logo

SCIENTIA SINICA Terrae, Volume 51 , Issue 8 : 1258-1274(2021) https://doi.org/10.1360/SSTe-2020-0292

富营养化条件下浙江象山港可溶性有机质的光谱和分子特征初探

More info
  • ReceivedOct 20, 2020
  • AcceptedJan 22, 2021
  • PublishedJun 4, 2021

Abstract


Funded by

国家自然科学基金项目(41973070,41773098)

自然资源部第二海洋研究所卫星海洋环境动力学国家重点实验室青年“海星学者”开放课题项目(QNHX2124)


Acknowledgment

感谢三位匿名审稿人的及时审阅和建设性意见.


References

[1] 董礼先, 苏纪兰. 2000. 象山港盐度分布和水体I. 盐度分布和环流结构. 海洋与湖沼, 31: 410–415. Google Scholar

[2] 焦念志. 2012. 海洋固碳与储碳——并论微型生物在其中的重要作用. 中国科学: 地球科学, 42: 1473–1486. Google Scholar

[3] 焦念志, 张传伦, 李超, 王晓雪, 党宏月, 曾庆璐, 张锐, 张瑶, 汤凯, 张子莲, 徐大鹏. 2013. 海洋微型生物碳泵储碳机制及气候效应. 中国科学: 地球科学, 43: 1–18. Google Scholar

[4] 吕华庆, 常抗美, 石钢德. 2009. 象山港氮、磷营养盐环流和分布规律的研究. 海洋与湖沼, 40: 138–144. Google Scholar

[5] 王鹏程. 2013. 大辽河口物质输运时间的数值研究. 博士学位论文. 青岛: 中国海洋大学. Google Scholar

[6] 张传伦, 孙军, 刘纪化, 蔡阮鸿. 2019. 海洋微型生物碳泵理论的发展与展望. 中国科学: 地球科学, 49: 1933–1944. Google Scholar

[7] 张丽旭, 蒋晓山, 蔡燕红. 2006. 近4年来象山港赤潮监控区营养盐变化及其结构特征. 海洋通报, 25: 1–9. Google Scholar

[8] 张丽旭, 蒋晓山, 蔡燕红. 2008. 象山港海水中营养盐分布与富营养化特征分析. 海洋环境科学, 27: 488–491. Google Scholar

[9] 郑云龙, 朱红文, 罗益华. 2000. 象山港海域水质状况评价. 海洋环境科学, 19: 56–59. Google Scholar

[10] 中国海湾志编纂委员会(ECBCC). 1992. 中国海湾志(第五分册). 北京: 海洋出版社. 217–218. Google Scholar

[11] Asmala E, Haraguchi L, Markager S, Massicotte P, Riemann B, Staehr P A, Carstensen J. Eutrophication leads to accumulation of recalcitrant autochthonous organic matter in coastal environment. Glob Biogeochem Cycle, 2018, 32: 1673-1687 CrossRef ADS Google Scholar

[12] Bianchi T S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect. Proc Natl Acad Sci USA, 2011, 108: 19473-19481 CrossRef PubMed ADS Google Scholar

[13] Burdige D J. Dissolved organic matter in Chesapeake Bay sediment pore waters. Org Geochem, 2001, 32: 487-505 CrossRef Google Scholar

[14] Burdige D J, Berelson W M, Coale K H, McManus J, Johnson K S. Fluxes of dissolved organic carbon from California continental margin sediments. Geochim Cosmochim Acta, 1999, 63: 1507-1515 CrossRef Google Scholar

[15] Burdige D J, Komada T. 2015. Sediment Pore Waters. In: Hansell D A, Carlson C A, eds. Biogeochemistry of Marine Dissolved Organic Matter. 2nd ed. London: Academic Press. 535–577. Google Scholar

[16] Chari N V H K, Sarma N S, Pandi S R, Murthy K N. Seasonal and spatial constraints of fluorophores in the Midwestern Bay of Bengal by PARAFAC analysis of excitation emission matrix spectra. Estuar Coast Shelf Sci, 2012, 100: 162-171 CrossRef ADS Google Scholar

[17] Chen H, Zheng B. Sources of fluorescent dissolved organic matter in high salinity seawater (Bohai Bay, China). Environ Sci Pollut Res, 2013, 20: 1762-1771 CrossRef Google Scholar

[18] Chen M, Hur J. Pre-treatments, characteristics, and biogeochemical dynamics of dissolved organic matter in sediments: A review. Water Res, 2015, 79: 10-25 CrossRef PubMed Google Scholar

[19] Chen M, Jaffé R. Photo- and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface waters in a subtropical wetland. Water Res, 2014, 61: 181-190 CrossRef PubMed Google Scholar

[20] Chen M, Kim J H, Nam S I, Niessen F, Hong W L, Kang M H, Hur J. Production of fluorescent dissolved organic matter in Arctic Ocean sediments. Sci Rep, 2016, 6: 39213 CrossRef PubMed ADS Google Scholar

[21] Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem, 1996, 51: 325-346 CrossRef Google Scholar

[22] Cory R M, McKnight D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol, 2005, 39: 8142-8149 CrossRef PubMed ADS Google Scholar

[23] Cory R M, Miller M P, McKnight D M, Guerard J J, Miller P L. Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol Oceanogr Meth, 2010, 8: 67-78 CrossRef Google Scholar

[24] Debelius B, Forja J M, Del Valls A, Lubián L M. Effect of linear alkylbenzene sulfonate (LAS) and atrazine on marine microalgae. Mar Pollut Bull, 2008, 57: 559-568 CrossRef PubMed Google Scholar

[25] Del Vecchio R, Blough N V. Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight. Mar Chem, 2004, 89: 169-187 CrossRef Google Scholar

[26] Dittmar T, Koch B, Hertkorn N, Kattner G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol Oceanogr Meth, 2008, 6: 230-235 CrossRef Google Scholar

[27] Dong M M, Rosario-Ortiz F L. Photochemical formation of hydroxyl radical from effluent organic matter. Environ Sci Technol, 2012, 46: 3788-3794 CrossRef PubMed ADS Google Scholar

[28] Guo W, Yang L, Zhai W, Chen W, Osburn C L, Huang X, Li Y. Runoff-mediated seasonal oscillation in the dynamics of dissolved organic matter in different branches of a large bifurcated estuary—The Changjiang Estuary. J Geophys Res, 2014, 119: 776-793 CrossRef ADS Google Scholar

[29] Guo W D, Stedmon C A, Han Y C, Wu F, Yu X X, Hu M H. The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters. Mar Chem, 2007, 107: 357-366 CrossRef Google Scholar

[30] Hansell D A, Carlson C A. 2014. Biogeochemistry of Marine Dissolved Organic Matter. London: Academic Press. Google Scholar

[31] Hansen A M, Kraus T E C, Pellerin B A, Fleck J A, Downing B D, Bergamaschi B A. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnol Oceanogr, 2016, 61: 1015-1032 CrossRef ADS Google Scholar

[32] Hayes J M. Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence. Mar Geol, 1993, 113: 111-125 CrossRef Google Scholar

[33] He D, He C, Li P, Zhang X, Shi Q, Sun Y. Optical and molecular signatures of dissolved organic matter reflect anthropogenic influence in a coastal river, Northeast China. J Environ Qual, 2019, 48: 603-613 CrossRef PubMed Google Scholar

[34] He D, Wang K, Pang Y, He C, Li P, Li Y, Xiao S, Shi Q, Sun Y. Hydrological management constraints on the chemistry of dissolved organic matter in the Three Gorges Reservoir. Water Res, 2020, 187: 116413 CrossRef PubMed Google Scholar

[35] Hedges J I. Global biogeochemical cycles: Progress and problems. Mar Chem, 1992, 39: 67-93 CrossRef Google Scholar

[36] Helms J R, Stubbins A, Ritchie J D, Minor E C, Kieber D J, Mopper K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr, 2008, 53: 955-969 CrossRef ADS Google Scholar

[37] Hernes P J, Benner R. Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments. J Geophys Res, 2003, 108: C9 CrossRef ADS Google Scholar

[38] Heydebreck F, Tang J, Xie Z, Ebinghaus R. Alternative and legacy perfluoroalkyl substances: Differences between European and Chinese river/estuary systems. Environ Sci Technol, 2015, 49: 8386-8395 CrossRef PubMed ADS Google Scholar

[39] Hu J, Zou L, Wang J, Ren Q, Xia B, Yu G. Factors regulating the compositions and distributions of dissolved organic matter in the estuaries of Jiaozhou Bay in North China. Oceanologia, 2020, 62: 101-110 CrossRef Google Scholar

[40] Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond J M, Parlanti E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem, 2009, 40: 706-719 CrossRef Google Scholar

[41] Islam M S. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: Review and analysis towards model development. Mar Pollut Bull, 2005, 50: 48-61 CrossRef PubMed Google Scholar

[42] Jaffe R, Cawley K M, Yamashita Y. 2014. Applications of Excitation Emission Matrix Fluorescence with Parallel Factor Analysis (EEM-PARAFAC) in assessing environmental dynamics of natural dissolved organic matter (DOM) in aquatic environments: A review. In: Rosario-Ortiz F, ed. Advances in the Physicochemical Characterization of Dissolved Organic Matter: Impact on Natural and Engineered Systems. ACS Symposium Series, Vol. 1160. Washington, DC: American Chemical Society. 27–73. Google Scholar

[43] Jiang T, Skyllberg U, Bjom E, Green N W, Tang J, Wang D, Gao J, Li C. 2017. Characteristics of dissolved organic matter (DOM) and relationship with dissolved mercury in Xiaoqing River-Laizhou Bay estuary, Bohai Sea, China. Environ Pollut, 223: 19–30. Google Scholar

[44] Jiang Z, Du P, Liao Y, Liu Q, Chen Q, Shou L, Zeng J, Chen J. Oyster farming control on phytoplankton bloom promoted by thermal discharge from a power plant in a eutrophic, semi-enclosed bay. Water Res, 2019a, 159: 1-9 CrossRef PubMed Google Scholar

[45] Jiang Z, Du P, Liu J, Chen Y, Zhu Y, Shou L, Zeng J, Chen J. Phytoplankton biomass and size structure in Xiangshan Bay, China: Current state and historical comparison under accelerated eutrophication and warming. Mar Pollut Bull, 2019b, 142: 119-128 CrossRef PubMed Google Scholar

[46] Jiang Z, Gao Y, Chen Y, Du P, Zhu X, Liao Y, Liu X, Zeng J. Spatial heterogeneity of phytoplankton community shaped by a combination of anthropogenic and natural forcings in a long narrow bay in the East China Sea. Estuar Coast Shelf Sci, 2019c, 217: 250-261 CrossRef ADS Google Scholar

[47] Jiang Z, Liao Y, Liu J, Shou L, Chen Q, Yan X, Zhu G, Zeng J. Effects of fish farming on phytoplankton community under the thermal stress caused by a power plant in a eutrophic, semi-enclosed bay: Induce toxic dinoflagellate (Prorocentrum minimum) blooms in cold seasons. Mar Pollut Bull, 2013a, 76: 315-324 CrossRef PubMed Google Scholar

[48] Jiang Z, Liu J, Li S, Chen Y, Du P, Zhu Y, Liao Y, Chen Q, Shou L, Yan X, Zeng J, Chen J. Kelp cultivation effectively improves water quality and regulates phytoplankton community in a turbid, highly eutrophic bay. Sci Total Environ, 2020, 707: 135561 CrossRef PubMed ADS Google Scholar

[49] Jiang Z, Zhu X, Gao Y, Chen Q, Zeng J, Zhu G. Spatio-temporal distribution of net-collected phytoplankton community and its response to marine exploitation in Xiangshan Bay. Chin J Ocean Limnol, 2013b, 31: 762-773 CrossRef ADS Google Scholar

[50] Jiao N, Herndl G J, Hansell D A, Benner R, Kattner G, Wilhelm S W, Kirchman D L, Weinbauer M G, Luo T, Chen F, Azam F. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat Rev Microbiol, 2010, 8: 593-599 CrossRef PubMed Google Scholar

[51] Ke Z, Chen D, Liu J, Tan Y. The effects of anthropogenic nutrient inputs on stable carbon and nitrogen isotopes in suspended particulate organic matter in Jiaozhou Bay, China. Cont Shelf Res, 2020, 208: 104244 CrossRef ADS Google Scholar

[52] Keeley J E, Sandquist D R. Carbon: Freshwater plants. Plant Cell Environ, 1992, 15: 1021-1035 CrossRef Google Scholar

[53] Koch B P, Witt M R, Engbrodt R, Dittmar T, Kattner G. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Geochim Cosmochim Acta, 2005, 69: 3299-3308 CrossRef ADS Google Scholar

[54] Lee S A, Kim T H, Kim G. Tracing terrestrial versus marine sources of dissolved organic carbon in a coastal bay using stable carbon isotopes. Biogeosciences, 2020, 17: 135-144 CrossRef ADS Google Scholar

[55] Li M, Xie W, Li P, Yin K, Zhang C. Establishing a terrestrial proxy based on fluorescent dissolved organic matter from sediment pore waters in the East China Sea. Water Res, 2020, 182: 116005 CrossRef PubMed Google Scholar

[56] Lin H, Cai Y, Sun X, Chen G, Huang B, Cheng H, Chen M. Sources and mixing behavior of chromophoric dissolved organic matter in the Taiwan Strait. Mar Chem, 2016, 187: 43-56 CrossRef Google Scholar

[57] Lu Q, He D, Pang Y, Zhang Y, He C, Wang Y, Zhang H, Shi Q, Sun Y. Processing of dissolved organic matter from surface waters to sediment pore waters in a temperate coastal wetland. Sci Total Environ, 2020, 742: 140491 CrossRef PubMed ADS Google Scholar

[58] McAvoy D C, Eckhoff W S, Rapaport R A. Fate of linear alkylbenzene sulfonate in the environment. Environ Toxicol Chem, 1993, 12: 977-987 CrossRef Google Scholar

[59] McKnight D M, Boyer E W, Westerhoff P K, Doran P T, Kulbe T, Andersen D T. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr, 2001, 46: 38-48 CrossRef ADS Google Scholar

[60] Medeiros P M, Seidel M, Ward N D, Carpenter E J, Gomes H R, Niggemann J, Krusche A V, Richey J E, Yager P L, Dittmar T. Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean. Glob Biogeochem Cycle, 2015, 29: 677-690 CrossRef ADS Google Scholar

[61] Mendoza W G, Kang Y, Zika R G. Resolving DOM fluorescence fractions during a Karenia brevis bloom patch on the Southwest Florida Shelf. Cont Shelf Res, 2012, 32: 121-129 CrossRef ADS Google Scholar

[62] Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem, 1997, 27: 213-250 CrossRef Google Scholar

[63] Minor E C, Swenson M M, Mattson B M, Oyler A R. Structural characterization of dissolved organic matter: A review of current techniques for isolation and analysis. Environ Sci Process Impacts, 2014, 16: 2064-2079 CrossRef PubMed Google Scholar

[64] Mopper K, Schultz C A. Fluorescence as a possible tool for studying the nature and water column distribution of DOC components. Mar Chem, 1993, 41: 229-238 CrossRef Google Scholar

[65] Moran M A, Zepp R G. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol Oceanogr, 1997, 42: 1307-1316 CrossRef ADS Google Scholar

[66] Murphy K R, Butler K D, Spencer R G M, Stedmon C A, Boehme J R, Aiken G R. Measurement of dissolved organic matter fluorescence in aquatic environments: An interlaboratory comparison. Environ Sci Technol, 2010, 44: 9405-9412 CrossRef PubMed ADS Google Scholar

[67] Murphy K R, Stedmon C A, Graeber D, Bro R. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal Methods, 2013, 5: 6557-6566 CrossRef Google Scholar

[68] Murphy K R, Stedmon C A, Waite T D, Ruiz G M. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar Chem, 2008, 108: 40-58 CrossRef Google Scholar

[69] Ohno T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Technol, 2002, 36: 742-746 CrossRef PubMed ADS Google Scholar

[70] Osburn C L, Wigdahl C R, Fritz S C, Saros J E. Dissolved organic matter composition and photoreactivity in prairie lakes of the U.S. Great Plains. Limnol Oceanogr, 2011, 56: 2371-2390 CrossRef ADS Google Scholar

[71] Pan X, Tang J, Li J, Guo Z, Zhang G. Levels and distributions of PBDEs and PCBs in sediments of the Bohai Sea, North China. J Environ Monit, 2010, 12: 1234-1241 CrossRef PubMed Google Scholar

[72] Pang Y, Wang K, Sun Y, Zhou Y, Yang S, Li Y, He C, Shi Q, He D. Linking the unique molecular complexity of dissolved organic matter to flood period in the Yangtze River mainstream. Sci Total Environ, 2021, 764: 142803 CrossRef ADS Google Scholar

[73] Qualls R G, Richardson C J. Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida. Biogeochemistry, 2003, 62: 197-229 CrossRef Google Scholar

[74] Repeta D J. 2015. Chemical characterization and cycling of dissolved organic matter. In: Hansell D A, Carlson C A, eds. Biogeochemistry of Marine Dissolved Organic Matter. 2nd ed. London: Academic Press. 21-63. Google Scholar

[75] Retelletti Brogi S, Ha S Y, Kim K, Derrien M, Lee Y K, Hur J. Optical and molecular characterization of dissolved organic matter (DOM) in the Arctic ice core and the underlying seawater (Cambridge Bay, Canada): Implication for increased autochthonous DOM during ice melting. Sci Total Environ, 2018, 627: 802-811 CrossRef PubMed ADS Google Scholar

[76] Rochelle-Newall E J, Fisher T R. Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: An investigation into the role of phytoplankton. Mar Chem, 2002, 77: 7-21 CrossRef Google Scholar

[77] Roth V N, Lange M, Simon C, Hertkorn N, Bucher S, Goodall T, Griffiths R I, Mellado-Vázquez P G, Mommer L, Oram N J, Weigelt A, Dittmar T, Gleixner G. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat Geosci, 2019, 12: 755-761 CrossRef ADS Google Scholar

[78] Rowe G T, Deming J W. An alternative view of the role of heterotrophic microbes in the cycling of organic matter in deep-sea sediments. Mar Biol Res, 2011, 7: 629-636 CrossRef Google Scholar

[79] Seidel M, Beck M, Riedel T, Waska H, Suryaputra I G N A, Schnetger B, Niggemann J, Simon M, Dittmar T. Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank. Geochim Cosmochim Acta, 2014, 140: 418-434 CrossRef ADS Google Scholar

[80] Seidel M, Yager P L, Ward N D, Carpenter E J, Gomes H R, Krusche A V, Richey J E, Dittmar T, Medeiros P M. Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum. Mar Chem, 2015, 177: 218-231 CrossRef Google Scholar

[81] Sipler R E, Bronk D A. 2015. Dynamics of Dissolved Organic Nitrogen. In: Hansell D A, Carlson C A, eds. Biogeochemistry of Marine Dissolved Organic Matter. 2nd ed. London: Academic Press. 127–232. Google Scholar

[82] Sleighter R L, Hatcher P G. Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar Chem, 2008, 110: 140-152 CrossRef Google Scholar

[83] Stedmon C A, Bro R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol Oceanogr Meth, 2008, 6: 572-579 CrossRef Google Scholar

[84] Stedmon C A, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem, 2003, 82: 239-254 CrossRef Google Scholar

[85] Stedmon C A, Osburn C L, Kragh T. Tracing water mass mixing in the Baltic-North Sea transition zone using the optical properties of coloured dissolved organic matter. Estuar Coast Shelf Sci, 2010, 87: 156-162 CrossRef ADS Google Scholar

[86] Stubbins A, Spencer R G M, Chen H, Hatcher P G, Mopper K, Hernes P J, Mwamba V L, Mangangu A M, Wabakanghanzi J N, Six J. Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnol Oceanogr, 2010, 55: 1467-1477 CrossRef ADS Google Scholar

[87] Thornton D C O. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur J Phycology, 2014, 49: 20-46 CrossRef Google Scholar

[88] Utsunomiya A, Watanuki T, Matsushita K, Tomita I. Toxic effects of linear alkylbenzenesulfonate and quaternary alkylammonium chloride on Dunaliella sp. as measured by 1H-NMR analysis of glycerol. Chemosphere, 1997, 35: 1215-1226 CrossRef Google Scholar

[89] Valle J, Harir M, Gonsior M, Enrich-Prast A, Schmitt-Kopplin P, Bastviken D, Hertkorn N. Molecular differences between water column and sediment pore water SPE-DOM in ten Swedish boreal lakes. Water Res, 2020, 170: 115320 CrossRef PubMed Google Scholar

[90] Wagner S, Riedel T, Niggemann J, Vähätalo A V, Dittmar T, Jaffé R. Linking the molecular signature of heteroatomic dissolved organic matter to watershed characteristics in world rivers. Environ Sci Technol, 2015, 49: 13798-13806 CrossRef PubMed ADS Google Scholar

[91] Wang Y, Liu D, Dong Z, Di B, Shen X. Temporal and spatial distributions of nutrients under the influence of human activities in Sishili Bay, northern Yellow Sea of China. Mar Pollut Bull, 2012, 64: 2708-2719 CrossRef PubMed Google Scholar

[92] Ward N D, Keil R G, Medeiros P M, Brito D C, Cunha A C, Dittmar T, Yager P L, Krusche A V, Richey J E. Degradation of terrestrially derived macromolecules in the Amazon River. Nat Geosci, 2013, 6: 530-533 CrossRef ADS Google Scholar

[93] Weishaar J L, Aiken G R, Bergamaschi B A, Fram M S, Fujii R, Mopper K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol, 2003, 37: 4702-4708 CrossRef PubMed ADS Google Scholar

[94] Wu R S S. The environmental impact of marine fish culture: Towards a sustainable future. Mar Pollut Bull, 1995, 31: 159-166 CrossRef Google Scholar

[95] Yamashita Y, Boyer J N, Jaffé R. Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy. Cont Shelf Res, 2013, 66: 136-144 CrossRef ADS Google Scholar

[96] Yamashita Y, Cory R M, Nishioka J, Kuma K, Tanoue E, Jaffé R. Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep Sea Res Part II-Topic Stud Oceanogr, 2010a, 57: 1478-1485 CrossRef ADS Google Scholar

[97] Yamashita Y, Jaffé R, Maie N, Tanoue E. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnol Oceanogr, 2008, 53: 1900-1908 CrossRef ADS Google Scholar

[98] Yamashita Y, Maie N, Briceño H, Jaffé R. Optical characterization of dissolved organic matter in tropical rivers of the Guayana Shield, Venezuela. J Geophys Res, 2010b, 115: G00F10 CrossRef ADS Google Scholar

[99] Yamashita Y, Panton A, Mahaffey C, Jaffé R. Assessing the spatial and temporal variability of dissolved organic matter in Liverpool Bay using excitation-emission matrix fluorescence and parallel factor analysis. Ocean Dyn, 2010c, 61: 569-579 CrossRef ADS Google Scholar

[100] Yang Z, Chen J, Li H, Jin H, Gao S, Ji Z, Zhu Y, Ran L, Zhang J, Liao Y, Bai Y. Sources of nitrate in Xiangshan Bay (China), as identified using nitrogen and oxygen isotopes. Estuar Coast Shelf Sci, 2018, 207: 109-118 CrossRef ADS Google Scholar

[101] Zeng J, Chen M, Guo L, Lin H, Mu X, Fan L, Zheng M, Qiu Y. Role of organic components in regulating denitrification in the coastal water of Daya Bay, southern China. Environ Sci Process Impacts, 2019, 21: 831-844 CrossRef PubMed Google Scholar

[102] Zhang Y, Santos I R, Li H L, Wang Q Q, Xiao K, Guo H M, Wang X J. Submarine groundwater discharge drives coastal water quality and nutrient budgets at small and large scales. Geochim Cosmochim Acta, 2020, 290: 201-215 CrossRef ADS Google Scholar

[103] Zhou Y, He D, He C, Li P, Fan D, Wang A, Zhang K, Chen B, Zhao C, Wang Y, Shi Q, Sun Y. Spatial changes in molecular composition of dissolved organic matter in the Yangtze River Estuary: Implications for the seaward transport of estuarine DOM. Sci Total Environ, 2021, 759: 143531 CrossRef PubMed ADS Google Scholar

[104] Zhou Y, Li Y, Yao X, Ding W, Zhang Y, Jeppesen E, Zhang Y, Podgorski D C, Chen C, Ding Y, Wu H, Spencer R G M. Response of chromophoric dissolved organic matter dynamics to tidal oscillations and anthropogenic disturbances in a large subtropical estuary. Sci Total Environ, 2019, 662: 769-778 CrossRef PubMed ADS Google Scholar

[105] Zhu W Z, Zhang H H, Zhang J, Yang G P. Seasonal variation in chromophoric dissolved organic matter and relationships among fluorescent components, absorption coefficients and dissolved organic carbon in the Bohai Sea, the Yellow Sea and the East China Sea. J Mar Syst, 2018, 180: 9-23 CrossRef ADS Google Scholar

  • 图 1

    象山港各港区图和站位图

  • 图 2

    象山港各段水质因子和碳同位素值变化情况

  • 图 3

    表层水、底层水体和孔隙水光谱参数对比图

  • 图 4

    各站位表层水、底层水体和孔隙水的荧光组分相对占比

  • 图 5

    H1、X2M8表层水CHOCHOS柱状图

  • 图 6

    光谱和质谱相关参数与盐度的关系图

  • 图 7

    中国各港湾类蛋白荧光组分与盐度的关系

  • 图 8

    象山港、辽河和大辽河口长江口DOM样品分子组成(H/CO/C)对比

  • 表 1   不同站位水体的总体化学参数和光谱参数

    站位

    盐度

    (psu)

    Chla

    (µg L−1)

    DOC

    (mg L−1)

    δ13C(‰)

    S275~295

    SR

    a355(m−1)

    a355/DOC

    (L m−1 mg−1)

    SUVA254

    (L mg C−1 m−1)

    FI

    HIX

    BIX

    铁港

    T1B

    22.4

    1.2

    1.63

    −25.8

    0.010

    4.30

    4.69

    2.87

    5.96

    1.57

    0.53

    0.92

    T1S

    21.7

    1.8

    1.48

    −25.8

    0.019

    1.12

    0.82

    0.55

    3.31

    1.58

    0.51

    0.97

    T2B

    23.3

    1.0

    1.30

    −26.2

    0.020

    1.01

    0.79

    0.61

    3.53

    1.66

    0.47

    1.02

    T2S

    22.7

    0.9

    1.39

    −25.8

    0.021

    1.04

    0.69

    0.49

    3.19

    1.64

    0.47

    1.02

    平均值

    22.5

    1.2

    1.45

    −25.9

    0.018

    1.87

    0.76

    1.13

    4.00

    1.61

    0.50

    0.98

    黄墩港

    H1B

    20.6

    1.6

    1.55

    −26.4

    0.018

    0.94

    1.30

    0.84

    4.26

    1.79

    0.56

    0.96

    H1S

    20.2

    1.0

    1.73

    −26.2

    0.017

    0.89

    1.28

    0.74

    3.77

    1.80

    0.57

    0.97

    H2B

    22.9

    1.2

    1.41

    −25.9

    0.019

    1.22

    1.12

    0.80

    3.60

    1.70

    0.48

    1.06

    H2S

    22.5

    0.8

    1.44

    −26.3

    0.019

    0.97

    1.08

    0.76

    3.88

    1.76

    0.51

    1.03

    平均值

    21.5

    1.2

    1.53

    −26.2

    0.018

    1.01

    1.20

    0.78

    3.88

    1.76

    0.53

    1.01

    西沪港

    X1B

    24.4

    1.1

    1.31

    −25.4

    0.019

    1.37

    1.54

    1.17

    4.70

    1.62

    0.47

    1.03

    X1S

    24.2

    0.8

    1.34

    −24.9

    0.020

    1.41

    1.35

    1.01

    4.19

    1.69

    0.46

    1.07

    X2B

    24.3

    0.7

    1.42

    −25.1

    0.021

    1.45

    1.53

    1.08

    4.66

    1.61

    0.49

    0.95

    X2S

    24.0

    0.7

    1.36

    −24.5

    0.023

    1.16

    1.11

    0.82

    4.15

    1.55

    0.45

    0.97

    平均值

    24.2

    0.8

    1.36

    −25.0

    0.021

    1.35

    1.38

    1.02

    4.42

    1.62

    0.47

    1.00

    主港

    M1B

    24.3

    1.0

    1.18

    −25.7

    0.022

    1.07

    0.83

    0.70

    3.78

    1.64

    0.45

    1.00

    M1S

    23.8

    1.0

    1.25

    −25.8

    0.029

    1.16

    0.73

    0.59

    3.43

    1.65

    0.46

    1.06

    M2B

    24.3

    0.5

    1.30

    −25.7

    0.020

    1.26

    1.15

    0.89

    4.02

    1.66

    0.44

    1.05

    M2S

    23.8

    2.5

    1.26

    −25.9

    0.019

    1.39

    1.30

    1.03

    4.40

    1.72

    0.43

    1.06

    M3B

    24.8

    1.7

    1.31

    −25.7

    0.021

    1.78

    1.34

    1.03

    4.21

    1.87

    0.43

    1.03

    M3S

    24.5

    0.5

    1.26

    −25.5

    0.018

    1.37

    1.46

    1.17

    4.55

    1.67

    0.45

    1.03

    平均值

    24.2

    1.2

    1.26

    −25.7

    0.022

    1.34

    1.14

    0.90

    4.07

    1.70

    0.44

    1.04

    港口

    M4B

    25.2

    1.0

    1.12

    −25.8

    0.020

    1.28

    1.43

    1.27

    4.99

    1.62

    0.43

    1.06

    M4S

    25.1

    1.0

    1.25

    −25.4

    0.017

    1.48

    2.08

    1.66

    5.51

    1.62

    0.44

    1.08

    M5B

    25.3

    1.4

    1.11

    −25.9

    0.020

    1.47

    1.71

    1.54

    5.42

    1.66

    0.44

    1.01

    M5S

    24.9

    2.5

    1.11

    −25.5

    0.019

    1.46

    1.46

    1.31

    4.90

    1.68

    0.40

    1.12

    M6B

    25.6

    1.4

    1.12

    −25.8

    0.020

    1.36

    1.49

    1.33

    4.84

    1.71

    0.46

    1.05

    M6S

    25.5

    1.3

    1.19

    −25.3

    0.018

    1.41

    1.71

    1.44

    5.13

    1.62

    0.44

    1.01

    M7B

    25.7

    1.7

    1.22

    −25.8

    0.020

    1.32

    1.53

    1.25

    4.81

    1.67

    0.41

    1.08

    M7S

    25.5

    0.9

    1.03

    −25.5

    0.020

    1.37

    1.32

    1.28

    4.86

    1.66

    0.44

    1.07

    M8B

    25.8

    1.5

    1.38

    −25.7

    0.020

    1.39

    1.23

    0.90

    3.98

    1.73

    0.41

    1.12

    M8S

    25.7

    1.1

    1.01

    −25.7

    0.018

    1.41

    1.56

    1.54

    5.48

    1.67

    0.44

    1.05

    平均值

    25.4

    1.4

    1.16

    −25.6

    0.019

    1.39

    1.55

    1.35

    4.99

    1.66

    0.43

    1.06

  • 表 2   不同站位孔隙水的总体化学参数和光谱参数

    站位

    DOC

    (mg L−1)

    S275~295

    S350~400

    SR

    a355 (m−1)

    SUVA254

    (L mg C−1 m−1)

    FI

    HIX

    BIX

    T1

    20.65

    0.048

    0.017

    2.755

    1.835

    1.2

    1.92

    0.31

    1.010

    T2

    10.82

    0.043

    0.012

    3.594

    1.177

    1.0

    1.97

    0.47

    0.876

    H1

    7.65

    0.033

    0.016

    2.026

    2.635

    2.4

    1.83

    0.38

    0.948

    H2

    7.81

    0.024

    0.028

    0.876

    4.647

    1.1

    1.86

    0.35

    0.991

    M1

    8.65

    0.040

    0.015

    2.788

    1.112

    1.1

    1.82

    0.43

    0.947

    M2

    8.27

    0.033

    0.017

    2.001

    1.036

    0.9

    1.94

    0.50

    0.857

    M3

    8.96

    0.037

    0.019

    2.003

    0.698

    0.7

    2.05

    0.47

    0.886

    X1

    15.26

    0.056

    0.021

    2.629

    1.317

    1.2

    1.83

    0.23

    0.962

    M4

    12.35

    0.036

    0.020

    1.815

    1.260

    0.9

    1.83

    0.51

    0.894

    M8

    3.84

    0.027

    0.014

    1.891

    2.349

    3.6

    2.26

    0.73

    0.771

  • 表 3   DOM样品强度加权后的FT-ICRMS相关参数

    样品

    No.

    C

    H

    O

    N

    S

    m/z

    O/C

    H/C

    AI

    DBE

    CHO(%)

    CHON(%)

    CHOS(%)

    CHONS(%)

    H1S

    6497

    19.43

    25.22

    0.23

    6.77

    0.22

    377.36

    0.35

    1.35

    0.231

    7.438

    64.7

    13.2

    20.9

    1.3

    H1B

    6352

    19.75

    25.25

    0.26

    6.81

    0.14

    379.57

    0.35

    1.33

    0.248

    7.754

    70.3

    15.7

    13.3

    0.8

    X2S

    5366

    19.42

    25.39

    0.24

    7.20

    0.17

    382.47

    0.38

    1.37

    0.220

    7.343

    68.9

    14.6

    15.4

    1.2

    X2B

    5308

    20.08

    25.60

    0.28

    7.46

    0.07

    392.32

    0.38

    1.33

    0.242

    7.918

    75.0

    17.9

    6.6

    0.7

    M7S

    5083

    20.19

    25.79

    0.24

    7.42

    0.07

    392.66

    0.37

    1.33

    0.241

    7.915

    77.1

    15.6

    7.0

    0.4

    M7B

    5508

    19.22

    25.16

    0.23

    7.14

    0.15

    378.28

    0.38

    1.38

    0.223

    7.257

    71.0

    14.1

    14.1

    0.9

  • 表 4   不同港湾的总体化学参数和光谱参数的对比

    研究区域

    盐度

    Chla

    (µg L −1)

    DOC

    (mg L−1)

    δ13C

    (‰)

    S275~295

    a355

    SUVA254

    (L mg C−1 m−1)

    FI

    HIX

    参考文献

    世界范围

     

    切萨皮克湾

    N/A

    N/A

    0.4~1.5

    N/A

    N/A

    1.20~1.93

    N/A

    N/A

    N/A

    Rochelle-Newall和Fisher, 2002

    达尔文湾

    N/A

    N/A

    1.8~4.8

    N/A

    N/A

    4~6

    N/A

    N/A

    N/A

    Del Vecchio和Blough, 2004

    孟加拉湾

    2.3~14

    9.1~4.3

    N/A

    N/A

    N/A

    N/A

    N/A

    0.97~1.27

    0.19~0.90

    Chari等, 2012

    利物浦湾

    30.4~33.8

    0.1~1.1

    1.02~1.58

    N/A

    N/A

    N/A

    N/A

    N/A

    N/A

    Yamashita等, 2010c

    剑桥湾

    22.9~26.0

    1.2±1.5

    0.97~2.56

    N/A

    N/A

    N/A

    N/A

    N/A

    N/A

    Retelletti Brogi等, 2018

    佛罗里达湾

    N/A

    N/A

    3.44±1.44

    N/A

    N/A

    N/A

    N/A

    N/A

    N/A

    Yamashita等, 2013

    国内

     

    杭州湾

    6.91±0.39

    2~4

    2.17±1.00

    −24.8±0.3

    N/A

    N/A

    N/A

    N/A

    N/A

    Zhou等, 2019

    莱州湾

    5~30

    N/A

    2.8~11

    N/A

    0.017~0.033

    0.22~6.53

    2.8

    N/A

    0.40~0.73

    Jiang等, 2017

    渤海湾

    30.5~32.1

    2.5~4.5

    1.98~5.42

    N/A

    N/A

    N/A

    N/A

    1.50~1.69

    0.51~0.69

    Chen和Zheng, 2013

    大亚湾

    19.4~33.0

    N/A

    0.96~2.78

    N/A

    N/A

    N/A

    N/A

    N/A

    N/A

    Zeng等, 2019

    象山港

    20.2~25.8

    1.2

    1.0~1.7

    −25.7±0.4

    0.010~0.023

    0.69~2.08

    4.41

    1.67

    0.40~0.53

    本研究

qqqq

Contact and support