logo

Chinese Science Bulletin, Volume 65 , Issue 25 : 2654-2661(2020) https://doi.org/10.1360/TB-2020-0558

Building the integrated observational network of “Transparent Ocean”

More info

Abstract


Acknowledgment

致谢 感谢国家自然科学基金委员会海洋科学发展战略研究: 2021~2035(L1924024)、海洋数据科学发展战略研究(L1824025)和西太平洋地球系统多圈层相互作用学术活动和战略研究(91858000)资助.


Author information

吴立新 教授, 中国科学院院士、美国地球物理学会会士、发展中国家科学院院士. 长期致力于大洋环流与气候研究, 在多尺度海洋动力过程及海气相互作用领域取得了系统性创新成果.


References

[1] Li D H, Wu L X, Chen Z H. Strategic direction and construction path of Transparent Oceans (in Chinese). J Shandong Univ (Philos Soc Sci), 2019, 2: 130–136 [李大海, 吴立新, 陈朝晖. “透明海洋”的战略方向与建设路径. 山东大学学报(哲学社会科学版), 2019, 2: 130–136]. Google Scholar

[2] Malone T C. The coastal module of the Global Ocean Observing System (GOOS): An assessment of current capabilities to detect change. Mar Policy, 2003, 27: 295-302 CrossRef Google Scholar

[3] McPhaden M J. The tropical atmosphere ocean array is completed. Bull Am Meteorol Soc, 1995, 76: 739-744 CrossRef ADS Google Scholar

[4] Bourlès B, Lumpkin R, Mcphaden M J, et al. The PIRATA program: History, accomplishments, and future directions. Bull Am Meteorol Soc, 2008, 89: 1111–1126. Google Scholar

[5] McPhaden M J, Meyers G, Ando K, et al. RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction*. Bull Amer Meteor Soc, 2009, 90: 459-480 CrossRef ADS Google Scholar

[6] Anderson D L T. The tropical ocean global atmosphere programme. Contemporary Phys, 1995, 36: 245-265 CrossRef ADS Google Scholar

[7] Chapman P. The World Ocean Circulation Experiment (WOCE). Mar Technol Soc J, 1998, 32: 23–36. Google Scholar

[8] Lutjeharms J R E, Gründlingh M L. The World Ocean Circulation Experiment (WOCE). NOAA, 2013, 73: 34–35. Google Scholar

[9] Roemmich D, Gould J. The future of in situ climate observations for the global ocean. CLIVAR Exchanges, 2003, 8: 1–46. Google Scholar

[10] Bickle M, Arculus R, Barrett P, et al. Illuminating Earth’s Past, Present and Future. The Science Plan for the International Ocean Discovery Program 2013−2023. IODP Integrated Ocean Drilling Program, 2011. Google Scholar

[11] German C R, Lin J, Parson L M. Mid-ocean Ridges: Hydrothermal Interactions between the Lithosphere and Oceans. Washington DC: American Geophysical Union, 2004. Google Scholar

[12] Hofmann E, Bundy A, Drinkwater K, et al. IMBER – Research for marine sustainability: Synthesis and the way forward. Anthropocene, 2015, 12: 42-53 CrossRef Google Scholar

[13] Isern A R, Clark H L. The ocean observatories initiative: A continued presence for interactive ocean research. mar technol soc j, 2003, 37: 26-41 CrossRef Google Scholar

[14] Gille S T, Ledwell J, Naveira-Garabato A, et al. The diapycnal and isopycnal mixing experiment: A first assessment. CLIVAR Exchanges, 2012, 17: 46–48. Google Scholar

[15] Karl T R, Nicholls N, Ghazi A. Climatic Change, 1999, 42: 3-7 CrossRef Google Scholar

[16] Garrison D L. Microbial food web structure in the Arabian Sea: A US JGOFS study. Deep Sea Res Part 2 Top Stud Oceanogr, 2000, 47: 7–8. Google Scholar

[17] Schultz C. Surface Ocean–Lower Atmosphere Processes. Eos Trans AGU, 2011, 92: 57 CrossRef ADS Google Scholar

[18] Kudela R, Pitcher G, Probyn T, et al. Harmful algal blooms in coastal upwelling systems. Oceanography, 2005, 18: 184-197 CrossRef Google Scholar

[19] Bjerknes J. ATMOSPHERIC TELECONNECTIONS FROM THE EQUATORIAL PACIFIC1. Mon Wea Rev, 1969, 97: 163-172 CrossRef Google Scholar

[20] Schopf P S, Suarez M J. Vacillations in a Coupled Ocean–Atmosphere Model. J Atmos Sci, 1988, 45: 549-566 CrossRef Google Scholar

[21] Zebiak S E, Cane M A. A Model El Niñ–Southern Oscillation. Mon Wea Rev, 1987, 115: 2262-2278 CrossRef Google Scholar

[22] Neelin J D. The slow sea surface temperature mode and the fast-wave limit: Analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J Atmos Sci, 1991, 48: 584-606 CrossRef Google Scholar

[23] Jin F F. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci, 1997, 54: 811-829 CrossRef Google Scholar

[24] Cronin M F, Meinig C, Sabine C L, et al. Surface mooring network in the Kuroshio extension. IEEE Syst J, 2008, 2: 424-430 CrossRef ADS Google Scholar

[25] Wang C, Zhang L, Lee S K, et al. A global perspective on CMIP5 climate model biases. Nat Clim Change, 2014, 4: 201-205 CrossRef ADS Google Scholar

[26] Yu L. Global Air–Sea Fluxes of Heat, Fresh Water, and Momentum: Energy Budget Closure and Unanswered Questions. Annu Rev Mar Sci, 2019, 11: 227-248 CrossRef ADS Google Scholar

[27] Ferrari R, Wunsch C. Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu Rev Fluid Mech, 2009, 41: 253-282 CrossRef ADS Google Scholar

[28] Wunsch C, Ferrari R. VERTICAL MIXING, ENERGY, AND THE GENERAL CIRCULATION OF THE OCEANS. Annu Rev Fluid Mech, 2004, 36: 281-314 CrossRef ADS Google Scholar

[29] Fjortoft R. On the changes in the spectral distribution of kinetic energy for two dimensional nondivergent flow. Tellus, 1953, 5: 225–230. Google Scholar

[30] Scott R B, Wang F. Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J Phys Oceanography, 2005, 35: 1650-1666 CrossRef ADS Google Scholar

[31] Barkan R, Winters K B, Llewellyn Smith S G. Energy cascades and loss of balance in a reentrant channel forced by wind stress and buoyancy fluxes. J Phys Oceanography, 2015, 45: 272-293 CrossRef ADS Google Scholar

[32] Schlösser F, Eden C. Diagnosing the energy cascade in a model of the North Atlantic. Geophys Res Lett, 2007, 34: 170–206. Google Scholar

[33] Schmidt K M, Swart S, Reason C, et al. Evaluation of satellite and reanalysis wind products with in situ wave glider wind observations in the Southern Ocean. J Atmos Ocean Tech, 2017, 34: 2551-2568 CrossRef ADS Google Scholar

[34] Freeland H J, Roemmich D, Garzoli S, et al. Argo—A decade of progress. Paper presented at OceanObs’ 09: Sustained Ocean Observations and Information for Society (Vol. 2), Venice, Italy, 2009. 2010. Google Scholar

[35] Eriksen C C, Osse T J, Light R D, et al. Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J Ocean Eng, 2001, 26: 424-436 CrossRef ADS Google Scholar

[36] Bian X Q, Qin Z, Yan Z P. Design and evaluation of a hierarchical control architecture for an autonomous underwater vehicle. J Mar Sci Appl, 2008, 7: 53-58 CrossRef ADS Google Scholar

[37] Yuh J. Autonomous Robots, 2000, 8: 7-24 CrossRef Google Scholar

[38] Kosaka Y, Xie S P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 2013, 501: 403-407 CrossRef ADS Google Scholar

[39] Chen X, Tung K K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 2014, 345: 897-903 CrossRef ADS Google Scholar

[40] Roemmich D, Roemmich D, Boebel O, et al. Argo: The global array of profiling floats. In: Koblin-sky C J, Smith N R, eds. Observing the Oceans in the 21st Century. Melbourne: Bureau of Meteorology, 2001. 248–258. Google Scholar

[41] Claustre H, Antoine D, Boehme L, et al. Guidelines towards an integrated ocean observation system for ecosystems and biogeochemical cycles. In: Hall J, Harrison D E, Stammer D, eds. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society. Venice: ESA Publication WPP-306, 2010. Google Scholar

[42] Li S Z, Jin C, Dai L M, et al. Marine Geodynamics—Advances and perspectives of international oceanfloor-related observatory network and exploration technique system (in Chinese). Mar Geol Quat Geol, 2009, 29: 131–143 [李三忠, 金宠, 戴黎明, 等. 洋底动力学——国际海底相关观测网络与探测系统的进展与展望. 海洋地质与第四纪地质, 2009, 29: 131–143]. Google Scholar

[43] He Q, Wang P. Current situation and prospect of deep sea energy development (in Chinese). Ocean Develop Manag, 2017, 34: 66–71 [何琦, 汪鹏. 深海能源开发现状和前景研究. 海洋开发与管理, 2017, 34: 66–71]. Google Scholar