	1.57	2.04	2.90

3 结论

玉米纤维粒度对其吸脂力、膨胀性等功能特性具有重要影响,挤出功能化处理条件不同,粒度对纤维物性影响趋势相似。当粒度为0.125mm(120目)时,所有测试样的吸脂力、膨胀性、持水力、结合水力均处于最高值。

采用加权系数法计算各试样综合物性值,按玉米纤维加水量110%、挤出温度180℃、喂料速度10kg/h条件1次挤出处理后粉碎粒度为0.125mm时,产品吸脂力最大,综合物性最佳,可溶性粗多糖提取率约高于对照样50倍,可用于减肥调脂功能食品的生产基料。

参考文献:

- [1] 王林山, 王松江, 杨玉娟. 玉米膳食纤维酸奶的研制[J]. 粮食与食品 工业, 2006, 13(5): 32-35.
- [2] 张艳荣, 王大为, 祝威. 高品质玉米膳食纤维生产工艺的研究[J]. 食品科学, 2004, 25(9): 213-217.
- [3] 董文彦, 张东平. 三种膳食纤维降血脂、通便与减肥作用的比较研究[J]. 中国粮油学报, 2000(2): 40-44.
- [4] 石长波, 马永强, 韩春然. 木聚糖酶法制备水溶性玉米膳食纤维的工艺研究[J]. 食品科学, 2007, 28(4): 121-125.
- [5] 张钟, 董玉清, 徐丽红. 糯玉米皮渣中膳食纤维的提取、纯化及理 化性质研究[J]. 粮食与饲料工业, 2004(3): 20-22.
- [6] 胡叶碧, 王璋. 不同生物制备方法对玉米皮膳食纤维组成和功能特性的影响[J]. 食品科学, 2006, 27(10): 96-99.
- [7] 郑建仙. 低能量食品[M]. 北京: 中国轻工业出版社, 2001: 11-44.
- [8] 田学森, 王亚伟, 申晓琳. 影响麦麸膳食纤维得率的因素分析[J]. 食品工业科技, 2003(1): 77-79.
- [9] SANGNARK A, NOOMHORM A. Effect of particle sizes on functional properties of dietary fiber prepared from sugarcane bagasse[J]. Food Chemistry, 2003, 80: 221-225.
- [10] 张裕中, 王景. 食品挤出加工技术与应用[M]. 北京: 中国轻工业出版社, 1998: 4-65.
- [11] 高福成. 食品工程原理[M]. 北京: 中国轻工业出版社, 1998: 198-223.