SCIENTIA SINICA Terrae, Volume 51 , Issue 3 : 483-486(2021) https://doi.org/10.1360/SSTe-2020-0242

汶川-芦山地震间的空区危险性研究: 现状思考和挑战

郑勇 1,3,*, 郭汝梦 2,3,4
More info
  • ReceivedSep 14, 2020
  • AcceptedJan 12, 2021
  • PublishedJan 28, 2021


There is no abstract available for this article.

Funded by







[1] Diao F, Wang R, Wang Y, Xiong X, Walter T R. Fault behavior and lower crustal rheology inferred from the first seven years of postseismic GPS data after the 2008 Wenchuan earthquake. Earth Planet Sci Lett, 2018, 495: 202-212 CrossRef ADS Google Scholar

[2] Dong S, Han Z, An Y. Paleoseismological events in the “seismic gap” between the 2008 Wenchuan and the 2013 Lushan earthquakes and implications for future seismic potential. J Asian Earth Sci, 2017, 135: 1-15 CrossRef ADS Google Scholar

[3] Guo R, Zheng Y, Xu J. Stress modulation of the seismic gap between the 2008 Ms8.0 Wenchuan earthquake and the 2013 Ms7.0 Lushan earthquake and implications for seismic hazard. Geophys J Int, 2020, 221: 2113-2125 CrossRef Google Scholar

[4] Li Y, Zhang G, Shan X, Liu Y, Wu Y, Liang H, Qu C, Song X. GPS-derived fault coupling of the Longmenshan Fault associated with the 2008 Mw Wenchuan 7.9 Earthquake and its tectonic implications. Remote Sens, 2018, 10: 753 CrossRef ADS Google Scholar

[5] Li Z, Tian B, Liu S, Yang J. Asperity of the 2013 Lushan earthquake in the eastern margin of Tibetan Plateau from seismic tomography and aftershock relocation. Geophys J Int, 2013, 195: 2016-2022 CrossRef ADS Google Scholar

[6] Liu Z, Liang C, Hua Q, Li Y, Yang Y, He F, Fang L. The seismic potential in the seismic gap between the Wenchuan and Lushan earthquakes revealed by the joint inversion of receiver functions and ambient noise data. Tectonics, 2018, 37: 4226-4238 CrossRef ADS Google Scholar

[7] Pei S, Zhang H, Su J, Cui Z. Ductile gap between the Wenchuan and Lushan earthquakes revealed from the two-dimensional Pg seismic tomography. Sci Rep, 2015, 4: 6489 CrossRef ADS Google Scholar

[8] Roland E, Lizarralde D, McGuire J J, Collins J A. Seismic velocity constraints on the material properties that control earthquake behavior at the Quebrada-Discovery-Gofar transform faults, East Pacific Rise. J Geophys Res, 2012, 117: B11102 CrossRef ADS Google Scholar

[9] Tan X, Yue H, Liu Y, Xu X, Shi F, Xu C, Ren Z, Shyu J B H, Lu R, Hao H. Topographic loads modified by fluvial incision impact fault activity in the Longmenshan thrust belt, eastern margin of the Tibetan Plateau. Tectonics, 2018, 37: 3001-3017 CrossRef ADS Google Scholar

[10] Wang C, Liang C, Deng K, Huang Y, Zhou L. Spatiotemporal distribution of microearthquakes and implications around the seismic gap between the Wenchuan and Lushan earthquakes. Tectonics, 2018, 37: 2695-2709 CrossRef Google Scholar

[11] Wang F, Wang M, Wang Y, Shen Z K. Earthquake potential of the Sichuan-Yunnan region, western China. J Asian Earth Sci, 2015, 107: 232-243 CrossRef Google Scholar

  • 图 1


    红色和黄色的沙滩球分别代表汶川地震和芦山地震的震源机制. 红色和黄色的五角星分别代表汶川地震和芦山地震的震中位置. 蓝色和紫色的圆圈分别代表汶川地震和芦山地震余震重定位的结果. 深灰色的椭圆1和2分别代表鲜水河中南段(Guo等, 2020)和安宁河地震空区. 白色实心圆圈代表周边的城市分布. WLSG: 汶川地震和芦山地震之间的地震空区. LMSF: 龙门山断层; MJF: 岷江断层; LRBF: 龙日坝断层; XSHF: 鲜水河断层; ANHF: 安宁河断层. I: 华南地块; II: 龙门山次级块体; III: 阿坝次级块体; IV: 川滇北部次级块体

  • 图 2



Contact and support