SCIENTIA SINICA Vitae, Volume 51 , Issue 6 : 600-618(2021) https://doi.org/10.1360/SSV-2020-0292

Toward neuroinformatics of neuroimaging data sharing and open brain science

More info
  • ReceivedAug 24, 2020
  • AcceptedOct 20, 2020
  • PublishedDec 23, 2020


Funded by







感谢为本文所涉及的活体人脑影像做出贡献的所有志愿者. 各位中国活体脑影像数据共享计划的负责人和团队为本文提供了具体计划的学术资料和标志图片, 并对本文有关内容提出了细致的修改建议, 他们是: 蒋田仔研究员、谭力海教授、张占军教授、陶沙教授、于春水教授、韩缨教授、李坤成教授、严超赣研究员、周媛研究员、何宏建副教授、陈飞燕教授、梁佩鹏教授、刘风博士、陈姚静博士. 浙江大学物理系唐孝威院士就神经信息学在中国的发展历史和相关香山科学会议提供了宝贵资料, 对本文给予了详细的修改意见. 中国科学院生物物理所汪云九研究员对神经信息学课程建设提供了信息. 北京师范大学董奇教授对涉及神经影像大数据和开放式脑科学与教育转化应用及其未来发展提出了具体意见, 北京师范大学认知神经科学与学习国家重点实验室贺永教授对本文内容提出了详尽的修改建议, 北京师范大学认知神经科学与学习国家重点实验室发展群体神经科学研究中心的杨宁博士帮助编排稿件. 作者左西年谨以此文怀念刚刚辞世的母亲, 感谢妈妈给予生命与智慧, 为内心注入了“知足常乐、为人予善”的生命信条, 启蒙“开放共享”的价值观.


[1] Ascoli G A, Halavi M. Neuroinformatics. In: Squire L R, ed. Encyclopedia of Neuroscience. New York: Elsevier, 2009. 477–484. Google Scholar

[2] De Schutter E, Ascoli G A, Kennedy D N. Ten years of neuroinformatics. Neuroinformatics, 2012, 10: 329-330 CrossRef Google Scholar

[3] Buzsáki G, Llinás R. Space and time in the brain. Science, 2017, 358: 482-485 CrossRef ADS Google Scholar

[4] Zuo X N. Mapping the human brain function in vivo. Sci Bull, 2016, 61: 1839–1840. Google Scholar

[5] Poldrack R A, Farah M J. Progress and challenges in probing the human brain. Nature, 2015, 526: 371-379 CrossRef ADS Google Scholar

[6] Friston K J. Modalities, modes, and models in functional neuroimaging. Science, 2009, 326: 399-403 CrossRef ADS Google Scholar

[7] Tavor I, Jones O P, Mars R B, et al. Task-free MRI predicts individual differences in brain activity during task performance. Science, 2016, 352: 216-220 CrossRef ADS Google Scholar

[8] Milham M P. Open neuroscience solutions for the connectome-wide association era. Neuron, 2012, 73: 214-218 CrossRef Google Scholar

[9] Biswal B B, Mennes M, Zuo X N, et al. Toward discovery science of human brain function. Proc Natl Acad Sci USA, 2010, 107: 4734-4739 CrossRef ADS Google Scholar

[10] Marcus D S, Harms M P, Snyder A Z, et al. Human Connectome Project informatics: quality control, database services, and data visualization. NeuroImage, 2013, 80: 202-219 CrossRef Google Scholar

[11] Alivisatos A P, Chun M, Church G M, et al. The brain activity map. Science, 2013, 339: 1284-1285 CrossRef ADS Google Scholar

[12] Yuste R, Bargmann C. Toward a global BRAIN initiative. Cell, 2017, 168: 956-959 CrossRef Google Scholar

[13] Miller K L, Alfaro-Almagro F, Bangerter N K, et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci, 2016, 19: 1523-1536 CrossRef Google Scholar

[14] Jernigan T L, Brown S A, Dowling G J. The adolescent brain cognitive development study. J Res Adolesc, 2018, 28: 154-156 CrossRef Google Scholar

[15] Milham M P, Craddock R C, Son J J, et al. Assessment of the impact of shared brain imaging data on the scientific literature. Nat Commun, 2018, 9: 2818 CrossRef ADS Google Scholar

[16] Jiang T. Brainnetome: a new-ome to understand the brain and its disorders. NeuroImage, 2013, 80: 263-272 CrossRef Google Scholar

[17] Yao Z, Zhang Y, Lin L, et al. Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Comput Biol, 2010, 6: e1001006 CrossRef ADS Google Scholar

[18] Fan L, Li H, Zhuo J, et al. The Human Brainnetome Atlas: A new brain atlas based on connectional architecture. Cereb Cortex, 2016, 26: 3508-3526 CrossRef Google Scholar

[19] Li A, Zalesky A, Yue W, et al. A neuroimaging biomarker for striatal dysfunction in schizophrenia. Nat Med, 2020, 26: 558-565 CrossRef Google Scholar

[20] Xu M, Baldauf D, Chang C Q, et al. Distinct distributed patterns of neural activity are associated with two languages in the bilingual brain. Sci Adv, 2017, 3: e1603309 CrossRef ADS Google Scholar

[21] Siok W T, Jia F, Liu C Y, et al. A lifespan fMRI study of neurodevelopment associated with reading Chinese. Cereb Cortex, 2020, 30: 4140-4157 CrossRef Google Scholar

[22] Lin Q, Dai Z, Xia M, et al. A connectivity-based test-retest dataset of multi-modal magnetic resonance imaging in young healthy adults. Sci Data, 2015, 2: 150056 CrossRef Google Scholar

[23] Huang L, Huang T, Zhen Z, et al. A test-retest dataset for assessing long-term reliability of brain morphology and resting-state brain activity. Sci Data, 2016, 3: 160016 CrossRef ADS Google Scholar

[24] Fair D A, Nigg J T, Iyer S, et al. Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Front Syst Neurosci, 2013, 6 CrossRef Google Scholar

[25] Chen B, Xu T, Zhou C, et al. Individual variability and test-retest reliability revealed by ten repeated resting-state brain scans over one month. PLoS ONE, 2015, 10: e0144963 CrossRef ADS Google Scholar

[26] Liu W, Wei D, Chen Q, et al. Longitudinal test-retest neuroimaging data from healthy young adults in southwest China. Sci Data, 2017, 4: 170017 CrossRef ADS Google Scholar

[27] Wei D, Zhuang K, Ai L, et al. Structural and functional brain scans from the cross-sectional Southwest University adult lifespan dataset. Sci Data, 2018, 5: 180134 CrossRef ADS Google Scholar

[28] Ioannidis J P A. Why most published research findings are false. PLoS Med, 2005, 2: e124 CrossRef Google Scholar

[29] Open Science Collaboration. PSYCHOLOGY. Estimating the reproducibility of psychological science. Science, 2015, 349: aac4716. Google Scholar

[30] Begley C G, Ellis L M. Drug development: Raise standards for preclinical cancer research. Nature, 2012, 483: 531-533 CrossRef ADS Google Scholar

[31] Zuo X N, Xu T, Milham M P. Harnessing reliability for neuroscience research. Nat Hum Behav, 2019, 3: 768-771 CrossRef Google Scholar

[32] Xing X X, Zuo X N. The anatomy of reliability: a must read for future human brain mapping. Sci Bull, 2018, 63: 1606-1607 CrossRef ADS Google Scholar

[33] Streiner D L, Norman G R, Cairney J. Health Measurement Scales: A Practical Guide to Their Development and Use. 5th ed. New York: Oxford University Press, 2015. 159-250. Google Scholar

[34] Hedge C, Powell G, Sumner P. The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behav Res Methods, 2018, 50: 1166-1186 CrossRef Google Scholar

[35] Dong Q. Psychology and Education Research Methods (in Chinese). 2nd ed. Beijing: Beijing Normal University Press, 2019. 110–117 [董奇. 心理与教育研究方法. 第2版. 北京: 北京师范大学出版社, 2019. 110–117]. Google Scholar

[36] Zuo X N, Anderson J S, Bellec P, et al. An open science resource for establishing reliability and reproducibility in functional connectomics. Sci Data, 2014, 1: 140049 CrossRef Google Scholar

[37] Zuo X N, Xing X X. Test-retest reliabilities of resting-state fMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci Biobehav Rev, 2014, 45: 100-118 CrossRef Google Scholar

[38] Poldrack R A, Baker C I, Durnez J, et al. Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat Rev Neurosci, 2017, 18: 115-126 CrossRef Google Scholar

[39] Poldrack R A, Gorgolewski K J, Varoquaux G. Computational and informatic advances for reproducible data analysis in neuroimaging. Annu Rev Biomed Data Sci, 2019, 2: 119-138 CrossRef Google Scholar

[40] Zuo X N, He Y, Su X, et al. Developmental population neuroscience: emerging from ICHBD. Sci Bull, 2018, 63: 331-332 CrossRef ADS Google Scholar

[41] Xu T, Yang Z, Jiang L, et al. A connectome computation system for discovery science of brain. Sci Bull, 2015, 60: 86-95 CrossRef ADS Google Scholar

[42] Zuo X N, He Y, Betzel R F, et al. Human connectomics across the life span. Trends Cogn Sci, 2017, 21: 32-45 CrossRef Google Scholar

[43] Yang N, He Y, Zhang Z, et al. Chinese Color Nest Project: Growing up in China (in Chinese). Chin Sci Bull, 2017, 62: 3008-3022 CrossRef Google Scholar

[44] Dong H M, Castellanos F X, Yang N, et al. Charting brain growth in tandem with brain templates at school age. Sci Bull, 2020, 65: 1924-1934 CrossRef Google Scholar

[45] Holla B, Seidlitz J, Bethlehem R A I, et al. Population normative models of human brain growth across development. Sci Bull, 2020, 65: 1872-1873 CrossRef Google Scholar

[46] Qiu A. Child brain growth standard: age and ethnicity dependent. Sci Bull, 2020, 65: 1874-1875 CrossRef Google Scholar

[47] Wang Y S, Dang Y, Quan Z, et al. R3BRAIN: an open brain imaging resources for reliability, reproducibility, and replicability. In: The 25th Annual Meeting of the Organization for Human Brain Mapping. Rome. 2019. Google Scholar

[48] Dong Q, Lin C D. The Technical Report of Chinese National Children’s Study (in Chinese). Beijing: Science Press, 2011 [董奇, 林崇德. 中国儿童青少年心理发育特征调查项目技术报告. 北京: 科学出版社, 2011]. Google Scholar

[49] Tao S. Intelligence development and school adjustment of school-age children and adolescents: A follow-up cohort study (in Chinese). Psychol Comms, 2019, 2: 88–90 [陶沙. 学龄儿童青少年脑智发育与学校适应的追踪队列研究. 心理学通讯, 2019, 2: 88–90]. Google Scholar

[50] Zhao T, Liao X, Fonov V S, et al. Unbiased age-specific structural brain atlases for Chinese pediatric population. NeuroImage, 2019, 189: 55-70 CrossRef Google Scholar

[51] Xu Q, Guo L, Cheng J, et al. CHIMGEN: A Chinese imaging genetics cohort to enhance cross-ethnic and cross-geographic brain research. Mol Psychiatry, 2020, 25: 517-529 CrossRef Google Scholar

[52] Yang H, Long X Y, Yang Y, et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. NeuroImage, 2007, 36: 144-152 CrossRef Google Scholar

[53] Yuan L X, Wang J B, Zhao N, et al. Intra- and inter-scanner reliability of scaled subprofile model of principal component analysis on ALFF in resting-state fMRI under eyes open and closed conditions. Front Neurosci, 2018, 12: 311 CrossRef Google Scholar

[54] Zou Q, Yuan B K, Gu H, et al. Detecting static and dynamic differences between eyes-closed and eyes-open resting states using ASL and BOLD fMRI. PLoS ONE, 2015, 10: e0121757 CrossRef ADS Google Scholar

[55] Yuan B K, Wang J, Zang Y F, et al. Amplitude differences in high-frequency fMRI signals between eyes open and eyes closed resting states. Front Hum Neurosci, 2014, 8: 503 CrossRef Google Scholar

[56] Liu D, Dong Z, Zuo X, et al. Eyes-open/eyes-closed dataset sharing for reproducibility evaluation of resting state fMRI data analysis methods. Neuroinformatics, 2013, 11: 469-476 CrossRef Google Scholar

[57] Yan C, Liu D, He Y, et al. Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PLoS ONE, 2009, 4: e5743 CrossRef ADS Google Scholar

[58] Wang J, Zhang J R, Zang Y F, et al. Consistent decreased activity in the putamen in Parkinson’s disease: A meta-analysis and an independent validation of resting-state fMRI. Gigascience, 2018, 7: giy071 CrossRef Google Scholar

[59] Politis M. Neuroimaging in Parkinson disease: from research setting to clinical practice. Nat Rev Neurol, 2014, 10: 708-722 CrossRef Google Scholar

[60] Tomše P, Jensterle L, Grmek M, et al. Abnormal metabolic brain network associated with Parkinson’s disease: replication on a new European sample. Neuroradiology, 2017, 59: 507-515 CrossRef Google Scholar

[61] He W, Liu D, Radua J, et al. Meta-analytic comparison between PIB-PET and FDG-PET results in Alzheimer’s disease and MCI. Cell Biochem Biophys, 2015, 71: 17-26 CrossRef Google Scholar

[62] Liang P, Shi L, Chen N, et al. Construction of brain atlases based on a multi-center MRI dataset of 2020 Chinese adults. Sci Rep, 2016, 5: 18216 CrossRef ADS Google Scholar

[63] Shi L, Liang P, Luo Y, et al. Using large-scale statistical Chinese brain template (Chinese2020) in popular neuroimage analysis toolkits. Front Hum Neurosci, 2017, 11: 414 CrossRef Google Scholar

[64] Jia X, Shi L, Qian T, et al. Improved gray matter atrophy detection in Alzheimer disease in Chinese populations using Chinese brain template. Alzheimer Dis Assoc Disord, 2018, 32: 309-313 CrossRef Google Scholar

[65] Tong Q, He H, Gong T, et al. Reproducibility of multi-shell diffusion tractography on traveling subjects: A multicenter study prospective. Magn Reson Imag, 2019, 59: 1-9 CrossRef Google Scholar

[66] Li C, Tong Q Q, Gong T, et al. Quality control of multicenter diffusion MRI (in Chinese). Chin J Med Imaging Technol, 2019, 35: 20–24 [李晨, 童琪琦, 龚婷, 等. 多中心扩散MRI的质量控制. 中国医学影像技术, 2019, 35: 20–24]. Google Scholar

[67] Tong Q, He H, Gong T, et al. Multicenter dataset of multi-shell diffusion MRI in healthy traveling adults with identical settings. Sci Data, 2020, 7: 157 CrossRef ADS Google Scholar

[68] Chen Y J, Xu K, Yang C S, et al. Beijing Aging Brain Rejuvenation Initiative: aging with grace (in Chinese). Sci Sin Vitae, 2018, 48: 721-734 CrossRef Google Scholar

[69] Wang X, Huang W, Su L, et al. Neuroimaging advances regarding subjective cognitive decline in preclinical Alzheimer’s disease. Mol Neurodegener, 2020, 15: 55 CrossRef Google Scholar

[70] Li X, Wang X, Su L, et al. Sino Longitudinal Study on Cognitive Decline (SILCODE): Protocol for a Chinese longitudinal observational study to develop risk prediction models of conversion to mild cognitive impairment in individuals with subjective cognitive decline. BMJ Open, 2019, 9: e028188 CrossRef Google Scholar

[71] Sun Y, Wang X, Wang Y, et al. Anxiety correlates with cortical surface area in subjective cognitive decline: APOE ε4 carriers versus APOE ε4 non-carriers. Alzheimers Res Ther, 2019, 11: 50 CrossRef Google Scholar

[72] Chen G, Yang K, Du W, et al. Clinical characteristics in subjective cognitive decline with and without worry: Baseline investigation of the SILCODE study. J Alzheimers Dis, 2019, 72: 443-454 CrossRef Google Scholar

[73] Salimi-Khorshidi G, Smith S M, Keltner J R, et al. Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. NeuroImage, 2009, 45: 810-823 CrossRef Google Scholar

[74] Jia X Z, Zhao N, Barton B, et al. Small effect size leads to reproducibility failure in resting-state fMRI studies. bioRxiv, 2018, 285171. Google Scholar

[75] Yan C G, Chen X, Li L, et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc Natl Acad Sci USA, 2019, 116: 9078-9083 CrossRef Google Scholar

[76] Schmaal L, Pozzi E, C. Ho T, et al. ENIGMA MDD: seven years of global neuroimaging studies of major depression through worldwide data sharing. Transl Psychiatry, 2020, 10: 172 CrossRef Google Scholar

[77] Xia M, Si T, Sun X, et al. Reproducibility of functional brain alterations in major depressive disorder: Evidence from a multisite resting-state functional MRI study with 1,434 individuals. NeuroImage, 2019, 189: 700-714 CrossRef Google Scholar

[78] Yang G, Zhou S, Bozek J, et al. Sample sizes and population differences in brain template construction. NeuroImage, 2020, 206: 116318 CrossRef Google Scholar

[79] Han M, Yang G, Li H, et al. Individualized cortical parcellation based on diffusion MRI tractography. Cereb Cortex, 2020, 30: 3198-3208 CrossRef Google Scholar

[80] Tang X W, Yin L, Shen G Y, et al. Human brain project and neuroinformatics (in Chinese). Bull Natl Nat Sci Found China, 2001, 2: 99–101 [唐孝威, 尹岭, 沈公羽, 等. 人类脑计划和神经信息学. 中国科学基金, 2001, 2: 99–101]. Google Scholar

[81] Wang X J, Hu H, Huang C, et al. Computational neuroscience: A frontier of the 21st century. Natl Sci Rev, 2020, 7: 1418-1422 CrossRef Google Scholar

[82] Song X W, Dong Z Y, Long X Y, et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS ONE, 2011, 6: e25031 CrossRef ADS Google Scholar

[83] Yan C G, Zang Y F. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci, 2010, 4: 13 CrossRef Google Scholar

[84] Xia M, Wang J, He Y. BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS ONE, 2013, 8: e68910 CrossRef ADS Google Scholar

[85] Yan C G, Wang X D, Zuo X N, et al. DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 2016, 14: 339-351 CrossRef Google Scholar

[86] Wang J, Wang X, Xia M, et al. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci, 2015, 9: 386 CrossRef Google Scholar

[87] Cui Z, Zhong S, Xu P, et al. PANDA: a pipeline toolbox for analyzing brain diffusion images. Front Hum Neurosci, 2013, 7: 42 CrossRef Google Scholar

[88] Liao W, Wu G R, Xu Q, et al. DynamicBC: A MATLAB toolbox for dynamic brain connectome analysis. Brain Connect, 2014, 4: 780-790 CrossRef Google Scholar

[89] Botvinik-Nezer R, Holzmeister F, Camerer C F, et al. Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 2020, 582: 84-88 CrossRef ADS Google Scholar

[90] Keller S, Korkmaz G, Orr M, et al. The evolution of data quality: Understanding the transdisciplinary origins of data quality concepts and approaches. Annu Rev Stat Appl, 2017, 4: 85-108 CrossRef ADS Google Scholar

[91] Qu H, Lei H, Fang X. Big data and the brain: Peeking at the future. Genomics Proteomics Bioinformatics, 2019, 17: 333-336 CrossRef Google Scholar

[92] Bzdok D, Nichols T E, Smith S M. Towards algorithmic analytics for large-scale datasets. Nat Mach Intell, 2019, 1: 296-306 CrossRef Google Scholar

[93] Smith S M, Nichols T E. Statistical challenges in “big data” human neuroimaging. Neuron, 2018, 97: 263-268 CrossRef Google Scholar

[94] Xia M, He Y. Functional connectomics from a “big data” perspective. NeuroImage, 2017, 160: 152-167 CrossRef Google Scholar

[95] Glasser M F, Coalson T S, Robinson E C, et al. A multi-modal parcellation of human cerebral cortex. Nature, 2016, 536: 171-178 CrossRef ADS Google Scholar

[96] Grasby K L, Jahanshad N, Painter J N, et al. The genetic architecture of the human cerebral cortex. Science, 2020, 367: eaay6690 CrossRef Google Scholar

[97] Xing X X, Zuo X N. “To do a valid job, must make tools reliable first”—A decent science of individual differences? (in Chinese). Chin Sci Bull, 2019, 64: 2465-2467 CrossRef Google Scholar

[98] Vul E, Harris C, Winkielman P, et al. Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition. Perspect Psychol Sci, 2009, 4: 274-290 CrossRef Google Scholar

[99] Nobis L, Manohar S G, Smith S M, et al. Hippocampal volume across age: Nomograms derived from over 19,700 people in UK Biobank. Neuroimage Clin, 2019, 23: 101904 CrossRef Google Scholar

[100] Li X, Guo N, Li Q. Functional neuroimaging in the new era of big data. Genomics Proteomics Bioinformatics, 2019, 17: 393-401 CrossRef Google Scholar

[101] Di Martino A, Fair D A, Kelly C, et al. Unraveling the miswired connectome: a developmental perspective. Neuron, 2014, 83: 1335-1353 CrossRef Google Scholar

[102] Zuo X N. Editorial: Mapping the miswired connectome in autism spectrum disorder. J Am Acad Child Adol Psychiatry, 2020, 59: 348-349 CrossRef Google Scholar

[103] Williams H, Lewis J. Impressions on the current state of cognitive neuroscience in occupational measurement. Prog Brain Res, 2020, 253: 123–138. Google Scholar


Contact and support