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The ability to selectively introduce diverse functionality onto hydrocarbons is of substantial value in the
synthesis of both small molecules and pharmaceuticals. In this endeavour, as a photocatalyst- and metal-
free process, the electron donor–acceptor (EDA) strategy has not been well explored. Here we report an
approach to aliphatic carbon-hydrogen bond diversification through an EDA complex constituted by HCl
and SIV=O groups. As an efficient hydrogen atom transfer (HAT) reagent, chlorine radical can be produced
via a proton-coupled electron transfer process in this system. Based on this unusual path, a photo-
promoted versatile aliphatic C–H functionalization is developed without photo- and metal-catalysts,
including thiolation, arylation, alkynylation, and allylation. This conversion has concise and ambient
reaction conditions, good functional group tolerance, and substrate diversity, and provides an alternative
solution for the high value-added utilization of bulk light alkanes.

� 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

With the ever-increasing demand for the sustainable develop-
ment of chemical synthesis, direct functionalization of C(sp3)–H
bonds that can provide practical solutions to upgrade abundant
hydrocarbon feedstocks into valued chemicals has drawn signifi-
cant research attention [1–4]. In this context, compared to acti-
vated C(sp3)–H bonds adjacent to a heteroatom or p-system, the
selective modification of unactivated C(sp3)–H bonds presents a
remarkable challenge due to their high bond dissociation energies
(BDEs), low acidities, and unreactive molecular orbital profiles
(Fig. 1a) [5,6]. In response to these challenges, various valuable
technologies have been developed for the functionalization of
unactivated C(sp3)–H bonds. As an attractive strategy, the direct
hydrogen atom transfer (HAT) enabling diversification of aliphatic
C–H bonds has become an emerging trend through the common
generated alkyl radicals with different coupling modules (Fig. 1b)
[7–9]. Compared to the one-to-one mode, this strategy can achieve
the economical, shortcut, and diverse C(sp3)–H modification, and
the introduction of diverse functional groups can provide more
opportunities for drug screening without resorting to de novo
synthesis [4,9–14].
Recently, chlorine radical mediated HAT has become an attrac-
tive research hotspot in C(sp3)–H functionalization field [15–18].
Due to the abundance and inexpensive nature of chloride salts
and the high bond dissociation energy of HCl (BDE = 103 kcal/mol),
chlorine radical is naturally considered as an effective HAT
reagent [19]. Overcoming the high oxidation potentials
(Eox (Cl�/Cl�) = +2.03 V vs. saturated calomel electrode (SCE)), few
strategies have been reported for the efficient generation of Cl�
from Cl�, including the ligand-to-metal charge transfer (LMCT)
from metal chloride [15,20–27], the single electron transfer (SET)
by photoredox catalysis [28], and others [29–33] (Fig. 1c). How-
ever, as a photocatalyst- and metal-free process, the electron
donor–acceptor (EDA) strategy has not been well explored.

Based on the current research status, we found a novel
approach for generating the chlorine radical through an EDA com-
plex constituted by HCl and SIV=O groups of sulfinates (Fig. 1d). The
electron rich nature of the sulfinates usually renders it an electron
donor in photocatalyst-free conversions [34–36], but it has not
been well explored as an electron acceptor. Under visible light irra-
diation, a proton-coupled electron transfer (PCET) [37] process
could be achieved between chloride anions and SIV=O groups to
produce the chlorine radicals, which could effectively activate
the various C(sp3)–H bonds to give the corresponding alkyl radicals
owing to the strong hydrogen atom affinity. Herein, based on the
novel chlorine radical generation strategy, we report a photo-
promoted versatile aliphatic C–H functionalization of inert alkanes
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without photo- and metal-catalysts, including thiolation, arylation,
alkynylation, and allylation. This conversion has concise and ambi-
ent reaction conditions, good functional group tolerance, and sub-
strate diversity, and provides an alternative solution for high
value-added utilization of bulk light alkanes (mainly including
C2–C6) [38,39].

2. Materials and methods

2.1. General procedure for liquid alkanes with sodium arylsulfites

The sodium arylsulfite 2 (0.2 mmol) was added to a test tube
(10 mL) charged with a magnetic stir bar. The tube was purged
with Ar for four times, followed by addition of 1 (2.0 mmol), HCl
(conc.) (84.0 lL, 1.0 mmol), and MeCN (2.0 mL). The reaction mix-
ture was stirred with 6 W LED lamp (420–430 nm) irradiation at
38–40 �C for 24 h. Then the reaction solution was diluted with
ethyl acetate, filtered, concentrated in vacuo, and purified by flash
chromatography on silica gel to obtain product 3.

2.2. General procedure for liquid alkanes with sodium sulfites

The sodium sulfite (25.2 mg, 0.2 mmol) was added to a test tube
(10 mL) charged with a magnetic stir bar. The tube was purged
with Ar for four times, followed by addition of 1 (2.0 mmol), HCl
(conc.) (67.2 lL, 0.8 mmol), MeCN (1.5 mL), and ethyl acetate
(0.5 mL). The reaction mixture was stirred with 6 W LED lamp
(420–430 nm) irradiation at 38–40 �C for 24 h. Then the reaction
solution was diluted with ethyl acetate, filtered, concentrated in
vacuo, and purified by flash chromatography on silica gel to obtain
product 4.

2.3. General procedure for liquid alkanes with heteroarenes

The heteroarene 11 (0.2 mmol) was added to a test tube (10 mL)
charged with a magnetic stir bar. The tube was purged with Ar for
four times, followed by addition of 1 (2.0 mmol), dimethyl sulfox-
ide (DMSO, 17.0 lL, 0.24 mmol), HCl (conc.) (50.4 lL, 0.6 mmol),
and MeCN (2.0 mL). The reaction mixture was stirred with 6 W
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LED lamp (420–430 nm) irradiation at 38–40 �C for 24 h. Then
the Na2CO3 (100 mg) was added and the reaction solution was
diluted with ethyl acetate, stirred for 5 min, filtered, concentrated
in vacuo, and purified by flash chromatography on silica gel to
obtain product 12.

2.4. General procedure for allylation

The allyl sulfone 13 (0.1 mmol) was added to a test tube (10 mL)
charged with a magnetic stir bar. The tube was purged with Ar for
four times, followed by addition of 1 (2.0 mmol), DMSO (21.3 lL,
0.3 mmol), HCl (conc.) (33.6 lL, 0.4 mmol), and MeCN (2.0 mL).
The reaction mixture was stirred with 6 W LED lamp
(420–430 nm) irradiation at 38–40 �C for 24 h. Then the Na2CO3

(50 mg) was added, and the reaction solution was diluted with
ethyl acetate, stirred for 5 min, filtered, concentrated in vacuo,
and purified by flash chromatography on silica gel to obtain pro-
duct 15.

2.5. General procedure for alkynylation

The alkynyl sulfone 14 (0.1 mmol) was added to a test tube
(10 mL) charged with a magnetic stir bar. The tube was purged
with Ar for four times, followed by addition of 1 (2.0 mmol), DMSO
(14.2 lL, 0.2 mmol), HCl (conc.) (4.2 lL, 0.05 mmol), and MeCN
(2.0 mL). The reaction mixture was stirred with 6 W LED lamp
(420–430 nm) irradiation at 38–40 �C for 24 h. Then the Na2CO3

(50 mg) was added, and the reaction solution was diluted with
ethyl acetate, stirred for 5 min, filtered, concentrated in vacuo,
and purified by flash chromatography on silica gel to obtain
product 16.

3. Results and discussion

In our initial evaluation, we began our investigation with
sodium benzenesulfinate 2a and cyclohexane 1a as the template
substrates. After screening, we found that the C–H thio product
3a was formed in 81% isolated yield only using hydrochloric acid
as the additive under the optimized conditions. Changing the sol-
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vents to ethyl acetate or acetone decreased the efficiency of this
transformation (Table 1, entries 2–3). Decreasing the concentration
of hydrochloric acid greatly reduced the yield to 25% (Table 1, entry
4). The HCl was essential to the conversion, and no thioether prod-
ucts were detected with other Brønsted acids (H2SO4 (conc.), triflu-
oroacetic acid (TFA), p-toluenesulfonic acid (p-TsOH), AcOH, and
HBr) (Table 1, entry 5). Increasing or reducing the wavelength of
the lamp had no booster effect on yields (Table 1, entries 6 and
7). Adding photocatalysts, such as fac-[Ir(ppy)3], Ir[dF(CF3)ppy]2-
(bpy)PF6, Ru(bpy)3(PF6)2, and 4CzIPN, seriously inhibited this pro-
cess (Table 1, entry 8). Thioether 3a was obtained in moderate
yield under air atmosphere suggesting that the reaction was not
sensitive to oxygen (Table 1, entry 9). The control experiments
revealed that both hydrochloric acid and light were essential for
this protocol (Table 1, entry 10).

After obtaining the optimal reaction conditions, we approached
the substrate scope to different C(sp3)–H species using sodium
benzenesulfinate 2a as the coupling partner. As shown in Fig. 2, a
diverse array of organic frameworks were proved to be competent
coupling partners for the C(sp3)–H thiolation protocol [40,41].
Cycloalkanes with different ring sizes readily underwent the C–H
thiolation to give the products in moderate to good yields (3a–
3f). Linear aliphatic systems gave the corresponding coupling
products with a greater-than-statistical preference observed at
the large steric secondary carbon positions (3g–3i). The regioselec-
tivity is similar to regular reports on the chlorine radical dominat-
ing C(sp3)–H conversion [22,42]. The active allylic C–H bonds could
be also thiolated in good yields (3j). For linear alkanes bearing
chlorine or nitrile, this conversion showed good regioselectivity
at the secondary carbon positions far away from the substituent
groups (3k–3l, 57%–73% selectivity). As an uncommon substrate,
tetraethylsilane could be selectively converted to a single thio pro-
duct 3m at the end site in 35% yield. It was important to note that
this transformation was not limited to the unactivated C(sp3)–H
systems. The 1,4-dioxane with activated C–H bonds could be
Table 1
(Color online) Optimization of the reaction conditions.

Entry Deviation from standard con

1 None
2 AcOEt instead of CH3CN
3 Acetone instead of CH3CN
4 HCl (6 N) instead of HCl (con
5 H2SO4, TFA, p-TsOH, AcOH, o
6 460–470 nm
7 400–410 nm
8d PC 1, PC 2, PC 3, or PC 4 adde
9 Air
10 No light or no HCl
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a Reactions were carried out with 1a (2.0 mmol), 2a (0.2 mmol), HCl (conc.) (1.0 mm
430 nm) irradiation for 24 h under argon atmosphere.

b Yields determined by 1H NMR using dibromomethane as an external standard.
c Isolated yield.
d With 6 W LED lamp (460–470 nm).
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smoothly converted into the desired product with a good yield
(3n). Moreover, bridged alkane norbornane gave the exo-product
3o with high stereoselectivity [43,44].

Gaseous alkanes, as abundant and cheap bulk industrial raw
materials, are generally used as a source of energy for heating,
propulsion, or electricity generation. In addition, its high value-
added conversion has always been the research focus in science
and industry [45,46]. The key challenges are related to the high
bond dissociation energies and the high requirements for reaction
devices. Encouragingly, using typical gaseous alkanes, such as pro-
pane (BDE = 99–101 kcal/mol) and ethane (BDE = 101 kcal/mol),
the desired products were successfully generated in moderate
yields (3p–3u) (Fig. 2). Unfortunately, we have carried out a series
of explorations on methane with the higher bond energy (BDE =
105 kcal/mol), but no satisfactory results were obtained.

Subsequently, we focused on the scope of arylsulfinate coupling
partners (Fig. 2). A broad range of alkyl and phenyl phenylsulfi-
nates provided the thioether products smoothly (3v–3x). Then,
substrates bearing halogens in different positions underwent the
thiolation as well, especially the iodine group could be retained
under light conditions (3y–3ad) [47]. With different electron-
donating groups, such as methoxy, benzyloxy, trifluoromethoxy,
and acetamido, the desired products could be successfully gener-
ated in moderate to good yields (3ae–3ah). Of course, the
electron-deficient phenylsulfinates containing trifluoromethyl,
ester, cyano, or sulfone afforded the corresponding thioethers
smoothly as well (3ai–3al). Moreover, the polysubstituted phenyl-
sulfinates were effective substrates (3am–3ar). Furthermore, sulfi-
nates substituted with naphthalene and thiophene provided the
sulfide products with moderate yields (3as–3at).

Interestingly, when we tried this conversion using the inorganic
sodium sulfites, the S-alkyl alkanesulfonothiolates were obtained
as the major products through activating the strong aliphatic
C–H bonds (Fig. 2). A wide range of cyclic alkanes successfully pro-
vided the desired products in moderate to good yields (4a–4e).
ditionsa Yield (%)b

85(81)c
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ol), and CH3CN (2.0 mL) at the temperature of 38–40 �C with 6 W LED lamp (420–
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Fig. 2. (Color online) Direct thiolation of strong aliphatic C–H bonds. a Condition 1: 1a (2.0 mmol), sodium arlysulfinate (0.2 mmol), HCl (conc.) (1.0 mmol), and CH3CN
(2.0 mL) at the temperature of 38–40 �C with 6 W LED lamp (420–430 nm) irradiation for 24 h under argon atmosphere. b Condition 2: 1a (2.0 mmol), sodium sulfite
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This protocol established a connecting channel between the inor-
ganic and organic world and achieved the efficient conversion from
inexpensive inorganic sulfur sources to high-value-added organic
sulfur chemicals [48].

In order to understand this transformation more deeply, a series
of mechanistic experiments were conducted (See Section 5 in
Supplementary materials (online) for details). By monitoring the
conversion, other thio byproducts 5 and 6 were detected in addi-
tion to the thioether 3a, and its content increased firstly, then
decreased with the extension of reaction times (Fig. 3a). So, we
speculated that the sulfoxide 5 and thiosulfonate 6 might be the
important reaction intermediates. Then, we used 5 and 6 instead
of the sodium phenylsulfite 2a to react under standard conditions,
and obtained 3a in different yields (Fig. 3b). Meanwhile, we found
that the thiosulfonate 6 easily decomposed under light conditions
[49], and few thioethers 3a were produced from the sulfoxide 5
without light [50]. These results showed that light could signifi-
cantly promote the conversion. In addition, the chlorocyclohexane
7 was also detected by gas chromatography-mass spectrometer
(GC–MS) in the template reaction [17,18]. Subsequently, using
the byproduct 7 instead of cyclohexane 1a under the standard con-
ditions failed to provide thioether 3a. Based on these results, we
speculated that chlorocyclohexane 7 was only a byproduct rather
than a reaction intermediate, and the cyclohexane might play dual
roles of reducing agents and coupling substrates. Furthermore,
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hydrogen chloride was demonstrated to play an essential role in
this system through the control assays.

Adding 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) to the
reaction mixtures, the thiolation was significantly inhibited, and
the binding products 8 by 1a with TEMPO were produced in high
yields, indicating the existence of cyclohexyl radicals (Fig. 3c).
Then, adding 1,1-diphenylethylene to this system, the anti-
Markovnikov’s chlorinated product 9 was detected, suggesting
the generation of chlorine radicals, which was also proved by
chlorocyclohexane 7 detected in the template reactions (Fig. 3d).

Using sulfuric acid or tetrabutylammonium chloride (TBAC)
alone to replace the proton or chloride anion in hydrogen chloride
correspondingly, the desired thioether 3a was not obtained, mean-
ing that the proton and chloride anion might act synergistically in
the system (Fig. 3e). With excess protons, a significant positive cor-
relation existed between the yields of 3a and the amount of chlo-
ride anions, showing that the chloride anions were not catalytic. In
addition to the thioethers, almost equal amounts of chlorocyclo-
hexanes 7 were obtained, suggesting the final destination of chlo-
rine. Besides, the competing kinetic isotope effects were examined,
giving kH/kD = 1.38. This suggested that the cleavage of C–H bonds
might not be the rate-determining step (Fig. 3f).

In the UV–Vis absorption spectrum experiments, adding the
hydrochloric acids to PhSO2H could enable an obvious bathochro-
mic shift (Fig. 3g). The setting employed for the light source has an



Fig. 3. (Color online) Studies for the reaction mechanism. (a) Reaction time curve. (b) Control experiment. (c) Alkyl radical trapping. (d) Chlorine radical trapping. (e) The flow
trace of chlorine atoms. (f) Kinetic isotope effect. (g) Absorption spectra. a GC yields. The yield involving 6 is based on the amount of sulfur atom.
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emission spectrum with a small peak at 385–395 nm (Fig. S6
online), which has a partial intersection with the absorption range
of this system. All these results showed that there might be an EDA
complex between the PhSO2H and hydrochloric acids. Meanwhile,
the association constant of the EDA complex and analysis via Job’s
method demonstrated a 1:1 molar stoichiometry.

Based on the mechanistic studies above, we proposed a plau-
sible reaction mechanism. The corresponding density functional
theory (DFT) calculations were also carried out at M06-2X-D3/
Def2-SVP/IEFPCM (acetonitrile) level of theory (see Section 8 in
Supplementary materials (online) for details). As described in
Fig. 4, the PhSO2H can be formed by PhSO2Na under acid condi-
tions, and construct the EDA complex IM1 with HCl through elec-
trostatic effect. Then, the chlorine radical and IM2 are given
through the PCET process under visible light irradiation. The
IM2 would derive into the sulfonyl radical IM3 after dehydration
under acid conditions, which furtherly gives the thiosulfonate 6
through the dimerization and rearrangement [51]. Meanwhile,
the cyclohexane undergoes the HAT process with chlorine radical
providing cyclohexyl radical, which couples with chlorine radical
in the system to give the byproduct 7. Now, there are two possi-
ble ways to the thioether 3a: (1) The sulfonyl radical IM3 would
couple with cyclohexyl radical to afford the sulfoxide 5. After the
349
coupling phase, sulfoxide 5 recarries out the PCET process with
HCl to provide the chlorine radical and IM5, which can be trans-
formed to IM6 after dehydration under acid conditions [52–54].
Finally, the thioether 3a is generated from IM6 through the SET
process with Cl�. (2) As a good radical acceptor, the thiosulfonate
6 can directly give the thioether 3a by coupling with the cyclo-
hexyl radical [55]. Meanwhile, the generated sulfonyl radical
IM7 would furtherly derive into the benzenesulfonic acid via
the HAT process with HCl. In the Fig. 3b(ii), no thioether products
were obtained in the absence of HCl, suggesting that neither IM7
nor PhS� produced by photolysis could give cyclohexyl radicals
through HAT with cyclohexane. But the conversion carried out
smoothly using the PhSO2SPh under standard conditions. Further-
more, the path through Cl� had the lower energy than the HAT
process with cyclohexane in the DFT calculations (Fig. S14
online). So, the HAT process between cyclohexane and IM7 was
naturally excluded.

Based on the mechanism studies above, the PCET process
could also occur between the sulfoxide and HCl, which laid a
foundation for further aliphatic C–H divergent conversions. Fur-
thermore, an EDA complex between the sulfoxide and hydrochlo-
ric acids was also revealed through the UV–Vis absorption
spectrum experiments (Fig. S5 online) and 1H nuclear magnetic
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resonance (NMR) spectrum experiments (Fig. S7 online). In this
system, the sulfoxide can effectively avoid coupling with alkyl
radicals, but only act as an electron transfer acceptor. Herein,
using DMSO as the green oxidant, we developed aliphatic C–H
arylation with the electron-deficient heteroarenes [56–59]. As
shown in Fig. 5, with the different substituent groups (fluorine,
chlorine, bromine, methyl, trifluoromethyl, cyano, phenyl, ester),
quinolines and isoquinolines could obtain the desired coupling
products in moderate to excellent yields (12a–12m). Further-
more, pyridines and pyrimidines could be successfully modified
in moderate yields as well (12n–12s), and good regioselectivity
at the 4-position was given for the pyrimidine (12s–1). The
polyalkylated products were smoothly generated using excess
alkanes (12t–12v). Surprisingly, our method was suitable for
hydroquinine with a complex skeleton, showing excellent
functional group tolerance (12w).

Then, we approached the substrate scopes to different C(sp3)–H
species using 4-chloroquinoline as the coupling partner. A set of
simple cyclic alkanes provided the corresponding alkylated
heteroarenes in excellent yields (12x–12aa). The arylation of linear
alkanes also occurred with high selectivity at the polysubstituted
carbon position (12ab–12ad). Fortunately, unusual alkyl silanes
could achieve the C(sp3)–H arylation by our method, and so did
the bridged alkanes norbornane and adamantane (12ae–12ag). It
was important to note that this transformation was not limited
to the unactivated C(sp3)–H systems. Indeed, various activated
C(sp3)–H bonds adjacent to a heteroatom or p-system were also
readily modified. The benzylic C–H abstractions of methylbenzene
derivatives gave benzylated heteroarenes with good to excellent
yields (12ah–12aj). For most alcohols and ethers, the conversion
was achieved successfully at the a-site of the oxygen atom
350
(12ak–12aq). It was not surprising that the ethylated quinoline
was obtained as the minor product through C–O cleavage using
diethyl ether as the alkane source [30]. Moreover, cyclohexane d12
could react in an analogous fashion (12ar). For the gaseous alkanes
with stronger C–H bonds, our method was also applicable. Using
the typical gaseous alkanes propane and ethane, the desired cou-
pling products were successfully generated in moderate to good
yields (12as–12aw). This conversion showed obvious regioselec-
tivity at the methylene position using the propane.

Next, the direct allylation [28] and alkynylation [60,61] of the
strong aliphatic C–H bonds were achieved by a similar strategy.
As shown in Fig. 6, a series of simple cyclic alkanes provided the
corresponding alkenyl esters in moderate yields (15a–15d). Using
the ether and methylbenzene with activated C(sp3)–H bonds, the
conversions were carried out successfully as well (15e–15g). In
the alkynylation transformation, the simple cyclic alkanes could
give the desired products in 41% to 80% yields (16a–16e). For the
alcohol, ether, and methylbenzene with the activated C(sp3)–H
bonds, the alkynylation products could be generated at the acti-
vated site successfully (16f–16j). When the aromatic rings bear
functional groups with different electrical properties, the conver-
sion was not significantly affected (16k–16p).
4. Conclusion

In summary, with the detailed mechanism verification and the-
oretical calculation, a novel generation path of chlorine radicals
was revealed through an EDA complex constituted by HCl and
SIV=O groups. In this system, the chloride anions could be oxidated
to chlorine radicals via a PCET process with SIV=O groups under vis-
ible light irradiation. The aliphatic hydrocarbons could be activated
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by the generated chlorine radicals through the HAT process, and
subsequently coupled with the different radical acceptors. Even
the gaseous alkanes with high bond energies could be modified
by this protocol. Finally, a photo-promoted versatile aliphatic
C–H functionalization was completed without photo- and metal-
catalysts, including thiolation, arylation, alkynylation, and
allylation. What’s more, this EDA strategy provides a new path
for the generation and application of chlorine radicals in the versa-
tile C(sp3)–H functionalization field.
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