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Abstract This paper addresses fault-tolerant many-to-many routing power assignments in heterogeneous wire-

less sensor networks. We introduce the k-fault tolerant power assignments problem with the objective of assigning

each sensor node transmission power such that (1) any pairwise sensor node is k-vertex connected and (2) the to-

tal power consumption is minimized. We propose three solutions for this problem: two centralized algorithms, a

greedy algorithm and an O(
√

n/ε)-approximation algorithm, and an h-hop distributed and localized algorithm.

Related theorems and proofs are presented to prove the correctness of our approaches. Furthermore, simulation

and experiment results are presented to verify the efficiency of our approaches.
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1 Introduction

Wireless sensor networks (WSNs) contain hundreds or thousands of sensor nodes with limited sensing,
computing, communication abilities and power. These networks compose a maintenance-free, fault-
tolerant platform for gathering different kinds of data from the extreme or inhospitable environment,
which has a broad range of applications, such as military surveillance, disaster discovery, wildlife protec-
tion, etc.

Heterogeneous wireless sensor networks are special WSNs consisting of different kinds of sensor nodes,
such as Berkeley motes and Mica motes which are resource-constrained sensor nodes, and Medusa MK-2
and µAMPS which are resource-rich senor nodes. Different kinds of sensor nodes have different properties
in their cost, size, functions and performances. One essential difference is their transmission ranges for
communication.

Since a number of applications [1] require the sensor nodes sending data to the other sensor nodes,
the transmission range for data delivery is important for each sensor node. Due to different transmission
ranges of sensor nodes, a sensor node may not be able to send the data to its destination node directly.
∗Corresponding author (email: liliu@lzu.edu.cn)
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It may need other medial nodes to transfer its data. Therefore multi-hop mode [2] is an efficient strategy
for data delivery.

Multi-hop mode requires the sensor nodes on the data routing path active in order to forward the
message. However, a sensor node fails due to either power dissipation or communication obstruction
by an obstacle. Thus redundant data routing paths should be established to guarantee the message
forwarding to the end users.

When a node is k-vertex connected to another node, it means that k-vertex disjoint routing paths exist
between the two nodes, namely k-vertex connectivity (or k-fault tolerance). Therefore, when the failure
of sensor nodes up to k − 1 occurs, it is still able to find a routing path to deliver data to the destination
node. As a result, the network is more tolerable to node failures.

On the other hand, energy consumption [3] is essential in determining the lifespan of a sensor network.
To save the energy, a node can adjust its transmission range by changing its radio power. Consequently,
a network lifespan can be prolonged by assigning each sensor node an appropriate transmission range.

A considerable amount of works [4–6] have contributed to maintain a specific degree of fault-tolerance
between any sensor node and a fixed node, usually a sink node, rather than between any two nodes. Some
researches are based on the assumption of an uniform transmission range for all the sensor nodes.

However, since WSNs contain a large number of different kinds of sensor nodes, clustering is an efficient
way to organize the nodes. Sensor nodes transmit their data to the immediate local cluster head. The
communication relies highly on the cluster head, and the energy depletion of cluster heads is faster than
other nodes. Therefore, protocols like LEACH [7] were proposed to solve this issue by rotation of the
roles of various nodes. Sensor nodes are likely to be selected as the cluster heads in turn according to
some negotiated rules. Correspondingly, a cluster head becomes a sensor node as its energy is consumed
under a threshold. Any sensor node has the chance to be a cluster node. Therefore, maintaining a specific
degree of fault-tolerance between any pair of sensor nodes is critical to WSNs.

Maintaining fault-tolerance data routing paths between any pair of nodes is important for the archi-
tectures employing node-scheduling schemes or cluster-based protocols. In this paper, we present the
transmission range assignments problem that (1) the total transmission power of all sensor nodes is
minimized; (2) maintaining k-vertex disjoint paths between any pair of sensor nodes.

The rest of this paper is organized as follows. In section 2, we present related works on fault-tolerant
topology control problems, and show their main results and contributions. In section 3, the k-fault
tolerant power assignments problem in heterogeneous WSNs is defined as well as the network models.
Section 4 presents two centralized algorithms: a centralized algorithm and an approximation algorithm,
and one distributed and localized algorithm. We analyze the performance of these algorithms through
simulations and experiments in section 5. And section 6 concludes this paper.

2 Related works

Fault-tolerant topology control algorithms have been proposed to maintain the network connectivity
as well as reduce energy consumption. The topology derived is more susceptible to node failures. A
considerable amount of work has been done on the fault-tolerant topology control problem with the
objective of minimizing the total power consumption while maintaining k-vertex connectivity between
any two nodes. The majority of these algorithms are cataloged into two types, centralized algorithms,
and localized and distributed algorithms.

Li and Hou [8] presented a centralized greedy algorithm FGSS and a distributed algorithm FLSS, both
algorithms preserve k-connectivity. Hajiaghayi et al. [9] presented three approximation algorithms. The
first algorithm gives an O(k log k)-approximation. The second algorithm achieves O(k)-approximation
for general graphs. The last algorithm is a distributed algorithm for the cases of 2-connectivity and
3-connectivity. All these algorithms can be used to minimize power consumption while maintaining k-
edge connectivity with guaranteed approximation factors. Jia et al. [10] presented several approximation
algorithms for the specific cases of this problem. They proposed a 3k-approximation algorithm for any
k � 3, a (k + 12H(k))-approximation algorithm for k(2k − 1) � n, a (k + 2�(k + 1)/2�)-approximation
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algorithm for 2 � k � 7, a 6-approximation algorithm for k = 3, and a 9-approximation algorithm for
k = 4.

Han et al. [11] addressed the problem of deploying relay nodes to provide fault-tolerance with higher
network connectivity by providing relay nodes with the same transmission radius. Li et al. [12] addressed
the problem of fault-tolerant many-to-one routing in static wireless networks with asymmetric links. Segal
and Shpungin [13] developed a general approximation framework for various topology control problems
under the k-fault resilience criterion in the plane.

Several works were presented for distributed topology control mechanisms for 3-dimensional settings.
Ghosh et al. [14] presented two efficient alternatives. One is a heuristic based on 2−D orthographic pro-
jections, which provides excellent performance in practice, but is not guaranteed to produce a connected
network theoretically. The second is a more rigorous approach based on spherical Delaunay triangulation.
Both algorithms they presented have the complexity of O(d log d).

Moraes et al. [15] showed that the related optimization problems can be classified into four main
variants, regarding the topology of the input graph (symmetric or asymmetric) and of the solution
(unidirectional or bidirectional). Our work differs from [9–11, 13, 14, 16, 17] as follows:

1. We consider a heterogeneous WSN, which means our work can be used for general wireless sensor
network models (completely asymmetric and unidirectional).

2. We address the problem of fault-tolerant many-to-many routing in heterogeneous WSN.
3. We consider a better approximation algorithm for heterogeneous WSN.
4. We consider an h-hop distributed and localized algorithm for heterogeneous WSN.

3 Definition and related theorem

We aim to provide data routing paths to guarantee required connectivity between any pair of nodes. A
node can communicate with one another if the Euclidean distance between the two nodes is less than or
equal to the node’s transmission range. We denote the function of power consumption by fp(r), where r

is the node’s transmission range. We take the path loss communication model as the power consumption
model. The minimal transmission energy needed for correct reception by neighbor nodes at distance r is
proportional to rα + c , where α is the power attenuation exponent and c is an environment-dependent
constant [16]. With this model the power consumption is given by pi = fp(ri) = rα

i + c, where pi is the
power consumption in the transmission range ri of the sensor node ni.

Definition 3.1. k-Fault tolerant power assignments (FTPAk). Given a heterogeneous WSN consisting
of N nodes with the various transmission ranges. For each node ni, it can adjust the transmission ranges
up to its maximum value Rmax

i . Determine the power pi of node ni such that 1) there exist k-vertex
disjoint data routing paths between any pair of nodes; 2) the total power consumed over all sensor nodes
is minimized, namely

∑N
i=1 pi is minimized.

Network model. A directed weighted graph G(V, E) is represented as the network topology, where
V = {n1, n2, . . . , nN} is the set of nodes and E = {〈ni, nj〉 : dist(ni, nj) � Rmax

i } is the set of edges. dist()
is the Euclidean distance function. For each edge 〈u, v〉 ∈ E, there exists a weight w(u, v) associated
with it. w(u, v) represents the power consumption needed by u to communicate with v. According to
the power consumption model, the weight function is defined as w(u, v) = dist(u, v)α + c.

FTPAk aims to construct a minimum-cost k-vertex connected network by finding a set of power
assignments for each node. Equivalently, the network is k-vertex connected if any k − 1 nodes removed
without partitioning the network. That is, for every node there exists at least one path to any other
node.

Theorem 3.1 shows that there exists a graph that any pair of nodes has at least k disjoint paths. If at
least k + 1 disjoint paths exist from u to v, and one of such paths is the edge 〈u, v〉 which connects u to
v directly, then there are still at least k disjoint paths between any pair of nodes after removing the edge
〈u, v〉 from the network.
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Theorem 3.1. A graph G(V, E) is a k-vertex connected directed graph. If 〈u, v〉 ∈ E and there are at
least k + 1 disjoint paths from u to v, namely λ(u, v) � k + 1, G \ {〈u, v〉} is a k-vertex connected graph.

Proof. To prove G \ {〈u, v〉} is a k-vertex connected graph, we need to prove that after the removal
of any set of vertices S, where | S |= k − 1, and u, v /∈ S, at least one path exists between any pair of
vertices.

For any pair of two vertices a and b, q1, q2, . . ., qk, are k independent paths between a and b. If
E(qi) ∩ {〈u, v〉} = φ, 1 � i � k, removal of any set of vertices S where | S |= k − 1, does not affect the
connectivity between a and b.

Otherwise, let us see the case where E(qi)∩ {〈u, v〉} �= φ. Since at least k + 1 independent paths exist
between u and v, u and v have at least k independent paths after removal of 〈u, v〉, namely p1, p2, . . .,
pk. Vertex a is still connected to u along path qi and we call it q′1, and vertex u is still connected to b

along path qi and we call it q′2. Path pk connects vertices u and v. Then q′1 + pk + q′2 is the path between
a and b.

4 Algorithms

4.1 Greedy power assignments algorithm

Greedy power assignments (GPAk) algorithm is an intuitive algorithm that produces a k-vertex connected
spanning subgraph and assigns to each vertex the minimum transmission range needed for reaching all
of its neighbors. GPAk is a centralized algorithm that the whole network topology is known before it
starts. A number of broadcast protocols, like [17], can collect the global network topology.

Algorithm: GPAk

Input: Ḡ(V, Ē) and w

Output: assignment pi for each ni

1 Sort all edges in E in decreasing order of weight w

2 for each edge 〈u, v〉 in the sorted order do

3 if λ(u, v) � k + 1 in G(V, E) then

4 E = E \ {〈u, v〉}
5 end if

6 end for

7 for i = 1 to N do

8 pi = max{w(ni, nj) : 〈ni, nj〉 ∈ E}
9 end for

The algorithm starts from sorting the edges in decreasing order of their corresponding weights. Based
on Theorem 3.1, we examine all edges in this order iteratively and test whether the graph keeps k-vertex
connected if remove an edge 〈u, v〉. After removing all the possible edges, the remaining subgraph is
k-vertex connected. Then the algorithm computes the transmission power for each node so that it can
communicate directly with any neighbor nodes in the resultant subgraph.

Testing whether a graph is k-connected can be finished in O(V + E) time for any fixed k by using the
network flow techniques. Accordingly, the time complexity of this algorithm is O(E(V + E)).

We denote by Gi the resultant graph after ith iteration from lines 2–7. Obviously, G0 = G .

Theorem 4.1 (Correctness). If G is k-vertex connected, GPAk guarantees a k-vertex connected trans-
mission range assignment.

Proof. We prove that the graph 〈V, E〉 remains k-vertex connected after removal of edge 〈u, v〉 in each
iteration from lines 2–7. We prove it by recursion. If Gi is k-vertex connected, then Gi+1 is k-vertex
connected. By Theorem 3.1, if u is k-vertex connected to v after removing 〈u, v〉 in Gi, then Gi+1 =
Gi \ 〈u, v〉 is still a k-connected directed graph. Since G0 is a k-vertex connected graph, for each Gi it is
a k-vertex connected graph.

Theorem 4.2 (Local minimum). Gi+1 is a k-vertex connected graph with minimum weight reduced
from Gi .
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Proof. Assume that 〈u0, v0〉 is the first edge in the list of the decreasing order by weight and λ(u0, v0) �
k + 1. We denote the total weight of Gi \ {〈u0, v0〉} by w0(Gi+1). If we remove 〈u, v〉 which is not the
first edge and satisfies λ(u, v) � k + 1, we denote the total weight of Gi \ {〈u, v〉} by w(Gi+1). It is easy
to prove that w0(Gi+1) � w(Gi+1) as w(u0, v0) � w(u, v).

4.2 Cheriyan, Vempala and Vetta(CVV)-approximation algorithm

We present an approximation CVVk algorithm based on a solution of the minimum-cost k-vertex con-
nected spanning subgraph (VCSSk) problem proposed by Cheriyan et al. [18].

VCSSk problem is to find a spanning subgraph H of minimum cost such that H is k-vertex connected.
In VCSSk problem, a graph G(V, E) is given with non-negative edge weights w : E → R+, with the
objective to find a spanning subgraph of G such that 1) the subgraph is k-vertex connected; 2) the total
weight of the subgraph is minimized.

The main differences between VCSSk and FTPAk are that 1) the weight of each edge is uncertain, but
the weight in VCSSk is known; 2) our objective is to find the assignments of the transmission range of
each node, rather than the total weight of all edges.

The VCSSk problem is proved NP-hard for k > 1. Many approximation algorithms are proposed to
resolve this problem. Kortsarz and Nutov [19] designed a more than k/2 approximation algorithm.

Cheriyan et al. proposed an approximation algorithm for k-VCSS problem. The algorithm is an
O(

√
n/ε) algorithm for any ε > 0 and k � (1 − ε)n.

Algorithm: CVVk

Input: G(V, E) (or Ḡ(V, Ē)) and w

Output: assignment pi for each ni

1 Construct G′ of G by assigning each edge the same weight

2 G′
CV V = CV V (G′, k)

3 for i = 1 to N do

4 pi = max{w(ni, nj) : 〈ni, nj〉 ∈ E(G′
CV V )}

5 end for

Theorem 4.3. CVVk is an O(
√

n/ε)-approximation algorithm.

Proof. Let Ropt be the optimal solution and Rsol be the solution obtained by CVVk to FTPAk problem.
We have to prove that Rsol � O(

√
n/ε) × Ropt.

Let RVCSS
opt be the optimal solution to k-VCSS problem and RVCSS

sol be the solution obtained by the
algorithms Cheriyan et al. proposed. From the way we construct G′, we find that any solution to the
k-VCSS problem is also a solution to FTPAk problem, and vice versa. Since the solution of k-VCSS
problem has the approximation ratio O(

√
n/ε), we conclude that Rsol = RVCSS

sol � π×RVCSS
opt = π×Ropt,

where π = O(
√

n/ε).
The complexity of CVVk is dominated by the complexity of the Cheriyan et al’s algorithms, which run

in time O(k2n4(n + k2.5)). Thus, CVVk has the runtime complexity of O(k2n4(n + k2.5)).

4.3 Distributed and localized power assignments algorithm

In this section we present the distributed and localized power assignments (DLPAk) algorithm. Before
we start, a series of notations are described in this section.

Notations.
ri: the current transmission range of ni.
Ni: the neighbor nodes of ni when ni uses its current transmission range ri, namely Ni = {nj :

dist(ni, nj) � ri}.
N0

i : the neighbor nodes of ni when ni has its maximal transmission range Rmax
i , namely N0

i = {nj :
dist(ni, nj) � Rmax

i }.
Gi(Ni, Ei): the localized topology of node ni with its neighbor nodes of Ni, Ei presents the connected

edges among nodes in Ni.
rmax
i : the transmission range of ni needed to reach the farthest neighbor in N0

i .
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rmin
i : the minimal transmission range of ni needed to reach k neighbors in N0

i .
Δri(N): the minimal incremental transmission range of ni needed to reach a node in N .
N − M : a node set consist of nodes belong to N , but not belong to M , namely N − M = {n : n ∈ N

and n /∈ M}.
The following code demonstrates the process by which each node readjusts its transmission range

to achieve the fault tolerant requirements. Each nodes executes this algorithm respectively to find an
adaptable transmission range. The h-hop DLPAk algorithm executed on a node ni initially assigns itself
the transmission range rmin

i by which ni is able to reach k neighbors (line 1). Then ni broadcasts its
localized topology Gi(Ni, Ei) (lines 2–4). The broadcasting message can be routed for h hops. After
broadcasting, ni checks whether it has already reached the maximal transmission range rmax

i (line 5). If
it has, ni executes function EXIT which ends this algorithm and returns the result transmission range ri

with its corresponding transmission power fp(ri) (line 6). Otherwise, ni repeats to check whether it has
k paths for each of its neighbor nodes in N0

i by either receiving the localized topology from other nodes
or augmenting its transmission range until it reaches its maximal transmission range (lines 8–26). ni

executes function WAIT(t) to wait for a period of time t to receive other nodes’ localized topology (line
9). If ni receives a broadcasting message from nr, ni obtains the localized topology of nr and updates
its own localized topology after adding nr’s localized topology (lines 10–16). Then ni executes function
CHECK to check whether it has k paths for each neighbor node of N0

i in its updated localized topology
Gi (line 13). If it has, ni ends with EXIT (line 14). Otherwise, it waits for other nodes’ broadcasting
messages. Since ni does not have k paths for each neighbor node as far as the waiting time t expires, ni

augments its transmission range to ri + Δ(ri(N0
i −Ni)) that ni can reach one more neighbor node in N0

i

(lines 17–20). Then ni broadcasts its updated localized topology and checks whether it has k paths for
each neighbor node after augmenting its transmission range (lines 21–24).

Algorithm: DLPAk

Input: h, N0
i , Rmax

Output: assignment pi for ni

1 ri = rmin
i

2 Ni = {nj : dist(ni, nj) � ri}
3 Ei = {〈ni, nj〉 : dist(ni, nj) � ri}
4 BROADCAST(i, Gi)

5 if ri == rmax
i OR Ni == N0

i then

6 EXIT(fp(ri))

7 end if

8 while ri � rmax
i do

9 WAIT(t)

10 while RECEIVE(r, Gr(Nr , Er)) before t expires do

11 Ni = Ni ∪ Nr

12 Ei = Ei ∪ {〈nr , nj〉 : 〈nr , nj〉 ∈ Er and nj ∈ N0
i }

13 if CHECK(Gi, N0
i ) == k then

14 EXIT(fp(ri))

15 end if

16 end while

17 if t expires then

18 ri = ri + Δri(N
0
i − Ni)

19 Ni = Ni ∪ {nj : dist(ni, nj) � ri}
20 Ei = Ei ∪ {〈ni, nj〉 : dist(ni, nj) � ri}
21 BROADCAST(i, Gi)

22 if CHECK(Gi, N0
i ) == k then

23 EXIT(fp(ri))

24 end if

25 end if

26 end while
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The localized topology information needed by each node ni is the connectivity information of its visible
neighborhood N0

i . Each node ni constructs its localized topology based on broadcasting Hello messages
sent by neighborhood node nr with its localized topology Gr. The Hello messages can be forwarded
h-hops using a time-to-live equal to h. By exchanging the localized topology information with h-hop
neighbors, node ni can start a distributed process to decide its transmission range by testing whether it
is k-vertex connected to each node in Ni.

When h is equal to 1, ni only obtains its visible neighbors’ information to construct a localized topology
Gi(N0

i , Ei), which means ni is directly connected with the other node in N0
i , otherwise ni is k-vertex

connected to it in graph Gi(N0
i , Ei). However, the result only requires ni is k-vertex connected to other

node in graph G(V, E). Hence, the final result produced by 1-hop message exchanging remains redundant
edges, which induces more power consumption. By multi-hop message exchanging, the main advantage
is that a larger neighborhood is used to search for k disjoint paths. Especially, when h is equal to
the diameter of the whole network, each node obtains the global information. However, since h is too
large, the messages exchanged through the whole network induce the message block and more power
consumption.

DLPAk starts by assigning each node an initial range that can reach the first k neighbors. This is
because a node is k-vertex connected, it must have at least k disjoint neighbors. Each node uses an
iterative process to increase its range gradually until it is k-vertex connected with its 1-hop neighbors.
Each node maintains a network topology of its h-hop neighbors. The edge set changes as the node
receives messages from its h-hop neighbors. The node updates its network topology, and evaluates the
connectivity to any of its 1-hop neighbors.

Theorem 4.4. If G(V, E) is a k-vertex connected graph, DLPAk guarantees a k-vertex connected
graph topology after the power assignments.

Proof. For each node ni, we can say its neighbor nodes with its maximal transmission range, equivalently
Ni = {nj : dist(ni, nj) � Rmax}, and its edge set Ei = {〈ni, nj〉 : dist(ni, nj) � Rmax}. After the DLPAk

finishes, the transmission range ri of ni is assigned and its resultant edge set Er
i = {〈ni, nj〉 : dist(ni, nj) �

ri}. The set of edges E′ = Ei − Er
i are removed. However, for each node in Ni, ni is k-vertex connected

to it. We can observe that DLPAk is identical to the removal of each edge in E′ step by step. Since
each edge 〈ni, nj〉 is removed, DLPAk guarantees that ni is k-vertex connected to nj after the removal.
According to Theorem 3.1, we can say that a k-vertex connected graph topology is guaranteed after the
removals.

DLPAk runs in at most | N0
i | −k iterations. In each iteration, node ni waits for a period of time t

and listens to the broadcast messages sent by its h-hop neighbors. If, during the waiting time, a message
is received from a neighbor nr, then the network topology is updated. When ni is k-vertex connected to
each of its neighbor nodes in N0

i after updating, the algorithm terminates. Otherwise, ni keeps listening
until t expires. ni increases its range with Δri to cover at least one more neighbor. Then, ni broadcast
its updated topology information to its h-hop neighbors. The algorithm terminates if k disjoint paths
can be found from ni to other node after the update.

The execution time complexity of DLPAk executed by each node ni is a polynomial. We denote 
 as
the maximum node degree, namely 
 = max{| N0

i |: 1 � i � N}. For each node ni, it runs at most O(
)
iteration. For each iteration, it receives at most O(
k) messages from h-hop neighbors. The time to
update the topology is dominated by the time to test the graph connectivity which is O(V +E). Because
there are at most O(
k) nodes from which ni can receive the messages, the time to update the topology
is at most O(
1+2k). The complexity of DLPAk is O(
2+3k). The memory space complexity of DLPAk

is mainly dominated by storing the topology information, and the topology information for each node
is at most O(
2k). This is because each node needs to memorize O(
k) h-hop neighbor nodes. The
message complexity can be summarized as follows: A sensor node receives at most O(
k) messages for
each iteration, and the length of each message is at most O(
2). Therefore, during the waiting time, the
total load of message transmission to one sensor node is at most O(
2+k). The whole network load is at
most O(N
2+k) at a time.
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5 Simulation and experiment results

In this section we present our simulation and experiment results. We analyze and compare the perfor-
mance of the algorithms proposed under various parameters.

We compare these algorithms both in a small scale network in an experiment where the number of
sensor nodes does not exceed 50, and in a large scale network where the number of sensor nodes is more
than 100 by simulation. We use three types of sensor nodes, MICA2, MICAz and Jennic in the real
experiment for the small scale network. The following parameters are considered:

1. The square and sensor nodes deployment. In a small scale network, the sensors are deployed in a 15
m×15 m area. And in a large scale network, the sensors are deployed in a 20 m×20 m area. The sensor
nodes are randomly scattered within the square.

2. The number of sensor nodes N . We vary N to examine the scalability. In the small scale network,
N is varied from 10 to 50 with incremental of 5. In the large scale network, it is in the range of 100 to
500 with incremental of 100.

3. The fault tolerance degree k. We vary k from 2 to 4 in this simulation.
4. The maximum sensor transmission range Rmax

i for each sensor node ni. To guarantee that the
network is k-connected, we set Rmax

i to be randomly 1–5 m both in the small scale network and in the
large scale network.

5. The power attenuation exponent α and constant c in the large scale network simulation. We set α

to be 2 and c to be 0.
6. The number of hops h in the distributed algorithm. We vary h from 1 to 3.
For each number N , the place of deployment for sensor nodes is the same for different tunable param-

eters. We consider the following performance metrics in our evaluation:
1. The total power consumption. This is the summation of power consumption of each sensor node,

namely ptotal =
∑N

i=1 pi.
2. The power reduced rate. This is the ratio of the total power consumption and maximum power

consumption. We compute the power reduced rate of the total power consumption as r = 1 − ptotal
pmax×N .

We use Rmax to calculate pmax.
Figure 1 shows the comparison of two centralized algorithms, GPAk and CVVk in small-scale network.

In Figure 1(a) we compare the performance of total power consumption between GPAk and CVVk. When
we increase the required connectivity k from 2 to 4 gradually, more power is needed for both algorithms.
With the increase in the number of sensor nodes, the total power does not increase gradually. Especially,
when the number is 10, its total power is larger than any other’s. This is because in a fixed territory with
less sensor nodes, a sensor node needs more power to reach other nodes. However, with more sensors,
the total power tends to increase, but the power consumption for each sensor is reduced. So when the
number of nodes varies from 25 to 50, the total power increases vibratingly in the small scale network.
When the connectivity is fixed, GPAk has larger power consumption than CVVk. When the number
of nodes is small, the difference of power consumption between GPAk and CVVk is slight. When the
number of nodes is increased, the gap is enlarged. Figure 1(b) shows the reduced rate of the total power
consumption. CVVk has a larger reduced rate than GPAk. All of the reduced rates increase when the
number of sensor nodes rises. As the number of sensor nodes increases, all of the reduced rates reach up
to 0.9. When connectivity is smaller, the reduced rates are larger in both GPAk and CVVk.

Figure 2 is the comparison of GPAk and CVVk in a large scale network. From Figure 2(a), we can
see that CVVk has better performance than GPAk in respect of the total power consumption. The
power consumption increases nearly linearly with the growth of the number of sensor nodes. When the
connectivity increases, the total power consumption increases in both GPAk and CVVk. Figure 2(b) is
the reduced rate comparison. All of the reduced rates of GPAk and CVVk with various connectivity and
number of nodes are up to 0.88. The reduced rates of CVVk are higher than the reduced rates of GPAk

with all kinds of connectivity. When the number of sensor nodes is 100, the reduced rates almost reach as
high as 1 in both GPAk and CVVk. However, when the number of sensor nodes reaches 200, the reduced
rates decrease. As the number of sensor nodes increases from 200, the reduced rates change slightly to
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Figure 1 Comparison of GPAk and CVVk in small scale networks. (a) Total power; (b) power reduced rate.

Figure 2 Comparison of GPAk and CVVk in large scale networks. (a) Total power; (b) power reduced rate.

Figure 3 Comparison of GPAk and DLPAk. (a) Total power in large scale networks; (b) power reduced rate in large

scale networks.

upswing or downswing. This is because of the indetermination of the relationship between the increased
number of sensor nodes and the reduced power of each sensor nodes. However, the most important thing
from the figure is that the change of power consumption is small when the number of sensor nodes is
large.

Figure 3 is the comparison of GPAk and DLPAk in a large scale network. In this figure, we show
the results by using DLPAk when h = 1. The results are quite the same as the comparison of GPAk

and DLPAk. Figure 3(a) shows the comparison of the total power consumption in large scale network.
The total power consumption increases linearly with the growth of the number of sensor nodes in both
GPAk and DLPAk. GPAk has better performance than DLPAk. Figure 3(b) shows its corresponding
reduced rates of total power. The increase of power consumption in both GPAk and DLPAk is small
while the number of sensor nodes is large. The small scale network experiment also shows that the total
power consumption of GPAk is smaller than the total power consumption of DLPAk when k is 2, 3, 4

 https://engine.scichina.com/doi/10.1007/s11432-010-4101-y



2536 LIU Li, et al. Sci China Inf Sci December 2010 Vol. 53 No. 12

respectively. The total power consumption increases vibratingly with the growth of the number of sensor
nodes. The increase of power consumption in both GPAk and DLPAk is small with the growth of the
number of sensor nodes, while the initial power consumption increases linearly.

We also did an experiment to show the performance of DLPAk with different values of h. We find that
with the increase of h, the power consumption decreases. This is because with more hops of neighborhood
information, it is more possible for a node to reach k-connectivity without increasing its power. Especially,
when a node knows the global information, DLPAk has the same performance as GPAk. A larger value
of h has greater reduced rate of power consumption.

We summarize the results as follows:
1. CVVk has the best performance in terms of total power consumption.
2. Larger k requires larger power consumption.
3. When the number of sensor nodes increases, the total power consumption increases vibratingly in a

small scale network, and increases linearly in a large scale network.
4. The increase (sometimes decrease) ratio of power consumption is small when the number of sensor

nodes is large.
5. When h increases in DLPAk, the total power decreases. A small value of h is sufficient to provide

performance.

6 Conclusions

In this paper we proposed that the k-fault tolerant many-to-many routing power assignments in heteroge-
neous WSNs with the objective of providing k-vertex disjoint paths between any two sensor nodes while
minimizing the total energy consumption.

We proposed three solutions to the FTPAk problem, two centralized approaches, GPAk and CVVk,
and one distributed and localized algorithm, DLPAk. GPAk is a greedy algorithm that minimizes the
maximum power regarding all sensor nodes. CVVk is an approximation algorithm with performance ratio
O(

√
n/ε). According to the theoretical analysis and simulation results, CVVk has the best performance

in terms of total power consumption. The approximation ratio is the best up to our knowledge. However,
it is hard to use in practice when the number of sensor nodes is too large, because of its huge time
complexity. GPAk is a medial approach that has good performance in terms of total power consumption
and power reduced rate. DLPAk performs not as good as GPAk or CVVk. It consumes the most power.
However, DLPAk is a distributed and localized algorithm which is practical in heterogeneous WSNs, even
in a large scale network.
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