logo

SCIENTIA SINICA Mathematica, Volume 51 , Issue 7 : 1095(2021) https://doi.org/10.1360/SSM-2021-0013

Ten key ICT challenges in the post-Shannon era

More info
  • ReceivedJan 21, 2021
  • AcceptedMay 6, 2021
  • PublishedMay 31, 2021

Abstract


Acknowledgment

在本文十大挑战问题的定义中, 华为技术有限公司孙杰、李震、杨璐、彭曦、许延伟、樊玉伟、黄羽亮、侯韩旭等博士给予了大力的协助. 本文也得到韩永祥教授、马志明院士、袁亚湘院士、彭实戈院士、张平院士等人的帮助和斧正. 在此对这些专家的贡献表示感谢.


References

[1] Watts D J, Strogatz S H. Collective dynamics of `small-world' networks. Nature, 1998, 393: 440-442 CrossRef PubMed ADS Google Scholar

[2] Bhagat S, Burke M, Diuk C, et al. Three and a half degrees of separation. https://research.fb.com/blog/2016/02/ three-and-a-half-degrees-of-separation/, 2016. Google Scholar

[3] Huawei Global Connection Index White Paper. Shenzhen: Huawei Technologies Co., Ltd., 2019. Google Scholar

[4] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, Volume 1. Red Hook: Curran Associates, 2012, 1097--1105. Google Scholar

[5] Arikan E. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels. IEEE Trans Inform Theor, 2009, 55: 3051-3073 CrossRef Google Scholar

[6] Gamal A E, Kim Y-H. Network Information Theory. New York: Cambridge University Press, 2011. Google Scholar

[7] Hennessy J L, Patterson D A. Computer Architecture: A Quantitative Approach, 6th ed. Amsterdam: Elsevier, 2011. Google Scholar

[8] Shannon C E. A Mathematical Theory of Communication. Bell Syst Technical J, 1948, 27: 379-423 CrossRef PubMed Google Scholar

[9] Weaver W. Recent contributions to the mathematical theory of communication. ETC: A Review of General Semantics, 1953, 10: 261--281. Google Scholar

[10] Haykin S. Neural Networks: A Comprehensive Foundation, 2nd ed. New York: Macmillan College, 1999. Google Scholar

[11] Bölcskei H, Grohs P, Kutyniok G, et al. Optimal approximation with sparsely connected deep neural networks. SIAM J Math Data Sci, 2019, 1: 8--45. Google Scholar

[12] Lu Z, Pu H, Wang F, et al. The expressive power of neural networks: A view from the width. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates, 2017, 6232--6240. Google Scholar

[13] Shwartz-Ziv R, Tishby N. Opening the black box of deep neural networks via information,. arXiv Google Scholar

[14] Saxe A M, Bansal Y, Dapello J, et al. On the information bottleneck theory of deep learning. J Stat Mech Theory Exp, 2019, 2019: 124020. Google Scholar

[15] Li C T, Wu X, Ozgur A, et al. Minimax learning for remote prediction. In: Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT). Piscataway: IEEE, 2018, 541--545. Google Scholar

[16] Farnia F, Tse D. A minimax approach to supervised learning. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: Curran Associates, 2016, 4240--4248. Google Scholar

[17] Korner J, Marton K. How to encode the modulo-two sum of binary sources (Corresp.). IEEE Trans Inform Theor, 1979, 25: 219-221 CrossRef Google Scholar

[18] Te Han , Kobayashi K. A dichotomy of functions<tex>F(X, Y)</tex>of correlated sources<tex>(X, Y)</tex>. IEEE Trans Inform Theor, 1987, 33: 69-76 CrossRef Google Scholar

[19] Orlitsky A, Roche J R. Coding for computing. In: Proceedings of IEEE 36th Annual Foundations of Computer Science. Milwaukee: IEEE, 1995, 502--511. Google Scholar

[20] Appuswamy R, Franceschetti M, Karamchandani N. Network Coding for Computing: Cut-Set Bounds. IEEE Trans Inform Theor, 2011, 57: 1015-1030 CrossRef Google Scholar

[21] Guang X, Yeung R W, Yang S. Improved Upper Bound on the Network Function Computing Capacity. IEEE Trans Inform Theor, 2019, 65: 3790-3811 CrossRef Google Scholar

[22] Mezard M, Montanari A. Information, Physics, and Computation. Oxford: Oxford University Press, 2009. Google Scholar

[23] Advani M, Lahiri S, Ganguli S. Statistical mechanics of complex neural systems and high dimensional data. J Stat Mech Theory Exp, 2013, 2013: P03014. Google Scholar

[24] GabriéM, Manoel A, Luneau C, et al. Entropy and mutual information in models of deep neural networks. J Stat Mech Theory Exp, 2019, 2019: 124014. Google Scholar

[25] Aubin B, Maillard A, Barbier J, et al. The committee machine: Computational to statistical gaps in learning a two-layers neural network. J Stat Mech Theory Exp, 2019, 2019: 124023. Google Scholar

[26] Huffman D. A Method for the Construction of Minimum-Redundancy Codes. Proc IRE, 1952, 40: 1098-1101 CrossRef Google Scholar

[27] Witten I H, Neal R M, Cleary J G. Arithmetic coding for data compression. Commun ACM, 1987, 30: 520-540 CrossRef Google Scholar

[28] Ziv J, Lempel A. A universal algorithm for sequential data compression. IEEE Trans Inform Theor, 1977, 23: 337-343 CrossRef Google Scholar

[29] Ziv J, Lempel A. Compression of individual sequences via variable-rate coding. IEEE Trans Inform Theor, 1978, 24: 530-536 CrossRef Google Scholar

[30] Duda J. Asymmetric numeral systems,. arXiv Google Scholar

[31] Alakuijala J, Farruggia A, Ferragina P, et al. Brotli: A general-purpose data compressor. ACM Trans Inform Syst, 2018, 37: Article 4. Google Scholar

[32] Goyal M, Tatwawadi K, Chandak S, et al. DeepZip: Lossless data compression using recurrent neural networks. In: Proceedings of the 2019 Data Compression Conference (DCC). Snowbird: IEEE, 2019, 575--575. Google Scholar

[33] Townsend J, Bird T, Barber D. Practical lossless compression with latent variables using bits back coding. In: International Conference on Learning Representations. New Orleans: ICLR, 2019, 1--13. Google Scholar

[34] Hoogeboom E, Peters J, van den Berg R, et al. Integer discrete flows and lossless compression. In: 33rd Conference on Neural Information Processing Systems. Vancouver: Curran Associates, 2019. Google Scholar

[35] Mohit G, Kedar T, Idoia O. DZip: Improved general-purpose lossless compression based on novel neural network modeling. In: Proceedings of the 2020 Data Compression Conference. Shubham: Chandak, 2020. Google Scholar

[36] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks. In: Computer Vision---ECCV 2014. Cham: Springer, 2014, 818--833. Google Scholar

[37] Springenberg J T, Dosovitskiy A, Brox T, et al. Striving for simplicity: The all convolutional net. In: International Conference on Learning Representations. New Orleans: ICLR, 2015. Google Scholar

[38] Zhang Q, Yang Y, Ma H, et al. Interpreting CNNs via decision trees. In: Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscateway: IEEE, 2019, 6261--6270. Google Scholar

[39] Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control Signal Syst, 1989, 2: 303-314 CrossRef Google Scholar

[40] Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks, 1991, 4: 251-257 CrossRef Google Scholar

[41] Hanin B. Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations. Mathematics, 2019, 7: 992 CrossRef Google Scholar

[42] Barron A R. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans Inform Theor, 1993, 39: 930-945 CrossRef Google Scholar

[43] Yarotsky D. Error bounds for approximations with deep ReLU networks.. Neural Networks, 2017, 94: 103-114 CrossRef PubMed Google Scholar

[44] Yarotsky D, Zhevnerchuk A. The phase diagram of approximation rates for deep neural networks. Neural PS, 2020, in press. Google Scholar

[45] Jacot A, Gabriel F, Hongler C. Neural tangent kernel: Convergence and generalization in neural networks. In: Advances in Neural Information Processing Systems, vol. 31. Long Beach: Curran Associates, 2018. Google Scholar

[46] Allen-Zhu Z, Li Y, Song Z. A convergence theory for deep learning via over-parameterization. In: Proceedings of the 36th International Conference on Machine Learning. PMLR, 2019, 242--252. Google Scholar

[47] Chen Z, Cao Y, Gu Q, et al. A generalized neural tangent kernel analysis for two-layer neural networks,. arXiv Google Scholar

[48] Peng S. Nonlinear Expectations and Stochastic Calculus under Uncertainty: With Robust CLT and G-Brownian Motion. Berlin-Heidelberg: Springer, 2019. Google Scholar

[49] Shanbhag N R, Verma N, Kim Y. Shannon-Inspired Statistical Computing for the Nanoscale Era. Proc IEEE, 2019, 107: 90-107 CrossRef Google Scholar

[50] Cover T M, Thomas J A. Elements of Information Theory, 2nd ed. New York: John Wiley & Sons, 2006. Google Scholar

[51] Psounis K, Ghosh A, Prabhakar B, et al. SIFT: A simple algorithm for tracking elephant flows, and taking advantage of power laws. In: Proceedings of the 43rd Allerton Conference on Communication, Control and Computing. Illinois: Curran Associates, 2005. Google Scholar

[52] Peng X, Bai B, Zhang G, et al. Bit-level power-law queueing theory with applications in LTE networks. In: Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM). Abu Dhabi: IEEE, 2018, 1--6. Google Scholar

[53] Data Services Blocking Theory White Paper. Shenzhen: Huawei Technologies Co., Ltd., 2016. Google Scholar

[54] Lindley D V. The theory of queues with a single server. In: Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge: Cambridge University Press, 1952, 277--289. Google Scholar

[55] Stidham S Jr., Prabhu N U. Optimal control of queueing systems. In: Mathematical Methods in Queueing Theory. New York: Springer-Verlag, 1974, 263--294. Google Scholar

[56] Zwart A P, Boxma O J. Queueing Syst, 2000, 35: 141-166 CrossRef Google Scholar

[57] Vanlerberghe J, Walraevens J, Maertens T, et al. A procedure to approximate the mean queue content in a discrete-time generalized processor sharing queue with bernoulli arrivals. Perform Eval, 2019, 134: 102001. Google Scholar

[58] Ghosh S, Banik A D. An algorithmic analysis of the BMAP/MSP/1 generalized processor-sharing queue. Comput Oper Res, 2017, 79: 1--11. Google Scholar

[59] Wang L, Min G, Kouvatsos D D. Analytical modeling of an integrated priority and WFQ scheduling scheme in multi-service networks. Comput Commun, 2010, 33: S93-S101 CrossRef Google Scholar

[60] Yadav A L, Vyavahare P, Bansod P. QoS in WiMAX hybrid schedulers for heterogeneous traffic and their performance comparison. Int J Electron, 2020, 107: 561-575 CrossRef ADS Google Scholar

[61] Billaud J-P, Gulati A. Hclock: Hierarchical QoS for packet scheduling in a hypervisor. In: Proceedings of the 8th ACM European Conference on Computer Systems. New York: Association for Computing Machinery, 2013, 309--322. Google Scholar

[62] Saeed A, Zhao Y, Dukkipati N, et al. Eiffel: Efficient and flexible software packet scheduling. In: Proceedings of the 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19). Boston: USENIX Association, 2019, 17--32. Google Scholar

[63] Jackson J R. Networks of Waiting Lines. Operations Res, 1957, 5: 518-521 CrossRef Google Scholar

[64] Telatar E. Capacity of Multi-antenna Gaussian Channels. Eur Trans Telecomm, 1999, 10: 585-595 CrossRef Google Scholar

[65] Rusek F, Persson D, Lau B K, et al. Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Process Mag, 2012, 30: 40--60. Google Scholar

[66] Li X, Zhou S, Bjornson E. Capacity Analysis for Spatially Non-Wide Sense Stationary Uplink Massive MIMO Systems. IEEE Trans Wireless Commun, 2015, 14: 7044-7056 CrossRef Google Scholar

[67] Björnson E, Hoydis J, Sanguinetti L. Massive MIMO has unlimited capacity. IEEE Trans Wirel Commun, 2017, 17: 574--590. Google Scholar

[68] Ngo H Q, Ashikhmin A, Yang H, et al. Cell-free massive MIMO: Uniformly great service for everyone. In: Proceedings of the 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Stockholm: IEEE, 2015, 201--205. Google Scholar

[69] Cui T J, Li L, Liu S, et al. Information metamaterial systems. Iscience, 2020, 23: 145--152. Google Scholar

[70] Yu W, Rhee W, Boyd S. Iterative Water-Filling for Gaussian Vector Multiple-Access Channels. IEEE Trans Inform Theor, 2004, 50: 145-152 CrossRef Google Scholar

[71] Goldsmith A, Jafar S A, Jindal N. Capacity limits of MIMO channels. IEEE J Sel Areas Commun, 2003, 21: 684-702 CrossRef Google Scholar

[72] Vishwanath S, Jindal N, Goldsmith A. Duality, achievable rates, and sum-rate capacity of gaussian mimo broadcast channels. IEEE Trans Inform Theor, 2003, 49: 2658-2668 CrossRef Google Scholar

[73] Yu N, Genevet P, Kats M A. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science, 2011, 334: 333-337 CrossRef PubMed ADS Google Scholar

[74] Cui T J, Qi M Q, Wan X. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl, 2014, 3: e218-e218 CrossRef ADS arXiv Google Scholar

[75] Pizzo A, Marzetta T L, Sanguinetti L. Spatially-stationary model for holographic MIMO small-scale fading. IEEE J Sel Areas Commun, 2020, 38: 1964--1979. Google Scholar

[76] Dardari D. Communicating With Large Intelligent Surfaces: Fundamental Limits and Models. IEEE J Sel Areas Commun, 2020, 38: 2526-2537 CrossRef Google Scholar

[77] Rafique D. Fiber Nonlinearity Compensation: Commercial Applications and Complexity Analysis. J Lightwave Technol, 2016, 34: 544-553 CrossRef ADS Google Scholar

[78] Agrawal G P. Nonlinear fiber optics. In: Nonlinear Science at the Dawn of the 21st Century. New York: Academic Press, 2000, 195--211. Google Scholar

[79] Ip E, Kahn J M. Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation. J Lightwave Technol, 2008, 26: 3416-3425 CrossRef ADS Google Scholar

[80] Essiambre R J, Kramer G, Winzer P J. Capacity Limits of Optical Fiber Networks. J Lightwave Technol, 2010, 28: 662-701 CrossRef ADS Google Scholar

[81] Rameez A, Chien-Yu L, Muhammad U, et al. Electronic mitigation of fiber transmission impairments in 100Gbit/s WDM phase encoded transmission with optical add-drop multiplexers. In: Proceedings of the Photonics North 2011. Kent: International Society for Optics and Photonics, 2011, 800715. Google Scholar

[82] Asif R, Lin C-Y, Holtmannspoetter M, et al. Logarithmic step-size based digital backward propagation in N-channel 112Gbit/s/ch DP-QPSK transmission. In: Proceedings of the 13th International Conference on Transparent Optical Networks. Stockholm: IEEE, 2011, 1--4. Google Scholar

[83] Secondini M, Rommel S, Meloni G. Single-step digital backpropagation for nonlinearity mitigation. Photon Netw Commun, 2016, 31: 493-502 CrossRef Google Scholar

[84] Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004. Google Scholar

[85] Low S H, Lapsely D E. Optimization flow control. I. Basic algorithm and convergence. IEEE/ACM Trans Networking, 1999, 7: 861-874 CrossRef Google Scholar

[86] Chiang M, Low S H, Calderbank A R. Layering as Optimization Decomposition: A Mathematical Theory of Network Architectures. Proc IEEE, 2007, 95: 255-312 CrossRef Google Scholar

[87] Marler R T, Arora J S. Survey of multi-objective optimization methods for engineering. Struct Multidisciplinary Optimization, 2004, 26: 369-395 CrossRef Google Scholar

[88] Maros I. Computational Techniques of the Simplex Method. New York: Springer, 2003. Google Scholar

[89] Lubin M, Hall J A J, Petra C G. Parallel distributed-memory simplex for large-scale stochastic LP problems. Comput Optim Appl, 2013, 55: 571-596 CrossRef Google Scholar

[90] Bixby R E. Solving real-world linear programs: A decade and more of progress. Oper Res, 2002, 50: 3--15. Google Scholar

[91] Lamperski A, Doyle J C. Output feedback H2 model matching for decentralized systems with delays. In: Proceedings of the 2013 American Control Conference. Washington: IEEE, 2013, 5778--5783. Google Scholar

[92] Lamperski A, Doyle J C. The H2 control problem for quadratically invariant systems with delays. IEEE Trans Automat Control, 2014, 60: 1945--1950. Google Scholar

[93] Bertsekas D P. Reinforcement Learning and Optimal Control. Belmont: Athena Scientific, 2019. Google Scholar

[94] Vermorel J, Mohri M. Multi-armed bandit algorithms and empirical evaluation. In: Machine Learning: ECML 2005. Berlin-Heidelberg: Springer, 2005, 437--448. Google Scholar

[95] Bubeck S, Cesa-Bianch N. Regret analysis of stochastic and nonstochastic multi-armed bandit problems, part i. Found Trends Mach Learn, 2012, 5: 1--122. Google Scholar

[96] Caines P E, Huang M, Malham$\acute{\rm~~e}$R P. Mean field games. In: Handbook of Dynamic Game Theory. London: Springer, 2015. Google Scholar

[97] Valadarsky A, Schapira M, Shahaf D, et al. Learning to route. In: Proceedings of the 16th ACM Workshop on Hot Topics in Networks. Palo Alto: Association for Computing Machinery, 2017, 185--191. Google Scholar

[98] Reinsel D, Gantz J, Rydning J. Data Age 2025: The Digitization of the World from Edge to Core. Framingham: International Data Corporation, 2018. Google Scholar

[99] White Paper: Archivel Disc Technology. https://panasonic.net/cns/archiver/pdf/E_WhitePaper_ArchivalDisc _1st_Edition.pdf, 2015. Google Scholar

[100] Zhang J, Gecevi?ius M, Beresna M. Seemingly Unlimited Lifetime Data Storage in Nanostructured Glass. Phys Rev Lett, 2014, 112: 033901 CrossRef PubMed ADS Google Scholar

[101] Niidome Y, Urakawa S, Kawahara M. Dichroism of Poly(vinylalcohol) Films Containing Gold Nanorods Induced by Polarized Pulsed-Laser Irradiation. Jpn J Appl Phys, 2003, 42: 1749-1750 CrossRef ADS Google Scholar

[102] Ganic D, Day D, Gu M. Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination. Optics Lasers Eng, 2002, 38: 433-437 CrossRef Google Scholar

[103] Lee W, Zhou Z, Chen X. A rewritable optical storage medium of silk proteins using near-field nano-optics. Nat Nanotechnol, 2020, 15: 941-947 CrossRef PubMed ADS Google Scholar

[104] Yaman F, Yakhno V G, Potthast R. A survey on inverse problems for applied sciences. Math Probl Eng, 2013, 2013: 976837. Google Scholar

[105] Fan Y, Ying L. Solving electrical impedance tomography with deep learning. J Comput Phys, 2020, 404: 109119 CrossRef ADS arXiv Google Scholar

[106] Kuian M, Reichel L, Shiyanovskii S V. Accuracy optimization of combined multiparameter measuring systems with application to polarized light microscopy. Phys Rev E, 2018, 97: 063305 CrossRef PubMed ADS Google Scholar

[107] Shribak M, Oldenbourg R. Techniques for Fast and Sensitive Measurements of Two-Dimensional Birefringence Distributions. Appl Opt, 2003, 42: 3009-3017 CrossRef PubMed ADS Google Scholar

[108] Anderson P, Black R, Cerkauskaite A, et al. Glass: A new media for a new era? In: Proceedings of the 10th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 18). Boston: USENIX Association, 2018. Google Scholar

[109] Shirvanimoghaddam M, Mohammadi M S, Abbas R, et al. Short block-length codes for ultra-reliable low latency communications. IEEE Commun Mag, 2018, 57: 130--137. Google Scholar

[110] Reed I S, Solomon G. Polynomial Codes Over Certain Finite Fields. J Soc Industrial Appl Math, 1960, 8: 300-304 CrossRef Google Scholar

[111] Gilbert E N. A Comparison of Signalling Alphabets. Bell Syst Technical J, 1952, 31: 504-522 CrossRef Google Scholar

[112] Varshamov R R. Estimate of the number of signals in error correcting codes. Dokl Akad Nauk SSSR, 1957, 117: 739--741. Google Scholar

[113] Goppa V D. Codes on algebraic curves. Soviet Math Dokl, 1981, 259: 170--172. Google Scholar

[114] Tsfasman M A, Vl?dutx S G, Zink T. Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound. Math Nachr, 1982, 109: 21-28 CrossRef Google Scholar

[115] Garcia A, Stichtenoth H. A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound.. Invent Math, 1995, 121: 211-222 CrossRef ADS Google Scholar

[116] Garcia A, Stichtenoth H. On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields. J Number Theor, 1996, 61: 248-273 CrossRef Google Scholar

[117] Shum K W, Aleshnikov I, Kumar P V. A low-complexity algorithm for the construction of algebraic-geometric codes better than the Gilbert-Varshamov bound. IEEE Trans Inform Theor, 2001, 47: 2225-2241 CrossRef Google Scholar

[118] Feng G L, Rao T R N. Decoding algebraic-geometric codes up to the designed minimum distance. IEEE Trans Inform Theor, 1993, 39: 37-45 CrossRef Google Scholar

[119] Lin S-J, Chung W-H, Han Y S. Novel polynomial basis and its application to Reed-Solomon erasure codes. In: Proceedings of the 55th Annual Symposium on Foundations of Computer Science. Philadelphia: IEEE, 2014, 316--325. Google Scholar

[120] Lin S J, Al-Naffouri T Y, Han Y S. Novel Polynomial Basis With Fast Fourier Transform and Its Application to Reed?CSolomon Erasure Codes. IEEE Trans Inform Theor, 2016, 62: 6284-6299 CrossRef Google Scholar

[121] Lin S J, Al-Naffouri T Y, Han Y S. FFT Algorithm for Binary Extension Finite Fields and Its Application to Reed?CSolomon Codes. IEEE Trans Inform Theor, 2016, 62: 5343-5358 CrossRef Google Scholar

[122] Tang N, Lin Y. Fast Encoding and Decoding Algorithms for Arbitrary $(n,k)$ Reed-Solomon Codes Over $\mathbb{F}_{2^m}$. IEEE Commun Lett, 2020, 24: 716-719 CrossRef Google Scholar

[123] Yu L, Lin Z, Lin S J. Fast Encoding Algorithms for Reed?CSolomon Codes With Between Four and Seven Parity Symbols. IEEE Trans Comput, 2020, 69: 699-705 CrossRef Google Scholar

[124] Skorobogatov A N, Vladut S G. On the decoding of algebraic-geometric codes. IEEE Trans Inform Theor, 1990, 36: 1051-1060 CrossRef Google Scholar

[125] Vladut S. On the decoding of algebraic-geometric codes over F/sub q/ for q<or=16. IEEE Trans Inform Theor, 1990, 36: 1461-1463 CrossRef Google Scholar

[126] Sakata S, Justesen J, Madelung Y. Fast decoding of algebraic-geometric codes up to the designed minimum distance. IEEE Trans Inform Theor, 1995, 41: 1672-1677 CrossRef Google Scholar

[127] Ren J. On the Structure of Hermitian Codes and Decoding for Burst Errors. IEEE Trans Inform Theor, 2004, 50: 2850-2854 CrossRef Google Scholar

[128] Sparsh M. A survey of techniques for approximate computing. ACM Comput Surv, 2016, 48: 62. Google Scholar

[129] St. Amant R, Yazdanbakhsh A, Park J. General-purpose code acceleration with limited-precision analog computation. SIGARCH Comput Archit News, 2014, 42: 505-516 CrossRef Google Scholar

[130] Venkataramani S, Raghunathan A, Liu J, et al. Scalable-effort classifiers for energy-efficient machine learning. In: Proceedings of the 52nd Annual Design Automation Conference. New York: Association for Computing Machinery, 2015, 1--6. Google Scholar

[131] Yazdanbakhsh A, Mahajan D, Thwaites B, et al. Axilog: Language support for approximate hardware design. In: Proceedings of the 2015 Design, Automation Test in Europe Conference Exhibition. Grenoble: IEEE, 2015, 812--817. Google Scholar

[132] Miguel J S, Badr M, Jerger N E. Load value approximation. In: Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture. Cambridge: IEEE, 2014, 127--139. Google Scholar

[133] Venkataramani S, Chippa V K, Chakradhar S T, et al. Quality programmable vector processors for approximate computing. In: Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). Davis: IEEE, 2013, 1--12. Google Scholar

[134] Yeh T, Faloutsos P, Ercegovac M, et al. The art of deception: Adaptive precision reduction for area efficient physics acceleration. In: Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007). Chicago: IEEE, 2007, 394--406. Google Scholar

[135] Tian Y, Zhang Q, Wang T, et al. Approxma: Approximate memory access for dynamic precision scaling. In: Proceedings of the 25th Edition on Great Lakes Symposium on VLSI. New York: Association for Computing Machinery, 2015, 337--342. Google Scholar

[136] Flajolet P, Nigel Martin G. Probabilistic counting algorithms for data base applications. J Comput Syst Sci, 1985, 31: 182-209 CrossRef Google Scholar

[137] Huang Q, Jin X, Lee P P C, et al. Sketchvisor: Robust network measurement for software packet processing. In: Proceedings of the Conference of the ACM Special Interest Group on Data Communication. New York: Association for Computing Machinery, 2017, 113--126. Google Scholar

[138] Braverman V, Ostrovsky R. Generalizing the layering method of indyk and woodruff: Recursive sketches for frequency-based vectors on streams. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Berlin-Heidelberg: Springer, 2013, 58--70. Google Scholar

[139] Chippa V K, Mohapatra D, Roy K, et al. Scalable effort hardware design. IEEE Trans Very Large Scale Integr VLSI Syst, 2014, 22: 2004--2016. Google Scholar

[140] Rahimi A, Ghofrani A, Cheng K-T, et al. Approximate associative memristive memory for energy-efficient GPUs. In: Proceedings of the 2015 Design, Automation Test in Europe Conference Exhibition. Grenoble: IEEE, 2015, 1497--1502. Google Scholar

[141] McAfee L, Olukotun K. Emeuro: A framework for generating multi-purpose accelerators via deep learning. In: Proceedings of the 2015 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). San Francisco: IEEE, 2015, 125--135. Google Scholar

[142] Pitel G, Fouquier G. Count-min-log sketch: Approximately counting with approximate counters,. arXiv Google Scholar

[143] Chen J, Zhang Q. Bias-aware sketches. Proc VLDB Endow, 2017, 10: 961-972 CrossRef Google Scholar

[144] Pandey P, Bender M A, Johnson R, et al. A general-purpose counting filter: Making every bit count. In: Proceedings of the 2017 ACM International Conference on Management of Data. New York: Association for Computing Machinery, 2017, 775--787. Google Scholar

[145] Goyal A, Daumé Iii H, Cormode G. Sketch algorithms for estimating point queries in NLP. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Jeju Island: Kore, 2012, 1093--1103. Google Scholar

[146] Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math, 2006, 59: 1207-1223 CrossRef Google Scholar

[147] Cormode G, Muthukrishnan S. Towards an algorithmic theory of compressed sensing. Technical Report. Center for Discrete Math and Comp Sci (DIMACS), 2005, 25. Google Scholar

[148] Chen Y-C, Qiu L, Zhang Y, et al. Robust network compressive sensing. In: Proceedings of the 20th annual international conference on Mobile computing and networking. Maui: Association for Computing Machinery, 2014, 545--556. Google Scholar

[149] Kong L, Xia M, Liu X-Y, et al. Data loss and reconstruction in sensor networks. In: Proceedings of the 2013 IEEE INFOCOM. Turin: IEEE, 2013, 1654--1662. Google Scholar

[150] Zhang Y, Roughan M, Willinger W, et al. Spatio-temporal compressive sensing and internet traffic matrices. In: Proceedings of the ACM SIGCOMM 2009 Conference on Data communication. New York: Association for Computing Machinery, 2009, 267--278. Google Scholar

[151] Vardi Y. Network Tomography: Estimating Source-Destination Traffic Intensities from Link Data. J Am Statistical Association, 1996, 91: 365-377 CrossRef Google Scholar

[152] Bharti V, Kankar P, Setia L, et al. Inferring invisible traffic. In: Proceedings of the 6th International Conference. Philadelphia: Association for Computing Machinery, 2010, Article 22. Google Scholar

[153] Roughan M. Simplifying the synthesis of internet traffic matrices. ACM SIGCOMM Comput Commun Rev, 2005, 35: 93--96. Google Scholar

[154] Yin Zhang , Roughan M, Lund C. Estimating point-to-point and point-to-multipoint traffic matrices: an information-theoretic approach. IEEE/ACM Trans Networking, 2005, 13: 947-960 CrossRef Google Scholar

[155] Xie K, Wang X, Wang X. Accurate Recovery of Missing Network Measurement Data With Localized Tensor Completion. IEEE/ACM Trans Networking, 2019, 27: 2222-2235 CrossRef Google Scholar

qqqq

Contact and support