logo

SCIENTIA SINICA Terrae, Volume 51 , Issue 11 : 1964-1977(2021) https://doi.org/10.1360/SSTe-2020-0364

城市和郊区复杂下垫面地气交换湍流通量的观测研究

沙杰 1, 邹钧 1,2,3, 孙鉴泞 1,2,3,*
More info
  • ReceivedDec 25, 2020
  • AcceptedMay 7, 2021
  • PublishedJun 17, 2021

Abstract


Funded by

国家重点研发计划项目(2016YFC0200500)

国家自然科学基金青年项目(41805007)


References

[1] 刘阳, 刘辉志, 王雷. 2017. 北京城市下垫面大气边界层湍流输送垂直分布特征. 中国科学: 地球科学, 47: 1243–1256. Google Scholar

[2] 苗世光, 窦军霞, Chen F, 李炬, 李爱国. 2012. 北京城市地表能量平衡特征观测分析. 中国科学: 地球科学, 42: 1394–1402. Google Scholar

[3] 任燕, 张宏升, 魏伟, 蔡旭晖, 宋宇, 康凌. 2020. 北京地区重霾天气过程大气湍流结构及间歇性研究. 中国科学: 地球科学, 50: 161–172. Google Scholar

[4] Ao X, Grimmond C S B, Chang Y, Liu D, Tang Y, Hu P, Wang Y, Zou J, Tan J. Heat, water and carbon exchanges in the tall megacity of Shanghai: Challenges and results. Int J Climatol, 2016, 36: 4608-4624 CrossRef ADS Google Scholar

[5] Aubinet M, Vesala T, Papale D. 2012. Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Dordrecht, New York: Springer. 438. Google Scholar

[6] Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw K T, Pilegaard K, Schmid H P, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc, 2001, 82: 2415-2434 CrossRef Google Scholar

[7] Böhm M, Finnigan J J, Raupach M R, Hughes D. Turbulence structure within and above a canopy of bluff elements. Bound-Layer Meteorol, 2013, 146: 393-419 CrossRef ADS Google Scholar

[8] Castro I P, Cheng H, Reynolds R. Turbulence over urban-type roughness: Deductions from wind-tunnel measurements. Bound-Layer Meteorol, 2006, 118: 109-131 CrossRef ADS Google Scholar

[9] Christen A, Rotach M W, Vogt R. The budget of turbulent kinetic Energy in the urban roughness sublayer. Bound-Layer Meteorol, 2009, 131: 193-222 CrossRef ADS Google Scholar

[10] Christen A, van Gorsel E, Vogt R. Coherent structures in urban roughness sublayer turbulence. Int J Climatol, 2007, 27: 1955-1968 CrossRef ADS Google Scholar

[11] Ding A J, Fu C B, Yang X Q, Sun J N, Zheng L F, Xie Y N, Herrmann E, Nie W, Petäjä T, Kerminen V M, Kulmala M. Ozone and fine particle in the western Yangtze River Delta: An overview of 1 yr data at the SORPES station. Atmos Chem Phys, 2013a, 13: 5813-5830 CrossRef ADS Google Scholar

[12] Ding A J, Fu C B, Yang X Q, Sun J N, Petäjä T, Kerminen V M, Wang T, Xie Y, Herrmann E, Zheng L F, Nie W, Liu Q, Wei X L, Kulmala M. Intense atmospheric pollution modifies weather: A case of mixed biomass burning with fossil fuel combustion pollution in eastern China. Atmos Chem Phys, 2013b, 13: 10545-10554 CrossRef ADS Google Scholar

[13] Finnigan J, Ayotte K, Harman I, Katul G, Oldroyd H, Patton E, Poggi D, Ross A, Taylor P. Boundary-layer flow over complex topography. Bound-Layer Meteorol, 2020, 177: 247-313 CrossRef ADS Google Scholar

[14] Finnigan J J, Clement R, Malhi Y, Leuning R, Cleugh H A. A reevaluation of long-term flux measurement techniques Part I: Averaging and coordinate rotation. Bound-Layer Meteor, 2003, 107: 1-48 CrossRef Google Scholar

[15] Grimmond C S B. Progress in measuring and observing the urban atmosphere. Theor Appl Climatol, 2006, 84: 3-22 CrossRef ADS Google Scholar

[16] Grimmond C S B, Salmond J A, Oke T R, Offerle B, Lemonsu A. Flux and turbulence measurements at a densely built-up site in Marseille: Heat, mass (water and carbon dioxide), and momentum. J Geophys Res, 2004, 109: D24101 CrossRef ADS Google Scholar

[17] Kaimal J C, Finnigan J J. 1994. Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford: Oxford University Press. 289. Google Scholar

[18] Liu H, Yuan R, Mei J, Sun J, Liu Q, Wang Y. Scale properties of anisotropic and isotropic turbulence in the urban surface layer. Bound-Layer Meteorol, 2017, 165: 277-294 CrossRef ADS Google Scholar

[19] Martins C A, Moraes O L L, Acevedo O C, Degrazia G A. Turbulence intensity parameters over a very complex terrain. Bound-Layer Meteorol, 2009, 133: 35-45 CrossRef ADS Google Scholar

[20] Monin A S, Obukhov A M. 1954. Basic laws of turbulent mixing in the atmosphere near the ground. Trudy, Akademiia, Nauk SSSR, Geophizicheskogo Instituta, 24: 163–187. Google Scholar

[21] Peng Z, Sun J. Characteristics of the drag coefficient in the roughness sublayer over a complex urban surface. Bound-Layer Meteorol, 2014, 153: 569-580 CrossRef ADS Google Scholar

[22] Quan L, Hu F. Relationship between turbulent flux and variance in the urban canopy. Meteorol Atmos Phys, 2009, 104: 29-36 CrossRef ADS Google Scholar

[23] Raupach M R, Antonia R A, Rajagopalan S. Rough-wall turbulent boundary layers. Appl Mech Rev, 1991, 44: 1-25 CrossRef ADS Google Scholar

[24] Rotach M W. Turbulence close to a rough urban surface part I: Reynolds stress. Bound-Layer Meteorol, 1993, 65: 1-28 CrossRef ADS Google Scholar

[25] Roth M. Review of atmospheric turbulence over cities. Q J R Meteorol Soc, 2000, 126: 941-990 CrossRef ADS Google Scholar

[26] Schmid H P. Source areas for scalars and scalar fluxes. Bound-Layer Meteorol, 1994, 67: 293-318 CrossRef ADS Google Scholar

[27] Schotanus P, Nieuwstadt F T M, de Bruin H A R. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound-Layer Meteorol, 1983, 26: 81-93 CrossRef ADS Google Scholar

[28] Stull R B. 1988. An Introduction to Boundary Layer Meteorology. Dordrecht: Kluwer. 666. Google Scholar

[29] Toda M, Sugita M. Single level turbulence measurements to determine roughness parameters of complex terrain. J Geophys Res, 2003, 108: 4363-4371 CrossRef ADS Google Scholar

[30] Vickers D, Mahrt L. Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol, 1997, 14: 512-526 CrossRef Google Scholar

[31] Wang L, Li D, Gao Z, Sun T, Guo X, Bou-Zeid E. Turbulent transport of momentum and scalars above an urban canopy. Bound-Layer Meteorol, 2014, 150: 485-511 CrossRef ADS Google Scholar

[32] Zhang H, Zhang H, Cai X, Song Y, Sun J. Contribution of low-frequency motions to sensible heat fluxes over urban and suburban areas. Bound-Layer Meteorol, 2016, 161: 183-201 CrossRef ADS Google Scholar

[33] Zou J, Liu G, Sun J, Zhang H, Yuan R. The momentum flux-gradient relations derived from field measurements in the urban roughness sublayer in three cities in China. J Geophys Res-Atmos, 2015, 120: 10,797 CrossRef ADS Google Scholar

[34] Zou J, Sun J, Ding A, Wang M, Guo W, Fu C. Observation-based estimation of aerosol-induced reduction of planetary boundary layer height. Adv Atmos Sci, 2017a, 34: 1057-1068 CrossRef ADS Google Scholar

[35] Zou J, Zhou B, Sun J. Impact of eddy characteristics on turbulent heat and momentum fluxes in the urban roughness sublayer. Bound-Layer Meteorol, 2017b, 164: 39-62 CrossRef ADS Google Scholar

[36] Zou J, Sun J, Liu G, Yuan R, Zhang H. Vertical variation of the effects of atmospheric stability on turbulence statistics within the roughness sublayer over real urban canopy. J Geophys Res-Atmos, 2018, 123: 2017-2036 CrossRef ADS Google Scholar

  • 图 1

    三个观测站点在长江三角洲地区所处位置示意图

    红色、蓝色和黄色标记分别代表DX站、XL站和SZ站位置, 引自Google Earth

  • 图 2

    观测点附近地表状况航拍图及郊区和城市观测点附近地形高度和建筑高度示意图

    (a) XL站附近地表状况航拍图, 粉色框内区域为南京大学仙林校区, 引自Google Earth; (b) XL站附近半径800m范围内地形高度和建筑高度示意图, 色标标注的高度以校区内道路和平地的平均海拔高度为参考高度; (c) DX站附近地表状况航拍图, 引自Google Earth; (d) DX站附近半径800m范围内建筑高度示意图(内圈半径为500m), 深蓝色表示建筑物高度低于观测塔所在建筑物的高度, 浅蓝色表示建筑物高度低于下面一层通量观测的高度但高于观测塔所在建筑物的高度, 浅红色表示建筑物高度介于两层通量观测高度之间, 深红色表示建筑物高度高于上面一层通量观测的高度, 图中虚线和实线标明的角度分别是用于分析的观测数据所对应的风向范围的起始风向和终止风向; (e) SZ站附近地表状况航拍图, 引自Google Earth; (f) SZ站附近半径800m范围内建筑高度示意图, 图中色标标注规则及虚实线含义与(d)中相同

  • 图 3

    DX()SZ()两个观测高度上感热通量潜热通量和动量通量的平均日变化

    图中标注高度为距离观测塔所在建筑物楼顶的高度, 阴影区表示两个高度上的湍流通量平均值差值的显著性通过了95%置信水平的t检验

  • 图 4

    DX()SZ()两个观测高度感热通量潜热通量和动量通量比值的箱型图

  • 图 5

    XL站三个观测高度上感热通量潜热通量和动量通量的平均日变化

    阴影区表示25和2.6m这两个高度上的湍流通量平均值差值的显著性通过了95%置信水平的t检验

  • 图 6

    XL站白天各时次两个观测高度之间感热通量潜热通量和动量通量比值的箱型图

    左图为塔上50m处通量与25m处通量的比值, 右图为塔上25m处通量与地面2.6m 处通量的比值

  • 图 7

    XL站两个观测高度的感热通量潜热通量和动量通量比值随风向的变化

    左图为塔上25m与地面2.6m湍流通量比值的情况, 右图为塔上50m与25m湍流通量比值的情况. 红线为中位数位置, 粉红阴影区代表中间50%数据的分布范围

  • 图 8

    XL2.6m和塔上25mDX站塔上26.5m感热通量在各季节的平均日变化

  • 图 9

    XL2.6m和塔上25mDX站塔上26.5m潜热通量在各季节的平均日变化

  • 图 10

    DX站塔上11.526.5m观测到的RnH和LE及按式(6)计算出的Qs的平均日变化

  • 表 1   三个站点周围以观测站铁塔为中心半径800m范围内下垫面状况及环境参数a)

    站点名称

    地形状况

    下垫面属性

    建筑物平均高度(m)

    建筑物面积指数λp

    不透水表面比例(%)

    XL站

    丘陵

    北片: 裸地和山体为主

    南片: 城市下垫面特征

    20.0

    0.04

    10.2

    20.4

    0.21

    64.8

    DX站

    平地

    典型城市下垫面

    21.6(20.9)

    0.28(0.29)

    87.4

    SZ站

    平地

    典型城市下垫面

    18.5(16.8)

    0.26(0.27)

    83.3

    括号内数据为选取风向范围(DX站的风向角度范围是300°→120°, SZ站风向角度范围是150°→330°)内的平均建筑物高度(选取理由见下一小节)

qqqq

Contact and support