logo

Chinese Science Bulletin, Volume 65 , Issue 27 : 2941-2951(2020) https://doi.org/10.1360/TB-2020-0158

Chiral N,Nʹ-dioxide and their metal complexes in asymmetric catalysis

More info
  • ReceivedFeb 21, 2020
  • AcceptedMar 22, 2020
  • PublishedApr 21, 2020

Abstract


Funded by

国家自然科学基金(21890723,21432006)


Author information

冯小明, 中国科学院院士, 英国皇家化学会会士, 四川大学化学学院教授. 1996年获中国科学院理学博士学位. 主要从事新型手性配体和催化剂的设计合成、不对称催化反应、手性药物和生理活性化合物的高效高选择性合成研究.


References

[1] Lin G Q, Li Y M, Chen X Q, et al. Chiral Synthesis—Asymmetry Reaction and its Application (in Chinese). 5th ed. Beijing: Science Press, 2013 [林国强, 李月明, 陈耀全, 等. 手性合成——不对称反应及其应用. 第5版. 北京: 科学出版社, 2013]. Google Scholar

[2] Ding K L, Fan Q H. New progress and prospects in the study of chiral catalysis (in Chinese). Chemistry, 2009, 6: 22−28 [丁奎岭, 范青华. 手性催化研究的新进展与展望. 化学通报, 2009, 6: 22−28]. Google Scholar

[3] Xie J H, Zhou Q L. Creation of chiral materials: Yesterday, today and tomorrow (in Chinese). Chin Sci Bull, 2015, 60: 2679-2696 CrossRef Google Scholar

[4] Yoon T P, Jacobsen E N. Privileged chiral catalysts. Science, 2003, 299: 1691−1693. Google Scholar

[5] Zhou Q L. Privileged Chiral Ligands and Catalysts. Weinheim: Wiley-VCH, 2011. Google Scholar

[6] Ding K, Dai L X. Organic Chemistry—Breakthroughs and Perspectives. Weinheim: Wiley-VCH, 2012. Google Scholar

[7] Huang S X, Ding K. Asymmetric bromoamination of chalcones with a privileged N,N′-dioxide/scandium(III) catalyst. Angew Chem Int Ed, 2011, 50: 7734-7736 CrossRef PubMed Google Scholar

[8] Liu X H, Lin L L, Feng X M. Chiral N,N′-dioxides: New ligands and organocatalysts for catalytic asymmetric reactions. Acc Chem Res, 2011, 44: 574-587 CrossRef PubMed Google Scholar

[9] Liu X H, Lin L L, Feng X M. Chiral N,N′-dioxide ligands: Synthesis, coordination chemistry and asymmetric catalysis. Org Chem Front, 2014, 1: 298-302 CrossRef Google Scholar

[10] Wen Y H, Huang X, Huang J L, et al. Asymmetric cyanosilylation of aldehydes catalyzed by novel organocatalysts. Synlett, 2005, 37: 2445−2448. Google Scholar

[11] Zhang X, Chen D H, Liu X H, et al. Enantioselective allylation of ketones catalyzed by N,N′-dioxide and indium(III) complex. J Org Chem, 2007, 72: 5227-5233 CrossRef PubMed Google Scholar

[12] Akabori S, Sakurai S, Izumi Y, et al. An asymmetric catalyst. Nature, 1956, 178: 323-324 CrossRef Google Scholar

[13] Nozaki H, Moriuti S, Takaya H, et al. Asymmetric induction in carbenoid reaction by means of a dissymmetric copper chelate. Tetrahedron Lett, 1966, 7: 5239-5244 CrossRef Google Scholar

[14] Xie J H, Zhou Q L. Chiral diphosphine and monodentate phosphorus ligands on a spiro scaffold for transition-metal-catalyzed asymmetric reactions. Acc Chem Res, 2008, 41: 581-593 CrossRef PubMed Google Scholar

[15] Xie J H, Liu X Y, Xie J B, et al. An additional coordination group leads to extremely efficient chiral iridium catalysts for asymmetric hydrogenation of ketones. Angew Chem Int Ed, 2011, 50: 7329-7332 CrossRef PubMed Google Scholar

[16] Chan A S C, Hu W, Pai C C, et al. Novel spiro phosphinite ligands and their application in homogeneous catalytic hydrogenation reactions. J Am Chem Soc, 1997, 119: 9570-9571 CrossRef Google Scholar

[17] Wu J, Chan A S C. P-phos: A family of versatile and effective atropisomeric dipyridylphosphine ligands in asymmetric catalysis. Acc Chem Res, 2006, 39: 711-720 CrossRef PubMed Google Scholar

[18] Zhang W, Chi Y, Zhang X. Developing chiral ligands for asymmetric hydrogenation. Acc Chem Res, 2007, 40: 1278-1290 CrossRef PubMed Google Scholar

[19] Doucet H, Ohkuma T, Murata K, et al. Trans-[RuCl2(phosphane)2(1,2-diamine)] and chiraltrans-[RuCl2(diphosphane)(1,2-diamine)]: Shelf-stable precatalysts for the rapid, productive, and stereoselective hydrogenation of ketones. Angew Chem Int Ed, 1998, 37: 1703-1707 CrossRef Google Scholar

[20] Katsuki T, Sharpless K B. The first practical method for asymmetric epoxidation. J Am Chem Soc, 1980, 102: 5974-5976 CrossRef Google Scholar

[21] Zhang W, Loebach J L, Wilson S R, et al. Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. J Am Chem Soc, 1990, 112: 2801-2803 CrossRef Google Scholar

[22] Helmchen G, Pfaltz A. Phosphinooxazolines—A new class of versatile, modular P,N-ligands for asymmetric catalysis. Acc Chem Res, 2000, 33: 336-345 CrossRef PubMed Google Scholar

[23] Du H, Yuan W, Zhao B, et al. A Pd(0)-catalyzed diamination of terminal olefins at allylic and homoallylic carbons via formal C−H activation under solvent-free conditions. J Am Chem Soc, 2007, 129: 7496-7497 CrossRef PubMed Google Scholar

[24] Dai L X, Tu T, You S L, et al. Asymmetric catalysis with chiral ferrocene ligands. Acc Chem Res, 2003, 36: 659-667 CrossRef PubMed Google Scholar

[25] Wang Z Q, Feng C G, Xu M H, et al. Design of C2-symmetric tetrahydropentalenes as new chiral diene ligands for highly enantioselective Rh-catalyzed arylation of N-tosylarylimines with arylboronic acids. J Am Chem Soc, 2007, 129: 5336-5337 CrossRef PubMed Google Scholar

[26] Liu Y, Ding K. Modular monodentate phosphoramidite ligands for rhodium-catalyzed enantioselective hydrogenation. J Am Chem Soc, 2005, 127: 10488-10489 CrossRef PubMed Google Scholar

[27] Zhou J, Tang Y. Sidearm effect:  Improvement of the enantiomeric excess in the asymmetric Michael addition of indoles to alkylidene malonates. J Am Chem Soc, 2002, 124: 9030-9031 CrossRef PubMed Google Scholar

[28] Liao S, Sun X L, Tang Y. Side arm strategy for catalyst design: Modifying bisoxazolines for remote control of enantioselection and related. Acc Chem Res, 2014, 47: 2260-2272 CrossRef PubMed Google Scholar

[29] Shibasaki M, Matsunaga S. Design and application of linked-BINOL chiral ligands in bifunctional asymmetric catalysis. Chem Soc Rev, 2006, 35: 269-279 CrossRef PubMed Google Scholar

[30] Liu X H, Zheng H F, Xia Y, et al. Asymmetric cycloaddition and cyclization reactions catalyzed by chiral N,N′-dioxide-metal complexes. Acc Chem Res, 2017, 50: 2621-2631 CrossRef PubMed Google Scholar

[31] Wang Z, Liu X H, Feng X M. Asymmetric catalysis enabled by chiral N,N′dioxide-nickel(II) complexes. Aldrichim Acta, 2020, 53: 3−10. Google Scholar

[32] Holmquist C R, Roskamp E J. A selective method for the direct conversion of aldehydes into β-keto esters with ethyl diazoacetate catalyzed by tin(II) chloride. J Org Chem, 1989, 54: 3258-3260 CrossRef Google Scholar

[33] Li W, Wang J, Hu X L, et al. Catalytic asymmetric Roskamp reaction of α-alkyl-α-diazoesters with aromatic aldehydes: Highly enantioselective synthesis of α-alkyl-β-keto esters. J Am Chem Soc, 2010, 132: 8532-8533 CrossRef PubMed Google Scholar

[34] Clayden J, Greeves N, Warren S. Organic Chemistry. New York: Oxford University Press, 2012. 459−460. Google Scholar

[35] Li W, Liu X H, Hao X Y, et al. A catalytic asymmetric ring-expansion reaction of isatins and α-alkyl-α-diazoesters: Highly efficient synthesis of functionalized 2-quinolone derivatives. Angew Chem Int Ed, 2012, 51: 8644-8647 CrossRef PubMed Google Scholar

[36] Li W, Liu X H, Tan F, et al. Catalytic asymmetric homologation of α-ketoesters with α-diazoesters: Synthesis of succinate derivatives with chiral quaternary centers. Angew Chem Int Ed, 2013, 52: 10883-10886 CrossRef PubMed Google Scholar

[37] Li W, Tan F, Hao X Y, et al. Catalytic asymmetric intramolecular homologation of ketones with α-diazoesters: Synthesis of cyclic α-aryl/alkyl β-ketoesters. Angew Chem Int Ed, 2015, 54: 1608-1611 CrossRef PubMed Google Scholar

[38] Li W, Liu X H, Hao X Y, et al. New electrophilic addition of α-diazoesters with ketones for enantioselective C–N bond formation. J Am Chem Soc, 2011, 133: 15268-15271 CrossRef PubMed Google Scholar

[39] Yamamoto H, Oda S. Scandium-catalyzed electrophilic addition of α-diazoesters with ketones. Synfacts, 2012, 8: 63. Google Scholar

[40] Cai Y F, Liu X H, Hui Y H, et al. Catalytic asymmetric bromoamination of chalcones: Highly efficient synthesis of chiral α-bromo-β-amino ketone derivatives. Angew Chem Int Ed, 2010, 49: 6160-6164 CrossRef PubMed Google Scholar

[41] Cai Y F, Liu X H, Li J, et al. Asymmetric iodoamination of chalcones and 4-aryl-4-oxobutenoates catalyzed by a complex based on scandium(III) and a N,N′-dioxide ligand. Chem Eur J, 2011, 17: 14916-14921 CrossRef PubMed Google Scholar

[42] Cai Y F, Liu X H, Jiang J, et al. Catalytic asymmetric chloroamination reaction of α,β-unsaturated γ-keto esters and chalcones. J Am Chem Soc, 2011, 133: 5636-5639 CrossRef PubMed Google Scholar

[43] Cai Y F, Zhou P F, Liu X H, et al. Diastereoselectively switchable asymmetric haloaminocyclization for the synthesis of cyclic sulfamates. Chem Eur J, 2015, 21: 6386-6389 CrossRef PubMed Google Scholar

[44] Zhou P F, Cai Y F, Zhong X, et al. Catalytic asymmetric intra- and intermolecular haloetherification of enones: An efficient approach to (−)-centrolobine. ACS Catal, 2016, 6: 7778-7783 CrossRef Google Scholar

[45] Zhou P F, Lin L L, Chen L, et al. Iron-catalyzed asymmetric haloazidation of α,β-unsaturated ketones: Construction of organic azides with two vicinal stereocenters. J Am Chem Soc, 2017, 139: 13414-13419 CrossRef PubMed Google Scholar

[46] Zhou P F, Liu X H, Wu W B, et al. Catalytic asymmetric construction of β-azido amides and esters via haloazidation. Org Lett, 2019, 21: 1170-1175 CrossRef PubMed Google Scholar

[47] Wang Z, Yang Z G, Chen D H, et al. Highly enantioselective Michael addition of pyrazolin-5-ones catalyzed by chiral metal/N,N′-dioxide complexes: Metal-directed switch in enantioselectivity. Angew Chem Int Ed, 2011, 50: 4928-4932 CrossRef PubMed Google Scholar

[48] Zhang Y L, Yang N, Liu X H, et al. Reversal of enantioselective Friedel-Crafts C3-alkylation of pyrrole by slightly tuning the amide units of N,N′-dioxide ligands. Chem Commun, 2015, 51: 8432-8435 CrossRef PubMed Google Scholar

[49] Hui Y H, Jiang J, Wang W T, et al. Highly enantioselective conjugate addition of thioglycolate to chalcones catalyzed by lanthanum: Low catalyst loading and remarkable chiral amplification. Angew Chem Int Ed, 2010, 49: 4290-4293 CrossRef PubMed Google Scholar

[50] Zhang Y, Zhang F C, Chen L, et al. Asymmetric synthesis of P-stereogenic compounds via thulium(III)-catalyzed desymmetrization of dialkynylphosphine oxides. ACS Catal, 2019, 9: 4834-4840 CrossRef Google Scholar

[51] Zhang Y, Liao Y T, Liu X H, et al. Catalytic Michael/ring-closure reaction of α,β-unsaturated pyrazoleamides with amidomalonates: Asymmetric synthesis of (−)-paroxetine. Chem Eur J, 2016, 22: 15119-15124 CrossRef PubMed Google Scholar

[52] Wang G J, Tang Y, Zhang Y, et al. Enantioselective synthesis of N−H-free 1,5-benzothiazepines. Chem Eur J, 2017, 23: 554-557 CrossRef PubMed Google Scholar

[53] Yao Q, Wang Z, Zhang Y H, et al. N,N′-dioxide/gadolinium(III)-catalyzed asymmetric conjugate addition of nitroalkanes to α,β-unsaturated pyrazolamides. J Org Chem, 2015, 80: 5704-5712 CrossRef PubMed Google Scholar

[54] ten Brink G J, Arends I W C E, Sheldon R A. The Baeyer-Villiger reaction:  New developments toward greener procedures. Chem Rev, 2004, 104: 4105-4123 CrossRef PubMed Google Scholar

[55] Zhou L, Liu X H, Ji J, et al. Enantioselective Baeyer-Villiger oxidation: Desymmetrization of meso cyclic ketones and kinetic resolution of racemic 2-arylcyclohexanones. J Am Chem Soc, 2012, 134: 17023-17026 CrossRef PubMed Google Scholar

[56] Zhou L, Liu X H, Ji J, et al. Regio- and enantioselective Baeyer-Villiger oxidation: Kinetic resolution of racemic 2-substituted cyclopentanones. Org Lett, 2014, 16: 3938-3941 CrossRef PubMed Google Scholar

[57] Wu W B, Cao W D, Hu L F, et al. Asymmetric Baeyer-Villiger oxidation: Classical and parallel kinetic resolution of 3-substituted cyclohexanones and desymmetrization of meso-disubstituted cycloketones. Chem Sci, 2019, 10: 7003-7008 CrossRef PubMed Google Scholar

[58] He P, Liu X H, Zheng H F, et al. Asymmetric 1,2-reduction of enones with potassium borohydride catalyzed by chiral N,N′-dioxide-scandium(III) complexes. Org Lett, 2012, 14: 5134-5137 CrossRef PubMed Google Scholar

[59] He P, Zheng H F, Liu X H, et al. Asymmetric reduction of α‐amino ketones with a KBH4 solution catalyzed by chiral lewis acids. Chem Eur J, 2014, 20: 13482-13486 CrossRef PubMed Google Scholar

[60] Wu W B, Zou S J, Lin L L, et al. Catalytic asymmetric Meerwein-Ponndorf-Verley reduction of glyoxylates induced by a chiral N,N′-dioxide/Y(OTf)3 complex. Chem Commun, 2017, 53: 3232-3235 CrossRef PubMed Google Scholar

[61] Zheng H F, Liu X H, Xu C R, et al. Regio- and enantioselective Aza-Diels-Alder reactions of 3-vinylindoles: A concise synthesis of the antimalarial spiroindolone NITD609. Angew Chem Int Ed, 2015, 54: 10958-10962 CrossRef PubMed Google Scholar

[62] Yu H, Dong S X, Yao Q, et al. Enantioselective [2+2] photocycloaddition reactions of enones and olefins with visible light mediated by N,N′- dioxide-metal complexes. Chem Eur J, 2018, 24: 19361-19367 CrossRef PubMed Google Scholar

[63] Lin X B, Tang Y, Yang W, et al. Chiral nickel(II) complex catalyzed enantioselective Doyle-Kirmse reaction of α-diazo pyrazoleamides. J Am Chem Soc, 2018, 14: 3299-3305 CrossRef PubMed Google Scholar

[64] Lin X B, Yang W, Yang W K, et al. Asymmetric catalytic [2,3] Stevens and Sommelet-Hauser rearrangements of α‐Diazo pyrazoleamides with sulfides. Angew Chem Int Ed, 2019, 58: 13492-13498 CrossRef PubMed Google Scholar

[65] Liu Y B, Hu H F, Zheng H F, et al. Nickel(II)-catalyzed asymmetric propargyl and allyl Claisen rearrangements to allenyl- and allyl-substituted β-ketoesters. Angew Chem Int Ed, 2014, 53: 11579-11582 CrossRef PubMed Google Scholar

[66] Liu Y B, Liu X H, Hu H P, et al. Synergistic kinetic resolution and asymmetric propargyl claisen rearrangement for the synthesis of chiral allenes. Angew Chem Int Ed, 2016, 55: 4054-4058 CrossRef PubMed Google Scholar

[67] Zheng H F, Wang Y, Xu C R, et al. Stereodivergent synthesis of vicinal quaternary-quaternary stereocenters and bioactive hyperolactones. Nat Commun, 2018, 9: 1968−1974. Google Scholar

[68] Xu X, Zhang J L, Dong S X, et al. Nickel(II)-catalyzed asymmetric propargyl [2,3] wittig rearrangement of oxindole derivatives: A chiral amplification effect. Angew Chem Int Ed, 2018, 57: 8734-8738 CrossRef PubMed Google Scholar

[69] Tang Q, Fu K, Ruan P R, et al. Asymmetric catalytic formal 1,4-allylation of β,γ-unsaturated α-Ketoesters: Allylboration/oxy-cope rearrangement. Angew Chem Int Ed, 2019, 58: 11846-11851 CrossRef PubMed Google Scholar

qqqq

Contact and support