logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 49 , Issue 5 : 059501(2019) https://doi.org/10.1360/SSPMA2018-00249

Low-degree gravity field recovery of Phobos based on MEX flyby data

More info
  • ReceivedJul 5, 2018
  • AcceptedNov 1, 2018
  • PublishedJan 9, 2019
PACS numbers

Abstract


Funding

国家自然科学基金(U1831132,41374024)

湖北省自然基金重点项目(2015CFA011,2018CFA087)

澳门科技大学月球与行星科学实验室开放课题(FDCT,119/2017/A3)

贵州省射电天文数据处理重点实验室开放课题(KF201813)

中国博士后科学基金(2016M602360)

测绘遥感信息工程国家重点实验室专项科研经费


Acknowledgment

感谢美国宇航局与欧空局提供的历表与模型, 感谢Martin Pätzold教授和Thomas Paul Andert博士提供的火星快车飞掠数据, 感谢Jean-Pierre Barriot教授对数据处理细节给予的指导.


References

[1] Zheng Y C, Ouyang Z Y. Development trend analysis of solar system exploration and the scientific vision for future missions (in Chinese). J Deep Space Expl, 2014, 1: 83–92 [郑永春, 欧阳自远. 太阳系探测的发展趋势与科学问题分析. 深空探测学报, 2014, 1: 83–92]. Google Scholar

[2] Zuber M T, McSween H Y, Binzel R P, et al. Origin, internal structure and evolution of 4 Vesta. Space Sci Rev, 2011, 16377-93 CrossRef ADS Google Scholar

[3] Sagdeev R Z, Zakharov A V. Brief history of the Phobos mission. Nature, 1989, 341581-585 CrossRef ADS Google Scholar

[4] Duxbury T C, Zakharov A V, Hoffmann H, et al. Spacecraft exploration of Phobos and Deimos. Planet Space Sci, 2014, 1029-17 CrossRef ADS Google Scholar

[5] Duxbury T C. The figure of Phobos. Icarus, 1989, 78169-180 CrossRef ADS Google Scholar

[6] Thomas N, Britt D T, Herkenhoff K E, et al. Observations of Phobos, Deimos, and bright stars with the Imager for Mars Pathfinder. J Geophys Res, 1999, 1049055-9068 CrossRef ADS Google Scholar

[7] Bills B G, Neumann G A, Smith D E, et al. Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos. J Geophys Res, 2005, 110E07004 CrossRef ADS Google Scholar

[8] Thomas N, Stelter R, Ivanov A, et al. Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars Pathfinder results. Planet Space Sci, 2011, 591281-1292 CrossRef ADS Google Scholar

[9] Witasse O, Duxbury T, Chicarro A, et al. Mars express investigations of Phobos and Deimos. Planet Space Sci, 2014, 10218-34 CrossRef ADS Google Scholar

[10] Willner K, Oberst J, Hussmann H, et al. Phobos control point network, rotation, and shape. Earth Planet Sci Lett, 2010, 294541-546 CrossRef ADS Google Scholar

[11] Pätzold M, Andert T P, Tyler G L, et al. Phobos mass determination from the very close flyby of Mars Express in 2010. Icarus, 2014, 22992-98 CrossRef ADS Google Scholar

[12] Shi X, Willner K, Oberst J, et al. Working models for the gravitational field of Phobos. Sci China-Phys Mech Astron, 2012, 55358-364 CrossRef ADS Google Scholar

[13] Ye M, Li F, Yan J G, et al. Wuhan University Deep-space Orbit Determination and Gravity Recovery System (WUDOGS) and its application analysis (in Chinese). Acta Geodaet Cartogr Sin, 2017, 46: 288–296 [叶茂, 李斐, 鄢建国, 等. 深空探测器精密定轨与重力场解算系统(WUDOGS)及其应用分析. 测绘学报, 2017, 46: 288–296]. Google Scholar

[14] Ye M, Li F, Yan J G, et al. Review of deep space orbit determination software and introduction to WUDOGS (in Chinese). J Spacecr TT&C Technol, 2017, 36: 45–55 [叶茂, 李斐, 鄢建国, 等. 国内外深空探测器精密定轨软件研究综述及WUDOGS简介. 飞行器测控学报, 2017, 36: 45–55]. Google Scholar

[15] Yan J, Yang X, Ye M, et al. Independent Mars spacecraft precise orbit determination software development and its applications. Astrophys Space Sci, 2017, 362123 CrossRef ADS Google Scholar

[16] Anderson J D, Armstrong J W, Campbell J K, et al. Gravitation and celestial mechanics investigations with Galileo. Space Sci Rev, 1992, 60591-610 CrossRef ADS Google Scholar

[17] Pätzold M, Wennmacher A, Häusler B, et al. Mass and density determinations of 140 Siwa and 4979 Otawara as expected from the Rosetta flybys. Astron Astrophys, 2001, 3701122-1127 CrossRef ADS Google Scholar

[18] Heiskanen W A, Moritz H. Physical geodesy. Bull Geodes, 1967, 86491-492 CrossRef ADS Google Scholar

[19] Archinal B A, Acton C H, A’Hearn M F, et al. Report of the IAU working group on cartographic coordinates and rotational elements: 2015. Celest Mech Dyn Astr, 2015, 13022 CrossRef ADS Google Scholar

[20] Montenbruck O, Gill E. Satellite Orbits: Models, Methods and Applications. Berlin: Springer Science & Business Media, 2012. Google Scholar

[21] Yan J, Yang X, Hao W, et al. A new tracking mode for improved Martian gravity field measurement. Astrophys Space Sci, 2017, 362236 CrossRef ADS Google Scholar

[22] Lainey V, Cooper N, Murray C, et al. Physical librations and possible homogeneity of natural moons from astrometry. In: AAS/Division for Planetary Sciences Meeting Abstracts. 2016. 48. Google Scholar

[23] Forget F, Hourdin F, Fournier R, et al. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J Geophys Res, 1999, 10424155-24175 CrossRef ADS Google Scholar

[24] Konopliv A S, Park R S, Folkner W M. An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data. Icarus, 2016, 274253-260 CrossRef ADS Google Scholar

[25] Folkner W M, Williams J G, Boggs D H. The Planetary and Lunar Ephemeris DE 421. Interplanetary Network Progress Report, 2009, 178: 1–34. Google Scholar

[26] Vallado D A. Fundamentals of Astrodynamics and Applications. Berlin: Springer Science & Business Media, 2001. Google Scholar

[27] Moyer T D. Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation. Hoboken: John Wiley & Sons, Inc., 2014. Google Scholar

[28] Boehm J, Werl B, Schuh H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res, 2006, 111B02406 CrossRef ADS Google Scholar

[29] Express M. ESA SP-1291: Mars Express—The Scientific Investigations. European Space Agency, 2010. Google Scholar

[30] Rosenblatt P, Lainey V, Le Maistre S, et al. Accurate Mars Express orbits to improve the determination of the mass and ephemeris of the Martian moons. Planet Space Sci, 2008, 561043-1053 CrossRef ADS Google Scholar

[31] Kolyuka Y F, Efimov A E. Refinement of the Gravitational Constant of PHOBOS from PHOBOS-2 Tracking Data. Sov Astron Lett, 1990, 16: 168–170. Google Scholar

[32] Jacobson R A. The orbits and masses of the martian satellites and the libration of Phobos. Astron J, 2010, 139668-679 CrossRef ADS Google Scholar

[33] Andert T P, Rosenblatt P, Pätzold M, et al. Precise mass determination and the nature of Phobos. Geophys Res Lett, 2010, 37L09202-256 CrossRef ADS Google Scholar

[34] Berthias J. Analysis of the phobos 2 radiometric data set. JPL Interoffice Memo, 1990, 314.6–1129. Google Scholar

[35] Willner K, Shi X, Oberst J. Phobos’ shape and topography models. Planet Space Sci, 2014, 102: 51–59. Google Scholar

  • Figure 1

    (Color online) The spacecraft flyby geometry in the flyby plane.

  • Figure 2

    The relation between the body-fixed frame and the inertial reference frame of Phobos [19].

  • Figure 3

    (Color online) The change of spacecraft velocity in line-of-sight direction due to the gravity field of Phobos. (a) For 2010 flyby; (b) flyby scenario in 2013.

  • Figure 4

    (Color online) The precise ephemeris difference of MEX between ESOC and ROB.

  • Figure 5

    (Color online) The difference between the two reconstruct orbits and precise ephemeris from ESOC and ROB. (a) The difference orbit of 2010 flyby with the ephemeris from ESOC; (b) the difference orbit of 2013 flyby with the ephemeris from ROB; (c) the difference orbit of 2013 flyby with the ephemeris from ESOC.

  • Figure 6

    (Color online) Post-fit residuals after subtracting the least-squares fit from observation. (a) The result of 2010 flyby; (b) the result of 2013 flyby.

  • Figure 7

    (Color online) Comparison of GM solution.

  • Figure 8

    (Color online) Comparison of C20 and C22 solution.

  • Table 1   Observation window and number of two-way coherent Doppler tracking data at X-band during MEX flyby at Phobos

    弧段

    开始时间

    (yyyy-mm-dd)

    观测数据时段(UTC)

    观测数据个数

    权重

    (mm/s)

    2010年飞掠

    2010-03-03

    20:15:53.5–24:00:11.5

    13459

    0.041

    2013年飞掠

    2013-12-28

    18:19:42.5–19:03:36.5

    2635

    0.130

    2013-12-28

    19:04:12.5–24:27:23.5

    19392

    0.130

    2013-12-28

    01:20:45.5–02:02:34.5

    2510

    0.130

    2013-12-29

    02:03:40.5–03:42:33.5

    8125

    0.130

    2013-12-29

    03:48:21.5–07:25:08.5

    13008

    0.070

    2013-12-29

    08:20:07.5–11:24:18.5

    11052

    0.070

    2013-12-29

    11:30:31.5–14:24:23.5

    10433

    0.070

    2013-12-29

    15:19:08.5–17:05:38.5

    6391

    0.070

    2013-12-29

    17:05:41.5–18:27:44.5

    4924

    0.070

    2013-12-29

    18:27:47.5–18:41:28.5

    822

    0.070

    2013-12-29

    18:41:54.5–19:00:03.5

    1090

    0.070

    2013-12-29

    19:02:46.5–21:25:30.5

    8565

    0.120

    2013-12-29

    22:21:36.5–23:00:30.5

    2335

    0.120

    2013-12-29

    23:01:06.5–25:12:29.5

    7884

    0.120

  • Table 2   Configuration of solution

    解算配置

    配置说明

    力模型

    火星重力场[24], 三体摄动(DE421历表[25], Phobos历表[22]); 火星反照辐射和热辐射[26]; 广义相对论摄动[27]; 太阳光压摄动(Box-Wing模型), 火星固体潮摄动[26], 火星大气阻力[23]

    观测模型

    双程测速模型[27]

    对流层改正

    测站气压、温度以及相对湿度来自VMF1官方提供的数据; 映射函数VMF1[28]

    待估参数

    2010 flyby: 初轨速度3个分量、太阳光压Cr、火卫一GMC20, C22

    2013 flyby: 初始轨道根数、太阳光压Cr、大气阻力系数Cd, 火卫一GMC20, C22

    观测值权重

    每次迭代后残差的RMS

  • Table 3   The solution results

    待估参数

    计算结果

    2010年飞掠

    vx

    1075.1228 m/s

    vy

    −3032.7394 m/s

    vz

    −1998.9760 m/s

    Cr

    1.1721

    2013年飞掠

    x

    5732270.7397 m

    y

    −2056102.4975 m

    z

    6502325.8883 m

    vx

    −454.8261 m/s

    vy

    −1231.8501 m/s

    vz

    1741.5497 m/s

    Cd

    1.9018

    Cr

    1.1576

    全局待估参数

    GM

    (7.0768±0.0084)×105 m3/s2

    C20

    −0.1370±0.0392

    C22

    0.0184±0.0174

qqqq

Contact and support