logo

SCIENTIA SINICA Terrae, Volume 51 , Issue 7 : 1028-1042(2021) https://doi.org/10.1360/SSTe-2020-0228

中国区域的地表风速还在减弱吗?

More info
  • ReceivedAug 25, 2020
  • AcceptedFeb 7, 2021
  • PublishedJun 7, 2021

Abstract


Funded by

国家重点研发计划项目(2016YFA0600404)

国家自然科学基金项目(41705073,41530532,41506040)

江苏省气候变化协同创新中心


Acknowledgment

感谢中国科学院大气物理研究所的李珍博士和田群博士提供的中国地表风速数据, 感谢南方科技大学的曾振中博士分享的经过质量控制的GSOD和HadISD地表风速数据.


References

[1] 丁一汇, 柳艳菊. 2014. 近50年我国雾和霾的长期变化特征及其与大气湿度的关系. 中国科学: 地球科学, 44: 37–47. Google Scholar

[2] 丁一汇, 司东, 柳艳菊, 王遵娅, 李怡, 赵亮, 宋亚芳. 2018. 论东亚夏季风的特征、驱动力与年代际变化. 大气科学, 42: 533–558. Google Scholar

[3] 丁一汇, 李霄, 李巧萍. 2020. 气候变暖背景下中国地面风速变化研究进展. 应用气象学报, 31: 1–12. Google Scholar

[4] 高歌, 陈德亮, 任国玉, 陈峪, 廖要明. 2006. 1956~2000年中国潜在蒸散量变化趋势. 地理研究, 25: 378–387. Google Scholar

[5] 国家发展和改革委员会, 中国宏观经济研究院能源研究所, 国家可再生能源中心. 2018. 中国可再生能源展望2018(CREO2018). 技术报告. 北京: 国家可再生能源中心. Google Scholar

[6] 李艳, 王元, 储惠芸, 汤剑平. 2008. 中国陆域近地层风能资源的气候变异和下垫面人为改变的影响. 科学通报, 53: 2646–2653. Google Scholar

[7] 刘瑞婷, 韩志伟, 李嘉伟. 2014. 北京冬季雾霾事件的气象特征分析. 气候与环境研究, 19: 164–172. Google Scholar

[8] 任国玉, 郭军, 徐铭志, 初子莹, 张莉, 邹旭凯, 李庆祥, 刘小宁. 2005. 近50年中国地面气候变化基本特征. 气象学报, 63: 942–956. Google Scholar

[9] 孙康慧, 曾晓东, 李芳. 2019. 1980~2014年中国生态脆弱区气候变化特征分析. 气候与环境研究, 24: 455–468. Google Scholar

[10] 王楠, 游庆龙, 刘菊菊. 2019. 1979~2014年中国地面风速的长期变化趋势. 自然资源学报, 34: 1531–1542. Google Scholar

[11] 王遵娅, 丁一汇, 何金海, 虞俊. 2004. 近50年来中国气候变化特征的再分析. 气象学报, 62: 228–236. Google Scholar

[12] 熊晨晓. 2019. 近44年全球陆域近地面风速时空特征及其与气压梯度力的关系. 硕士学位论文. 昆明: 云南大学. Google Scholar

[13] 严中伟, 李珍, 夏江江. 2014. 气候序列的均一化——定量评估气候变化的基础. 中国科学: 地球科学, 44: 2101–2111. Google Scholar

[14] 查进林. 2015. 中国地区土地利用/覆盖变化影响近地面地表风速的分析. 硕士学位论文. 昆明: 云南大学. Google Scholar

[15] 赵宗慈, 罗勇, 江滢, 黄建斌. 2016. 近50年中国风速减小的可能原因. 气象科技进展, 6: 106–109. Google Scholar

[16] 中国气象局气候变化中心. 2019. 中国气候变化蓝皮书(2019). 北京: 中国气象局气候变化中心. 20. Google Scholar

[17] 左洪超, 李栋梁, 胡隐樵, 鲍艳, 吕世华. 2005. 近40 a中国气候变化趋势及其同蒸发皿观测的蒸发量变化的关系. 科学通报, 50: 1125–1130. Google Scholar

[18] Azorin-Molina C, Dunn R J H, Mears C A, Berrisford P, McVicar T R. 2017. Surface winds [in “State of the climate in 2016”]. Bull Am Meteorol Soc, 98: S37–S39. Google Scholar

[19] Azorin-Molina C, Dunn R J H, Mears C A, Berrisford P, McVicar T R. 2018. Surface winds [in “State of the climate in 2017”]. Bull Am Meteorol Soc, 99: S41–S43. Google Scholar

[20] Azorin-Molina C, Dunn R J H, Ricciardulli L, Mears C A, McVicar T R, Nicolas J P, Compo G P, Smith C A. 2020. Land and ocean surface winds [in “State of the climate in 2019”]. Bull Am Meteorol Soc, 101: S63–S65. Google Scholar

[21] Bichet A, Wild M, Folini D, Schär C. Causes for decadal variations of wind speed over land: Sensitivity studies with a global climate model. Geophys Res Lett, 2012, 39: L11701 CrossRef ADS Google Scholar

[22] Cao L, Zhu Y, Tang G, Yuan F, Yan Z. Climatic warming in China according to a homogenized data set from 2419 stations. Int J Climatol, 2016, 36: 4384-4392 CrossRef ADS Google Scholar

[23] Chen L, Li D, Pryor S C. Wind speed trends over China: Quantifying the magnitude and assessing causality. Int J Climatol, 2013, 33: 2579-2590 CrossRef ADS Google Scholar

[24] Dunn R J H, Willett K M, Morice C P, Parker D E. Pairwise homogeneity assessment of HadISD. Clim Past, 2014, 10: 1501-1522 CrossRef ADS Google Scholar

[25] Earl N, Dorling S, Hewston R, von Glasow R. 1980–2010 variability in U.K. surface wind climate. J Clim, 2013, 26: 1172-1191 CrossRef ADS Google Scholar

[26] Feng Y, Que L, Feng J. Spatiotemporal characteristics of wind energy resources from 1960 to 2016 over China. Atmos Ocean Sci Lett, 2020, 13: 136-145 CrossRef Google Scholar

[27] Fu G, Yu J, Zhang Y, Hu S, Ouyang R, Liu W. Temporal variation of wind speed in China for 1961–2007. Theor Appl Climatol, 2011, 104: 313-324 CrossRef ADS Google Scholar

[28] Guo H, Xu M, Hu Q. Changes in near-surface wind speed in China: 1969–2005. Int J Climatol, 2011, 31: 349-358 CrossRef ADS Google Scholar

[29] Kim J C, Paik K. Recent recovery of surface wind speed after decadal decrease: A focus on South Korea. Clim Dyn, 2015, 45: 1699-1712 CrossRef ADS Google Scholar

[30] Kerr R A. A North Atlantic climate pacemaker for the centuries. Science, 2000, 288: 1984-1985 CrossRef PubMed Google Scholar

[31] Li Z, Yan Z, Tu K, Liu W, Wang Y. Changes in wind speed and extremes in Beijing during 1960–2008 based on homogenized observations. Adv Atmos Sci, 2011, 28: 408-420 CrossRef ADS Google Scholar

[32] Li Z, Cao L, Zhu Y, Yan Z. Comparison of two homogenized datasets of daily maximum/mean/minimum temperature in China during 1960–2013. J Meteorol Res, 2016, 30: 53-66 CrossRef ADS Google Scholar

[33] Lin C, Yang K, Qin J, Fu R. Observed coherent trends of surface and upper-air wind speed over China since 1960. J Clim, 2013, 26: 2891-2903 CrossRef ADS Google Scholar

[34] Lin C, Yang K, Huang J, Tang W, Qin J, Niu X, Chen Y, Chen D, Lu N, Fu R. Impacts of wind stilling on solar radiation variability in China. Sci Rep, 2015, 5: 15135 CrossRef PubMed ADS Google Scholar

[35] Liu Z Y, Dong Z B, Zhang Z C, Cui X J, Xiao N. Spatial and temporal variation of the near-surface wind regimes in the Taklimakan Desert, Northwest China. Theor Appl Climatol, 2019, 138: 433-447 CrossRef ADS Google Scholar

[36] Lu X, McElroy M B, Kiviluoma J. Global potential for wind-generated electricity. Proc Natl Acad Sci USA, 2009, 106: 10933-10938 CrossRef PubMed ADS Google Scholar

[37] Mantua N J, Hare S R, Zhang Y, Wallace J M, Francis R C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Amer Meteor Soc, 1997, 78: 1069-1079 CrossRef Google Scholar

[38] McVicar T R, Roderick M L, Donohue R J, Li L T, Van Niel T G, Thomas A, Grieser J, Jhajharia D, Himri Y, Mahowald N M, Mescherskaya A V, Kruger A C, Rehman S, Dinpashoh Y. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J Hydrol, 2012, 416-417: 182-205 CrossRef ADS Google Scholar

[39] Nathan R, Muller-Landau H C. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol, 2000, 15: 278-285 CrossRef Google Scholar

[40] Pryor S C, Barthelmie R J. Assessing climate change impacts on the near-term stability of the wind energy resource over the United States. Proc Natl Acad Sci USA, 2011, 108: 8167-8171 CrossRef PubMed ADS Google Scholar

[41] Roderick M L, Rotstayn L D, Farquhar G D, Hobbins M T. On the attribution of changing pan evaporation. Geophys Res Lett, 2007, 34: L17403 CrossRef ADS Google Scholar

[42] Ryan S E, Porth L S A. 2007. A tutorial on the piecewise regression approach applied to bedload transport data (CreateSpace Independent Publishing Platform). Technical Report. Fort Collins, CO: U.S. Department of Agriculture, Forest Service. Google Scholar

[43] Tian Q, Huang G, Hu K, Niyogi D. Observed and global climate model based changes in wind power potential over the Northern Hemisphere during 1979–2016. Energy, 2019, 167: 1224-1235 CrossRef Google Scholar

[44] Toms J D, Lesperance M L. Piecewise regression: A tool for identifying ecological thresholds. Ecology, 2003, 84: 2034-2041 CrossRef Google Scholar

[45] Vautard R, Cattiaux J, Yiou P, Thépaut J N, Ciais P. Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci, 2010, 3: 756-761 CrossRef ADS Google Scholar

[46] Wang M, Wang J, Chen D, Duan A, Liu Y, Zhou S, Guo D, Wang H, Ju W. Recent recovery of the boreal spring sensible heating over the Tibetan Plateau will continue in CMIP6 future projections. Environ Res Lett, 2019, 14: 124066 CrossRef ADS Google Scholar

[47] Wilks D S. 2005. Statistical Methods in the Atmospheric Sciences. 2nd ed. Amsterdam: Elsevier. 648. Google Scholar

[48] Wu J, Zha J, Zhao D. Estimating the impact of the changes in land use and cover on the surface wind speed over the East China Plain during the period 1980–2011. Clim Dyn, 2016, 46: 847-863 CrossRef ADS Google Scholar

[49] Wu J, Zha J, Zhao D. Evaluating the effects of land use and cover change on the decrease of surface wind speed over China in recent 30 years using a statistical downscaling method. Clim Dyn, 2017, 48: 131-149 CrossRef ADS Google Scholar

[50] Wu J, Zha J, Zhao D, Yang Q. Changes in terrestrial near-surface wind speed and their possible causes: An overview. Clim Dyn, 2018a, 51: 2039-2078 CrossRef ADS Google Scholar

[51] Wu J, Zha J, Zhao D, Yang Q. Effects of surface friction and turbulent mixing on long-term changes in the near-surface wind speed over the Eastern China Plain from 1981 to 2010. Clim Dyn, 2018b, 51: 2285-2299 CrossRef ADS Google Scholar

[52] Wu J, Zha J, Zhao D, Yang Q. Changes of wind speed at different heights over eastern China during 1980–2011. Int J Climatol, 2018c, 38: 4476-4495 CrossRef ADS Google Scholar

[53] Xu M, Chang C P, Fu C, Qi Y, Robock A, Robinson D, Zhang H M. Steady decline of east Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed. J Geophys Res, 2006, 111: D24111 CrossRef ADS Google Scholar

[54] Yang X, Li Z, Feng Q, He Y, An W, Zhang W, Cao W, Yu T, Wang Y, Theakstone W H. The decreasing wind speed in southwestern China during 1969–2009, and possible causes. Quat Int, 2012, 263: 71-84 CrossRef ADS Google Scholar

[55] Yang Q, Ma Z, Fan X, Yang Z L, Xu Z, Wu P. Decadal modulation of precipitation patterns over Eastern China by sea surface temperature anomalies. J Clim, 2017, 30: 7017-7033 CrossRef ADS Google Scholar

[56] Zeng Z, Ziegler A D, Searchinger T, Yang L, Chen A, Ju K, Piao S, Li L Z X, Ciais P, Chen D, Liu J, Azorin-Molina C, Chappell A, Medvigy D, Wood E F. A reversal in global terrestrial stilling and its implications for wind energy production. Nat Clim Chang, 2019, 9: 979-985 CrossRef ADS Google Scholar

[57] Zha J, Wu J, Zhao D, Tang J. A possible recovery of the near-surface wind speed in Eastern China during winter after 2000 and the potential causes. Theor Appl Climatol, 2019a, 136: 119-134 CrossRef ADS Google Scholar

[58] Zha J, Zhao D, Wu J, Zhang P. Numerical simulation of the effects of land use and cover change on the near-surface wind speed over Eastern China. Clim Dyn, 2019b, 53: 1783-1803 CrossRef ADS Google Scholar

[59] Zhang R, Zhang S, Luo J, Han Y, Zhang J. Analysis of near-surface wind speed change in China during 1958–2015. Theor Appl Climatol, 2019a, 137: 2785-2801 CrossRef ADS Google Scholar

[60] Zhang Z, Wang K, Chen D, Li J, Dickinson R. Increase in surface friction dominates the observed surface wind speed decline during 1973–2014 in the Northern Hemisphere lands. J Clim, 2019b, 32: 7421-7435 CrossRef ADS Google Scholar

[61] Zhang Z, Wang K. Stilling and recovery of the surface wind speed based on observation, reanalysis, and geostrophic wind theory over China from 1960 to 2017. J Clim, 2020, 33: 3989-4008 CrossRef ADS Google Scholar

[62] Zheng H, Liu X, Liu C, Dai X, Zhu R. Assessing contributions to panevaporation trends in Haihe River Basin, China. J Geophys Res, 2009, 114: D24105 CrossRef ADS Google Scholar

  • 图 1

    4套地表风速数据集中气象台站的分布及中国9个分区的空间范围

  • 图 2

    中国年平均地表风速及其趋势转变特征

    左列: 年平均地表风速序列(m s−1)及其分段线性回归拟合线, 其中TP、TP1和TP2分别为长期趋势发生转变的年份, 灰线为随机采样40%站点计算的年平均地表风速序列的分段线性回归拟合线(N=300); 基于300次随机采样结果, 统计TP、TP1和TP2的概率密度分布(右列)以及由TP、TP1和TP2分割的各时段内地表风速趋势系数(m s−1 a−1)的概率密度分布(中列)

  • 图 3

    基于4套数据的合集(ALL)计算的中国年平均地表风速及其趋势转变特征

  • 图 4

    中国年平均地表风速的趋势系数(m s−1 a−1)

    填色表示通过了0.05的显著性检验, 数值分别表示正负趋势台站所占百分比, 基于4套数据的合集. (a) 1979~2016年; (b) 1979~1989年; (c) 1990~2013年; (d) 2014~2016年

  • 图 5

    中国9个分区区域平均的年地表风速

    分段线性回归拟合线是基于合集数据(ALL), TP、TP1和TP2为长期趋势发生转变的年份

  • 图 6

    中国季节平均地表风速及其分段线性回归拟合结果

    TP、TP1和TP2分别为长期趋势发生转变的年份, 灰线为随机采样40%站点计算的年平均地表风速序列的分段线性回归拟合线(N=300)

  • 图 7

    1971~2019年中国9个分区区域平均的季节地表风速

    同色竖虚线指示各区季节地表风速长期趋势发生转变的年份, 为便于比较附上了年平均地表风速, 本图仅基于CMA数据

  • 图 8

    CMA/CMA_Tian与GSOD/HadISD数据集的比较

    (a) CMA/CMA_Tian与GSOD/HadISD数据集重叠台站(171对)的空间分布, 填色表示站点间距离小于1km和RMSE大于所有重合台站的75百分位数的站点对; (b) 171对站点年平均地表风速RMSE(m s−1)的时间序列, 及其分段线性回归拟合结果; (c) 1979~2016年(2000~2016年)171对站点年平均地表风速趋势系数(m s−1 a−1)的散点图

  • 图 9

    对比10对站点(图8a中绿色站)的年平均地表风速

    绿线为Li等(2011)均一化的地表风速序列, 右上角的两个数字分别表示各站点对间的距离(km)和RMSE

  • 表 1   文中所使用的地表风速数据集

    序号

    数据

    来源

    站点数

    时段

    分辨率

    1

    CMA

    本文

    413

    1971~2019年

    2

    CMA_Tian

    Tian等(2019)

    351

    1979~2016年

    3

    HadISD

    Zeng等(2019)

    255

    1978~2017年

    4

    GSOD

    Zeng等(2019)

    306

    1978~2017年

    5

    合集(ALL)

    本文

    633

    1979~2016年

qqqq

Contact and support