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1 Introduction

It is well known that a harmonic function on Rn is a homogeneous polynomial if and only if its frequency

is equal to a constant. For a harmonic function u in the unit ball B1 ⊂ Rn, the frequency of u on Br is

defined by

N(r) =
r
∫
Br

|∇u|2∫
∂Br

u2
, for any r < 1.

In this paper, we study the growth of H-harmonic functions on the Heisenberg group.

The Heisenberg group Hn is a nilpotent Lie group of step two whose underlying manifold is R
2n × R

with coordinates

(z, t) = (x, y, t) = (x1, . . . , xn, y1, . . . , yn, t)

and whose group action ◦ is given by

(x0, y0, t0) ◦ (x, y, t) =

(
x+ x0, y + y0, t+ t0 + 2

n∑

i=1

(xiy0i − yix0i)

)
. (1.1)

It is easy to check that (1.1) does indeed make R2n × R into a group whose identity is the origin (0, 0),

and where the inverse is given by (z, t)−1 = (−z,−t). Let us denote by δλ the Heisenberg group dilation

δλ(x, y, t) = (λx, λy, λ2t), λ > 0. (1.2)
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Then Hn = (R2n+1, ◦, δλ) is a homogeneous group. We denote Q = 2n+ 2 and call it the homogeneous

dimension of Hn. A basis of the Lie algebra of Hn is given by

Xi =
∂

∂xi
+ 2yi

∂

∂t
, Xn+i =

∂

∂yi
− 2xi

∂

∂t
, i = 1, . . . , n, T =

∂

∂t
. (1.3)

From (1.3), it is easy to check that Xi and Xn+j satisfy

[Xi, Xn+j ] = −4Tδij, [Xi, Xj ] = [Xn+i, Xn+j ] = 0, i, j = 1, . . . , n.

Therefore, the vector fields Xi, Xn+i (i = 1, . . . , n) and their first order commutators span the whole Lie

algebra. The horizontal gradient of a function u is defined as

∇Hu = (X1u, . . . , Xnu,Xn+1u, . . . , X2nu) .

Given a function u : Hn → R, we say that u is homogeneous of H-degree k ∈ Z if for every λ > 0,

u ◦ δλ = λku. (1.4)

For (z, t) ∈ Hn, we recall the Heisenberg norm

ρ(z, t) =

(( n∑

i=1

(x2i + y2i )

)2

+ t2
) 1

4

≡ (|z|4 + t2)
1
4 . (1.5)

Obviously, we have

ρ((z, t)−1) = ρ(z, t) and ρ(δλ(z, t)) = λρ(z, t).

In addition, ρ satisfies the triangle inequality [6]

ρ((z1, t1) ◦ (z2, t2)) 6 ρ(z1, t1) + ρ(z2, t2).

The associated distance between (z, t) and (z0, t0) is defined by

d(z, t; z0, t0) = ρ((z0, t0)
−1 ◦ (z, t)).

It is clear that d(z, t; z0, t0) satisfies the symmetric property: d(z, t; z0, t0) = d(z0, t0; z, t).

In the sequel we let

Br = {(z, t) ∈ Hn | ρ(z, t) < r}, ∂Br = {(z, t) ∈ Hn | ρ(z, t) = r}, (1.6)

and call these sets a Heisenberg-ball and a Heisenberg-sphere centred at the origin with radius r, respec-

tively. Since ρ ∈ C∞ (Hn\{0}), the outward unit normal on ∂Br is
−→n = |∇ρ|−1∇ρ, where ∇ρ means the

Euclidean gradient of ρ.

Introducing the function

ψ(z, t) = |∇Hρ(z, t)|
2 =

|z|2

ρ(z, t)2
, (1.7)

we define

|Br| =

∫

Br

ψ(z, t)dH2n+1, (1.8)

where dH2n+1 denotes the (2n + 1)-dimensional Hausdorff measure in R2n+1. It is easy to check that

there exists a constant CQ > 0 depending only on Q such that

|Br| = CQr
Q. (1.9)

The sub-Laplacian on Hn is defined by

∆H = −
2n∑

i=1

X2
i , (1.10)
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which is an analog to the Laplacian ∆ = −
∑N
i=1 ∂

2/∂x2i on RN . Since the appearance of Hörmander’s

fundamental work [22], the study of properties of solutions to ∆Hu = 0 has received increasing attention,

see [4, 5, 9, 23, 27–29]. The sub-Laplacian arises in a wide range of applications, from several complex

variables and CR geometry (see, for example, [9] and [31]) to control theory and financial mathematics

(see, for example, [2]).

A solution u to ∆Hu = 0 is called an H-harmonic function. Garofalo and Lanconelli [11] introduced

a definition of the frequency N(r) for H-harmonic functions (the special definition will be given in

Section 2), and showed that if u is a homogeneous H-harmonic polynomial (see Definition 2.1) of H-

degree k, then N(r) = k. On the other hand, a natural reverse question arises: If N(r) = constant, does

u reduce to be a homogeneous polynomial? To our knowledge, nothing is known for this question. One

of our main theorems is to give a positive answer for a special class of H-harmonic functions. In the

following, the constant C in distinct inequalities may be different. Our main results are as follows:

Theorem 1.1. Let u be a nonconstant entire H-harmonic function on Hn satisfying

r
∫
Br

|∇Hu|
2

∫
∂Br

u2 ψ
|∇ρ|

6 N0

for some positive constant N0 and any r > 0. Then for any R0 > 1,

‖u‖L∞(BR0
) 6 Cb2N0+Q/2e1+Q/(2N0)N

Q/2
0 (R0)

N0‖u‖L∞(B1),

where C is a positive constant depending only on the homogeneous dimension Q.

Using the asymptotic Liouville-type theorem for H-harmonic functions on Hn [3, Theorem 5.8.8 and

Remark 5.8.10], Theorem 1.1 implies the following corollary:

Corollary 1.2. Under the assumptions in Theorem 1.1, u is a polynomial with H-degree not exceeding

[N0] (the integer part of N0).

Theorem 1.3. Let u be an H-harmonic function in B1 satisfying T̃ u =
∑n
j=1(yj

∂
∂xj

− xj
∂
∂yj

)u = 0.

If there exists a positive constant r0 < 1 such that for any r ∈ (0, r0), N(r) ≡ N0 for some constant N0,

then N0 is an integer, and u is a homogeneous polynomial of H-degree N0 in Br0 .

The structure of the paper is as follows. In Section 2, we recall some facts about the sub-Laplacian and

introduce the frequency of H-harmonic functions on Hn. In Section 3, we prove Theorem 1.1 with the

help of a Caccioppoli type inequality and a comparison result between integrals on different Heisenberg-

balls by translations and scaling. In Section 4, we introduce the relationship between sub-Laplacian and

Grushin operator, and prove Theorem 1.3 by using the orthogonality of Grushin-harmonic polynomials.

2 Frequency of H-harmonic functions

In this section, we collect some known facts about the sub-Laplacian (1.10) which will be useful later on,

and introduce the frequency of H-harmonic functions on Hn.

It is useful to represent sub-Laplacian ∆H as a divergence form operator

∆H = −div(A(z)∇), (2.1)

where

A(z) =




In 0 2y

0 In −2x

2y −2x 4|z|2


 . (2.2)

It is easy to check that the horizontal gradient ∇H and the standard gradient ∇ in R2n+1 satisfy

∇ ·A(z) · ∇ = ∇H · ∇H . (2.3)
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Let T̃ and X̃ be the vector fields,

T̃ =
n∑

j=1

(
yj

∂

∂xj
− xj

∂

∂yj

)
, X̃ =

n∑

j=1

(
xj

∂

∂xj
+ yj

∂

∂yj

)
+ 2t

∂

∂t
. (2.4)

A direct computation gives

X̃ρ = ρ, (2.5)

−∆Hρ =
Q − 1

ρ
ψ in Hn\{0}, (2.6)

A(z)∇ρ(z, t) =
1

ρ(z, t)




|z|2

ρ(z, t)2




x

y

2t


+

t

ρ(z, t)2




y

−x

0





 . (2.7)

Definition 2.1. A polynomial on Hn is a function which can be expressed as

P (x, y, t) =
∑

I

aIx
α1yα2tα3 ,

where I = (α1, α2, α3) = (α1
1, . . . , α

n
1 ;α

1
2, . . . , α

n
2 ;α3) is a multi-index, aI are real numbers, and

xα1yα2tα3 = x
α1

1

1 · · ·x
αn

1
n y

α1
2

1 · · · y
αn

2
n tα3 .

The H-degree of a monomial xα1yα2tα3 is given by the sum

|I|H = |α1|+ |α2|+ 2α3 = α1
1 + · · ·+ αn1 + α1

2 + · · ·+ αn2 + 2α3.

It is easy to check that, if u is a homogeneous polynomial of H-degree k, then X̃u = ku.

Now, we introduce the frequency of H-harmonic functions on Hn.

Definition 2.2. Let u be a solution to ∆Hu = 0 in B1, and r < 1. We define

H(r) =

∫

∂Br

u2
ψ

|∇ρ|
dH2n, (2.8)

D(r) =

∫

Br

|∇Hu|
2dH2n+1. (2.9)

The generalized Almgren’s frequency of u on Br is defined by

N(r) =
rD(r)

H(r)
. (2.10)

For harmonic functions on R
n, the frequency was first introduced by Almgren [1], who proved its

monotonicity with respect to r. There are many important applications of the frequency including

doubling conditions and the control of growth of harmonic functions [21]. Garofalo and Lin [12, 13]

proved unique continuation for elliptic operators by using the properties of frequency. Lin [25] gave

estimates on Hausdorff measure of nodal sets of harmonic functions in terms of the frequency. Han et

al. [20] and Han [19] obtained estimates on Hausdorff measure of singular sets of solutions to elliptic

differential equations.

The corresponding frequency for H-harmonic functions on Hn as in (2.10) was introduced by Garofalo

and Lanconelli in [11]. They showed that if u is a homogeneous H-harmonic polynomial of H-degree k,

then N(r) = k.

By a result of Hörmander [22], ∆H is C∞ hypoelliptic. Folland [8] produced an explicit fundamental

solution of the operator ∆H with singularity at the origin

Γ(z, t) =
CQ

ρ(z, t)Q−2
.
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Making use of the real analyticity (out of the origin) of the fundamental solution Γ, we obtain that ∆H on

Hn is real analytic hypoelliptic. For more information on the analytic hypoellipticity of sub-Laplacians,

one can see [24] and monograph [3, pp. 280–287].

We derive a relationship between the value of frequency and the vanishing order. We begin with a

definition of vanishing order of a function u : Hn → R.

Definition 2.3. Suppose u : Hn → R is a smooth function,

I = (α1, α2, α3) = (α1
1, . . . , α

n
1 ;α

1
2, . . . , α

n
2 ;α3)

is a multi-index, and k is a positive integer. The vanishing order of u at p is said to be k, if for any

|I|H < k, there holds XIu(p) = 0, and there exists |I|H = k, such that XIu(p) 6= 0, where

XI = X
α1

1

1 · · ·X
αn

1
n X

α1
2

n+1 · · ·X
αn

2

2n T
α3 .

Proposition 2.4. Let u be a non-constant H-harmonic function. Then limr→0+ N(r) equals to the

vanishing order of u at 0.

Proof. Let u be a non-constant H-harmonic function. Because of its analyticity, we write

u(z, t) =

∞∑

j=0

Pj(z, t)

for (z, t) near the origin, where each Pj is a homogeneous polynomial of H-degree j, and the series

converges absolutely near the origin.

We claim that each Pj is H-harmonic. In fact, P0 and P1 are H-harmonic obviously. For any fixed λ,

let (z, t) = δλ(z̃, t̃), we have

Pj(z, t) = Pj(δλ(z̃, t̃)) = λjPj(z̃, t̃).

Therefore

0 = ∆Hu =

∞∑

j=0

∆HPj(z, t) =

∞∑

j=2

λj−2∆HPj(z̃, t̃). (2.11)

Let λ→ 0 in (2.11). We get ∆HP2(z̃, t̃) = 0, i.e., P2 is H-harmonic. Then

0 =

∞∑

j=3

λj−2∆HPj(z̃, t̃). (2.12)

Dividing λ in (2.12), and taking λ → 0, we have ∆HP3(z̃, t̃) = 0, i.e., P3 is H-harmonic. Repeating the

above argument, we have that each Pj (j > 2) is H-harmonic.

Assume that the vanishing order of u at the origin is k ∈ N. Then we have

u(z, t) = Pk(z, t) +
∞∑

j=k+1

Pj(z, t).

Denote by R(z, t) =
∑∞

j=k+1 Pj(z, t), i.e., u(z, t) = Pk(z, t)+R(z, t), where Pk is a non-zero homogeneous

polynomial of H-degree k. Then we have (see [11, Proposition 4.1])

r
∫
Br

|∇HPk|
2

∫
∂Br

P 2
k

ψ
|∇ρ|

= k.

Therefore,

lim
r→0+

N(r) = lim
r→0+

r
∫
Br

|∇HPk +∇HR|
2

∫
∂Br

(Pk +R)2 ψ
|∇ρ|

= lim
r→0+

r
∫
Br

|∇HPk|
2

∫
∂Br

P 2
k

ψ
|∇ρ|

= k.

All terms involving R have a higher order of r and hence vanish as r → 0. The proof is completed.
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In [11], Garofalo and Lanconelli proved a monotonicity property of the generalized frequency (2.10)

and obtained the strong unique continuation property. Here we collect a lemma from [11] that will be

useful later on.

Lemma 2.5. Let u be an H-harmonic function in B1. Then for a.e. r ∈ (0, 1),

H ′(r) =
Q− 1

r
H(r) + 2D(r). (2.13)

3 Proof of Theorem 1.1

In this section, our goal is to prove Theorem 1.1. We begin with a technical theorem, which will allow

us to compare integrals of functions on different Heisenberg-balls by translations and scaling. The corre-

sponding version on R
n is obvious. To be precise, we recall the following Lagrange mean value theorem

on Hn [3, Theorem 20.3.1]: There exist absolute constants C0 > 0 and b > 1 depending only on Q, such

that

|f(q ◦ h)− f(q)| 6 C0ρ(h) sup
ξ;ρ(ξ)6bρ(h)

|∇Hf(q ◦ ξ)| . (3.1)

Theorem 3.1. Let u be an H-harmonic function in B2R(0). Then for any p ∈ BR/(4b)(0) and any

r > 0 such that Br(p) ⊂ BR/(3b)(0),

∫

Br(p)

u2(z, t)ψ(p−1 ◦ (z, t)) 6 C

∫

B2R(0)

u2(z, t)ψ(z, t), (3.2)

where b > 1 is the constant in (3.1) and C > 0 is a constant depending on Q, C0 and b.

Proof. If we let p−1 ◦ (z′, t′) = (z, t), we can then write
∫

Br(p)

u2(z′, t′)ψ(p−1 ◦ (z′, t′)) =

∫

Br(0)

u2((z, t) ◦ (z, t)−1 ◦ p ◦ (z, t))ψ(z, t).

Using (3.1) with q = (z, t) and h = (z, t)−1 ◦ p ◦ (z, t), we have
∫

Br(p)

u2(z, t)ψ(p−1 ◦ (z, t))

6 2

∫

Br(0)

u2(z, t)ψ(z, t) + 2C2
0

∫

Br(0)

ρ2(h)
(

max
ξ;ρ(ξ)6bρ(h)

|∇Hu((z, t) ◦ ξ)|
)2

ψ(z, t).

For any p ∈ BR/(4b)(0), (z, t) ∈ Br(0) and Br(p) ⊂ BR/(3b)(0), we have

ρ(h) 6 ρ((z, t)−1) + ρ(p) + ρ(z, t) 6 R/b, ρ((z, t) ◦ ξ) 6 ρ(z, t) + ρ(ξ) 6 5R/4.

Then
∫

Br(p)

u2(z, t)ψ(p−1 ◦ (z, t))

6 2

∫

Br(0)

u2(z, t)ψ(z, t) + 2C2
0CQr

Q

(
R

b

)2(
max

B5R/4(0)
|∇Hu|

)2

,

where CQ is the constant in (1.9) depending only on Q. By using the sub-elliptic estimates of H-harmonic

functions [22]

|∇Hu|L∞(B5R/4(0)) 6 C

(∮

B6R/4(0)

|∇Hu|
2

) 1
2

,

where
∮
E
u = 1

|E|

∫
E
u denotes the average of u over the set E, we have

∫

Br(p)

u2(z, t)ψ(p−1 ◦ (z, t))



Liu H R et al. Sci China Math April 2014 Vol. 57 No. 4 801

6 2

∫

Br(0)

u2(z, t)ψ(z, t) + 2C2
0CQC

2rQ
(
R

b

)2

C−1
Q

(
6R

4

)−Q ∫

B6R/4(0)

|∇Hu|
2.

By using the following Caccioppoli inequality for H-harmonic functions [32]

∫

B6R/4(0)

|∇Hu|
2
6

C

R2

∫

B2R(0)

u2(z, t)ψ(z, t),

we get ∫

Br(p)

u2(z, t)ψ(p−1 ◦ (z, t)) 6 C

∫

B2R(0)

u2(z, t)ψ(z, t),

where C is a constant depending only on C0, Q and b.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We claim that for any r > 0 and η > 1,

∮

Bηr(0)

u2(z, t)ψ(z, t) 6 η2N0

∮

Br(0)

u2(z, t)ψ(z, t). (3.3)

In fact, (2.13) implies
d

dr
log

H(r)

rQ−1
= 2

D(r)

H(r)
= 2

N(r)

r
. (3.4)

Integrating (3.4) from r to ηr and using the boundedness of N(r), we have

H(ηr)

(ηr)Q−1
6 η2N0

H(r)

rQ−1
. (3.5)

Integrating (3.5) from 0 to r, the claimed (3.3) is proved.

Fixing an R0 > 1 and considering any p ∈ ∂BR0
and s > bR0, we note the mean value formula of

H-harmonic functions [15]

u(p) =

∮

Bs−bR0
(p)

u(z, t)ψ(p−1 ◦ (z, t)).

By using the Hölder’s inequality, we have

|u(p)| 6

(∮

Bs−bR0
(p)

u2(z, t)ψ(p−1 ◦ (z, t))

)1/2

.

Let us choose R = 4bs, so that R0 < s/b 6 s = R/(4b), i.e., ∂BR0
⊂ BR/(4b)(0) and in particular

p ∈ BR/(4b)(0). Let r = s− bR0. If q ∈ Br(p), then

d(q, 0) 6 d(q, p) + d(p, 0) 6 r +R0 = s− bR0 +R0 6 s = R/(4b) < R/(3b),

i.e., Br(p) ⊂ BR/(3b)(0). Applying Theorem 3.1 with the data u, R = 4bs and r = s − bR0 as above

and (3.3), we have

|u(p)| 6 C
1

|Bs−bR0
(p)|1/2

(∫

B8bs(0)

u2(z, t)ψ(z, t)

)1/2

6 C(8b)N0+
Q
2

(
sQ+2N0

(s− bR0)Q

)1/2(∮

B1(0)

u2(z, t)ψ(z, t)

)1/2

.

Now, we choose s appropriately to minimize the function

f(s) =
sQ+2N0

(s− bR0)
Q
, s > bR0.
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A direct calculation shows that f(s) attains its minimum in (bR0,+∞) at

smin =

(
1 +

Q

2N0

)
bR0.

Then the corresponding minimum value of f is

fmin = f (smin) =

(
2

Q
+

1

N0

)Q(
1 +

Q

2N0

)2N0

NQ
0 b

2N0R2N0

0 .

Noting that (
1 +

Q

2N0

)2N0

6 eQ,

(
2

Q
+

1

N0

)Q
6 e2+Q/N0e−Q,

we have

fmin 6 e2+Q/N0NQ
0 b

2N0R2N0

0 .

Therefore,

|u(p)| 6 C(8b)N0+Q/2e1+Q/(2N0)N
Q/2
0 bN0RN0

0

(∮

B1(0)

u2(z, t)ψ(z, t)

)1/2

. (3.6)

Applying the maximum principle for H-harmonic functions, i.e., [3, Theorem 8.2.19, p. 409], and using

the following estimate for H-harmonic functions,

∮

B1

u2ψ =
1

|B1|

∫

B1

u2ψ 6 ‖u‖2L∞(B1)
,

we obtain for any R0 > 1,

‖u‖L∞(BR0
) 6 Cb2N0+Q/2e1+Q/(2N0)N

Q/2
0 RN0

0 ‖u‖L∞(B1).

The proof is completed.

4 Grushin-harmonic polynomials and the proof of Theorem 1.3

In this section, we introduce the relationship between sub-Laplacian and Grushin operator, and prove

Theorem 1.3 by using the orthogonality of Grushin-harmonic polynomials.

Let u be an H-harmonic function satisfying T̃ u = 0. Then u solves the equation

0 = Lu = ∆zu+ 4|z|2∂2t u =

2n+1∑

i=1

Y 2
i , (4.1)

where z ∈ R2n, t ∈ R and the vector fields are given by

Yk =
∂

∂xk
, k = 1, . . . , 2n, Y2n+1 = 2|z|

∂

∂t
. (4.2)

The operator (4.1) was studied by Grushin [17, 18], who established its hypoellipticity. The Grushin

operator L is elliptic for z 6= 0 and degenerates on the characteristic sub-manifold {0}×R of R2n+1. We

rewrite the Grushin operator (4.1) as the divergence form

L = div(B(z)∇), (4.3)

where

B(z) =




In 0 0

0 In 0

0 0 4|z|2


 . (4.4)
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The corresponding ρ, ψ, X̃ and Q are the same as for Hn. A direct computation gives [10]

Lρ =
Q− 1

ρ
ψ, (4.5)

∇u · B(z) · ∇ρ =
1

ρ
ψX̃u. (4.6)

Let ∇Lu = (Y1u, . . . , Y2nu, Y2n+1u). We recall the definition of frequency for a solution u to Lu = 0 as

follows [10],

N(r) =
rDL(r)

H(r)
, (4.7)

where

H(r) =

∫

∂Br

u2
ψ

|∇ρ|
, DL(r) =

∫

Br

|∇Lu|
2 =

∫

∂Br

u
〈∇Lu,∇Lρ〉

|∇ρ|
. (4.8)

Definition 4.1. A spherical L-harmonic of H-degree k (k = 0, 1, 2, . . .) is a polynomial in x, y and t,

which is a solution to (4.1) and is homogeneous of H-degree k.

Lemma 4.2. Let uk1 and uk2 be two spherical L-harmonics of H-degrees k1 and k2 in B1, respectively.

Then for any 0 < r < 1, we have

∫

∂Br

uk1uk2
ψ

|∇ρ|
= 0, for k1 6= k2.

Proof. Let uk1 and uk2 be two spherical L-harmonics of H-degrees k1 and k2, respectively. Then by

divergence theorem and (4.3) we have

0 =

∫

Br

(uk1Luk2 − uk2Luk1) =

∫

∂Br

(
uk1B · ∇uk2 ·

∇ρ

|∇ρ|
− uk2B · ∇uk1 ·

∇ρ

|∇ρ|

)
.

By (4.6) and X̃uki = kiuki(i = 1, 2), we get

0 =
1

r

∫

∂Br

(uk1X̃uk2 − uk2X̃uk1)
ψ

|∇ρ|
=

1

r

∫

∂Br

(k2 − k1)uk1uk2
ψ

|∇ρ|
.

Hence ∫

∂Br

uk1uk2
ψ

|∇ρ|
= 0, for k1 6= k2.

Remark 4.3. The above orthogonality fails to general H-harmonic polynomials on Hn. For example,

x2 − y2 and x4 − y4 + 3xyt are H-harmonic polynomials of H-degrees 2 and 4, respectively, a direct

calculation yields ∫

∂Br

(x2 − y2) · (x4 − y4 + 3xyt)
ψ

|∇ρ|
6= 0.

Let us introduce polar coordinates on Hn, which were first introduced by Greiner [16] for H1 and then

extended by Dunkl [7] to Hn. Let





x1 = ρ sin1/2 φ sin θ1 · · · sin θ2n−2 sin θ2n−1,

y1 = ρ sin1/2 φ sin θ1 · · · sin θ2n−2 cos θ2n−1,

x2 = ρ sin1/2 φ sin θ1 · · · sin θ2n−3 cos θ2n−2,

y2 = ρ sin1/2 φ sin θ1 · · · sin θ2n−4 cos θ2n−3,
...

xn = ρ sin1/2 φ sin θ1 cos θ2,

yn = ρ sin1/2 φ cos θ1,

t = ρ2 cosφ.

(4.9)
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Here 0 6 φ < π, 0 6 θi < π, i = 1, . . . , 2n− 2 and 0 6 θ2n−1 < 2π. Then, a straightforward computation

gives

L = sinφ

{
∂2

∂ρ2
+
Q− 1

ρ

∂

∂ρ
+

4

ρ2
L∗

}
, (4.10)

and

L∗ =
∂2

∂φ2
+ n cotφ

∂

∂φ
+

1

(2 sinφ)2
∆S2n−1 , (4.11)

where ∆S2n−1 denotes the Laplace-Beltrami operator on S2n−1.

Garofalo and Shen [14] obtained a polynomial solution to Lu = 0 by separation of variables as follows.

Lemma 4.4. Let uk be spherical L-harmonics of H-degree k (k = 0, 1, 2, . . .). Then uk are sums of

ρk sinl/2 φC
l+n
2

k−l
2

(cosφ)Yl(ω),

where 0 6 l 6 k, l ≡ k (mod 2), Yl(ω) are (2n − 1)-dimension spherical harmonics of degree l, and the

ultraspherical polynomials (Gegenbauer polynomials) Cλk(x), −1 6 x 6 1, are defined by the generating

function
∞∑

k=0

ωkCλk(x) = (1 − 2xω + ω2)−λ.

Fix an integer l > 0 and denote by {Yl,j} (j = 1, 2, . . . , dl) an orthonormal basis for the space of

spherical harmonics of degree l on S2n−1. In the present situation, we have the following theorem.

Theorem 4.5. Let u be a solution to Lu = 0 in B1. If there exists a positive constant 0 < r0 < 1 such

that N(r) = N0 for some constant N0 and any r ∈ (0, r0), then N0 is an integer, and u is a homogeneous

polynomial of H-degree N0 in Br0 .

Proof. Because of the analyticity of u [26], we may assume u is given by

u =

∞∑

k=0

akuk =

∞∑

k=0

akρ
k

k∑

l=0

blk sin
l/2 φC

l+n
2

k−l
2

(cosφ)

dl∑

j=0

cjlYl,j(ω),

for ρ 6 r0, where uk is a spherical L-harmonics of H-degree k, i.e., X̃uk = kuk, and ak, b
l
k, c

j
l are

constants. Then, by (4.8) and (4.6), we have

DL(r) =

∫

∂Br

u
〈∇Lu,∇Lρ〉

|∇ρ|
=

1

r

∫

∂Br

uX̃u
ψ

|∇ρ|

=
1

r

∫

∂Br

( ∞∑

k=0

akuk

)( ∞∑

k=0

kakuk

)
ψ

|∇ρ|
.

Similarly,

H(r) =

∫

∂Br

u2
ψ

|∇ρ|
=

∫

∂Br

( ∞∑

k=0

akuk

)( ∞∑

k=0

akuk

)
ψ

|∇ρ|
.

By using the orthogonality of Yl,j(ω), C
λ
k(x) (see [30, p. 81]) and Lemma 4.2, we get

N(r) =
rDL(r)

H(r)
=

∫
∂Br

(
∑∞

k=0 akuk)(
∑∞

k=0 kakuk)
ψ

|∇ρ|∫
∂Br

(
∑∞

k=0 akuk)(
∑∞

k=0 akuk)
ψ

|∇ρ|

=

∑∞
k=0 ka

2
k

∑k
l=0(b

l
k)

2
∑dl

j=0(c
j
l )

2ρ2k

∑∞
k=0 a

2
k

∑k
l=0(b

l
k)

2
∑dl

j=0(c
j
l )

2ρ2k
≡

∑∞
k=0 kãk

2
ρ2k

∑∞
k=0 ãk

2
ρ2k

= N0,

where

ãk
2
= a2k

k∑

l=0

(blk)
2
dl∑

j=0

(cjl )
2.
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Therefore,
∞∑

k=0

(k −N0) ãk
2
ρ2k = 0, for any small ρ,

i.e., ∑

k>N0

(k −N0) ãk
2ρ2k =

∑

k6N0

(N0 − k) ãk
2ρ2k.

Letting ρ→ 0, we get ã0 = 0. Going on the same computation, we get ãk = 0, when k < N0. Therefore,

we get

∑

k>N0

(k −N0) ãk
2ρ2N0ρ2k−2N0 = 0.

Hence ãk = 0, when k > N0. This concludes the proof of the theorem.

Proof of Theorem 1.3. Noting that an H-harmonic function with T̃ u = 0 is automatically a solution to

Lu = 0, we can immediately obtain the desired result from Theorem 4.5.
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