logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 45 , Issue 4 : 044201-044201(2015) https://doi.org/10.1360/SSPMA2014-00422

The cavity modes and the adiabatic theory in coupled cavity optomechanical systems

More info
  • AcceptedFeb 2, 2015
  • PublishedMar 13, 2015
PACS numbers

Abstract


References

[1] Walther H, Varcoe B T H, Englert B G, et al. Cavity quantum electrodynamics. Rep Prog Phys, 2006, 69: 1325-1382. Google Scholar

[2] Maldovan M. Sound and heat revolutions in phononics. Nature, 2013, 503: 209-217. Google Scholar

[3] Midtvedt D, Isacsson A, Croy A, et al. Nonlinear phononics using atomically thin membranes. Nat Commun, 2014, 5: 4838. Google Scholar

[4] Juska G, Dimastrodonato V, Mereni L O, et al. Towards quantum dot arrays of entangled photon emitters. Nat Photon, 2013, 7: 527-531. Google Scholar

[5] Wacker A. Semiconductor superlattices: A model system for nonlinear transport. Phys Rep, 2002, 357: 1-111. Google Scholar

[6] Lapine M, Shadrivov I V, Kivshar Y S. Colloquium: Nonlinear metamaterials. Rev Mod Phys, 2014, 86: 1093-1123. Google Scholar

[7] Ritsch H, Domokos P, Brennecke F, et al. Cold atoms in cavity-generated dynamical optical potentials. Rev Mod Phys, 2013, 85: 553-601. Google Scholar

[8] Soljacic M, Joannopoulos J D. Enhancement of nonlinear effects using photonic crystals. Nat Mater, 2004, 3: 211-219. Google Scholar

[9] Joannopoulos J D, Villeneuve P R, Fan S H. Photonic crystals: Putting a new twist on light. Nature, 1997, 386: 143-149. Google Scholar

[10] Eichenfield M, Chan J, Camacho R M, et al. Optomechanical crystals. Nature, 2009, 462: 78-82. Google Scholar

[11] Kauranen M, Zayats A V. Nonlinear plasmonics. Nat Photon, 2012, 6: 737-748. Google Scholar

[12] Ren M X, Plum E, Xu J J, et al. Giant nonlinear optical activity in a plasmonic metamaterial. Nat Commun, 2012, 3: 833. Google Scholar

[13] Christodoulides D N, Lederer F, Silberberg Y, et al. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature, 2003, 424:817-823. Google Scholar

[14] Cho A. To physicists' surprise, a light touch sets tiny objects aquiver. Science, 2005, 309: 366. Google Scholar

[15] Chan J, Alegre T P M, Safavi-Naeini A H, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 2011, 478:89-92. Google Scholar

[16] Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity Optomechanics: Nano- and Micromechanical Resonators Interacting with Light. Berlin: Springer, 2014. Google Scholar

[17] Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics. Rev Mod Phys, 2014, 86: 1391-1452. Google Scholar

[18] Metcalfe M. Applications of cavity optomechanics. Appl Phys Rev, 2014, 1: 031105. Google Scholar

[19] Thompson J D, Zwickl B M, Jayich A M, et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 2008,452: 72-75. Google Scholar

[20] Sankey J C, Yang C, Zwickl B M, et al. Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat Phys, 2010, 6: 707-712. Google Scholar

[21] Holmes C A, Meaney C P, Milburn G J. Synchronization of many nanomechanical resonators coupled via a common cavity field. Phys Rev E,2012, 85: 066203. Google Scholar

[22] Griffiths D J. Introduction to Quantum Mechanics. 2nd ed. Upper Saddle River: Prentice Hall, 2004. Google Scholar

[23] Bhattacharya M, Shi H, Preble S. Coupled second-quantized oscillators. Am J Phys, 2013, 81: 267-273. Google Scholar

[24] Walls D F, Milburn G J. Quantum Optics. 2nd ed. Berlin: Spring-Verlag, 2008. Google Scholar

[25] Law C K. Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. Phys Rev A, 1995, 51: 2537-2541. Google Scholar

[26] Milburn J, Walls D F. Quantum nondemolition measurements via quadratic coupling. Phys Rev A, 1983, 28: 2065-2070. Google Scholar

[27] Nunnenkamp A, Børkje K, Harris J G E, et al. Cooling and squeezing via quadratic optomechanical coupling. Phys Rev A, 2010, 82: 021806. Google Scholar

[28] Vanner M R. Selective linear or quadratic optomechanical coupling via measurement. Phys Rev X, 2011, 1: 021011. Google Scholar

[29] Zhang L, Song Z D. Modification on static responses of a nano-oscillator by quadratic opto-mechanical couplings. Sci China-Phys Mech Astron,2014, 57: 880-886. Google Scholar

[30] Zhang L, Kong H Y. Self-sustained oscillation and harmonic generation in optomechanical systems with quadratic couplings. Phys Rev A, 2014,89: 023847. Google Scholar

[31] Wilson D J, Regal C A, Papp S B, et al. Cavity optomechanics with stoichiometric SiN films. Phys Rev Lett, 2009, 103: 207204. Google Scholar

[32] Wiederhecker G S, Chen L, Gondarenko A, et al. Controlling photonic structures using optical forces. Nature, 2009, 462: 633-636. Google Scholar

[33] Zou C L, Dong C H, Cui J M, et al. Whispering gallery mode optical microresonators: Fundamentals and applications (in Chinese). Sci Sin-Phys Mech Astron, 2012, 42: 1155-1175 [邹长铃, 董春华, 崔金明, 等. 回音壁模式光学微腔: 基础和应用. 中国科学: 物理学力学天文 学, 2012, 42: 1155-1175]. Google Scholar

[34] Fader W J. Theory of two coupled lasers. IEEE J Quantum Electron, 1985, 21: 1838-1844. Google Scholar

[35] Bhattacharya M, Uys H, Meystre P. Optomechanical trapping and cooling of partially reflective mirrors. Phys Rev A, 2008, 77: 033819. Google Scholar

[36] Massel F, Chow S U, Pirkkalainen J-M, et al. Multimode circuit optomechanics near the quantum limit. Nat Commun, 2012, 3: 987. Google Scholar

[37] Zhu W, Wang Z H, Zhou D L. Multimode effects in cavity QED based on a one-dimensional cavity array. Phys Rev A, 2014, 90: 043828. Google Scholar

[38] Landau L D. Theory of energy transfer II. Phys Z Sowjetunion, 1932, 2: 19. Google Scholar

[39] Zener C. Non-adiabatic crossing of energy levels. Proc R Soc Lond A, 1932, 137: 696-702. Google Scholar

[40] Liao J Q, Nori F. Photon blockade in quadratically coupled optomechanical systems. Phys Rev A, 2013, 88: 023853. Google Scholar

[41] Huang S Y, Tsang M K . Electromagnetically induced transparency and optical memories in an optomechanical system with N membranes. arXiv:1403.1340. Google Scholar

[42] Xu X W, Zhao Y J, Liu Y X. Entangled-state engineering of vibrational modes in a multimembrane optomechanical system. Phys Rev A, 2013,88: 022325. Google Scholar

[43] Xuereb A, Genes C, Dantan A. Strong coupling and long-range collective interactions in optomechanical arrays. Phys Rev Lett, 2012, 109: 223601. Google Scholar

[44] Asbóth J K, Ritsch H, Domokos P. Optomechanical coupling in a one-dimensional optical lattice. Phys Rev A, 2008, 77: 063424. Google Scholar

[45] Poot M, van der Zant H S J. Mechanical systems in the quantum regime. Phys Rep, 2012, 511: 273-335. Google Scholar

[46] Teufel J D, Harlow J W, Regal C A, et al. Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys Rev Lett, 2008, 101:197203. Google Scholar

[47] Barzanjeh S, Abdi M, Milburn G J, et al. Reversible optical to microwave quantum interface. Phys Rev Lett, 2012, 109: 130503. Google Scholar