logo

Chinese Science Bulletin, Volume 65 , Issue 34 : 3873-3877(2020) https://doi.org/10.1360/TB-2020-0961

51 Pegasi b: The planet that started the revolution of exoplanet research

More info

Abstract


Funded by

致谢 感谢国家自然科学基金委员会-中国科学院天文联合基金(U1931102)

国家自然科学基金(11521303)

国家自然科学基金(11733010)

国家自然科学基金(11873103)

国家自然科学基金(12073092)

广州市基础与应用基础研究项目,中山大学中央高校基本科研业务费专项资金(20lgpy169)


Author information

马波 中山大学物理与天文学院副教授. 本科毕业于南京大学天文系, 2015年于美国佛罗里达大学天文系获得博士学位. 主要研究方向是太阳系外行星探测、高分辨率光谱仪的研发使用和高能天体物理.


余聪 中山大学物理与天文学院教授. 本科毕业于云南大学物理系, 2005年于中国科学院云南天文台获得博士学位. 主要研究方向是天体物理中的流体和磁流体动力学过程研究.


References

[1] Mayor M, Queloz D. A jupiter-mass companion to a solar-type star. Nature, 1995, 378: 355-359 CrossRef ADS Google Scholar

[2] Struve O. Proposal for a project of high-precision stellar radial velocity work. Observatory, 1952, 72: 199–200. Google Scholar

[3] Howard A W, Marcy G W, Bryson S T, et al. PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER. Astrophys J Suppl Ser, 2012, 201: 15 CrossRef ADS arXiv Google Scholar

[4] Zhu W. Influence of stellar metallicity on occurrence rates of planets and planetary systems. Astrophys J, 2019, 87: 8. Google Scholar

[5] Yang J Y, Xie J W, Zhou J L. Occurrence and Architecture of Kepler Planetary Systems as Functions of Stellar Mass and Effective Temperature. AJ, 2020, 159: 164 CrossRef ADS arXiv Google Scholar

[6] Latham D W, Mazeh T, Stefanik R P, et al. The unseen companion of HD114762: A probable brown dwarf. Nature, 1989, 339: 38-40 CrossRef ADS Google Scholar

[7] Mayor M, Pepe F, Queloz D, et al. Setting new standards with HARPS. ESO Messenger, 2003, 114: 20. Google Scholar

[8] Borucki W J, Koch D, Basri G, et al. Kepler planet-detection mission: Introduction and first results. Science, 2010, 327: 977-980 CrossRef ADS Google Scholar

[9] Lin D N C, Bodenheimer P, Richardson D C. Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature, 1996, 380: 606-607 CrossRef ADS Google Scholar

[10] Ida S, Lin D N C. Toward a deterministic model of planetary formation. IV. Effects of type I migration. Astrophys J, 2008, 673: 487-501 CrossRef ADS arXiv Google Scholar

[11] Ford E B, Rasio F A. On the relation between hot jupiters and the Roche limit. Astrophys J, 2006, 638: L45-L48 CrossRef ADS arXiv Google Scholar

[12] Chatterjee S, Ford E B, Matsumura S, et al. Dynamical Outcomes of Planet‐Planet Scattering. Astrophys J, 2008, 686: 580-602 CrossRef ADS arXiv Google Scholar

[13] Wu Y, Lithwick Y. Secular chaos and the production of hot jupiters. Astrophys J, 2011, 735: 109 CrossRef ADS arXiv Google Scholar

[14] Xu W, Lai D. Disruption of planetary orbits through evection resonance with an external companion: Circumbinary planets and multiplanet systems. Mon Not R Astron Soc, 2016, 459: 2925-2939 CrossRef ADS arXiv Google Scholar

[15] Liu Y J, Sato B, Zhao G, et al. A planetary companion orbiting the intermediate-mass G Giant HD 173416. Res Astron Astrophys, 2009, 9: 1-4 CrossRef ADS Google Scholar

[16] Zhang H, Yu Z, Liang E, et al. Exoplanets in the Antarctic Sky. II. 116 Transiting Exoplanet Candidates Found by AST3-II (CHESPA) within the Southern CVZ of TESS. Astrophys J Suppl Ser, 2019, 240: 17 CrossRef ADS arXiv Google Scholar