logo

SCIENTIA SINICA Informationis, Volume 51 , Issue 11 : 1777(2021) https://doi.org/10.1360/SSI-2021-0062

A survey on interdisciplinary research of visualization and artificial intelligence

More info
  • ReceivedFeb 20, 2021
  • AcceptedMar 12, 2021
  • PublishedNov 12, 2021

Abstract


Funded by

国家自然科学基金面上项目(61872389,61972278,61936002,61772097)

国家重点研发计划(2018YFC0831700)

天津市自然科学基金(20JCQNJC01620)

上海市重大专项(2018SHZDZX01)

上海市自然科学基金项目面上项目(21ZR1403300)

上海市 2021 “科技创新行动计划" 扬帆计划(1YF1402900)

重庆市自然科学基金(cstc2018jcyjAX0177)


References

[1] Yuan J, Chen C, Yang W. A survey of visual analytics techniques for machine learning. Comp Visual Media, 2021, 7: 3-36 CrossRef Google Scholar

[2] Fan X, Li C, Yuan X. An interactive visual analytics approach for network anomaly detection through smart labeling. J Vis, 2019, 22: 955-971 CrossRef Google Scholar

[3] Chen C, Yuan J, Lu Y. OoDAnalyzer: Interactive Analysis of Out-of-Distribution Samples.. IEEE Trans Visual Comput Graphics, 2021, 27: 3335-3349 CrossRef PubMed Google Scholar

[4] B?uerle A, Neumann H, Ropinski T. Classifier?Guided Visual Correction of Noisy Labels for Image Classification Tasks. Comput Graphics Forum, 2020, 39: 195-205 CrossRef Google Scholar

[5] Castelvecchi D. Can we open the black box of AI?. Nature, 2016, 538: 20-23 CrossRef PubMed ADS Google Scholar

[6] Kwon B C, Choi M J, Kim J T. RetainVis: Visual Analytics with Interpretable and Interactive Recurrent Neural Networks on Electronic Medical Records.. IEEE Trans Visual Comput Graphics, 2019, 25: 299-309 CrossRef PubMed Google Scholar

[7] He W, Lee T Y, van Baar J, et al. DynamicsExplorer: visual analytics for robot control tasks involving dynamics and LSTM-based control policies. In: Proceedings of the IEEE Pacific Visualization Symposium, 2020. 36--45. Google Scholar

[8] Ming Y, Cao S, Zhang R, et al. Understanding hidden memories of recurrent neural networks. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2017. 13-24. Google Scholar

[9] Xia J, Ye F, Chen W. LDSScanner: Exploratory Analysis of Low-Dimensional Structures in High-Dimensional Datasets.. IEEE Trans Visual Comput Graphics, 2018, 24: 236-245 CrossRef PubMed Google Scholar

[10] Chen W, Guo F, Han D. Structure-Based Suggestive Exploration: A New Approach for Effective Exploration of Large Networks.. IEEE Trans Visual Comput Graphics, 2019, 25: 555-565 CrossRef PubMed Google Scholar

[11] Jo J, Seo J. Disentangled representation of data distributions in scatterplots. In: Proceedings of the IEEE Visualization Conference, 2019. 136--140. Google Scholar

[12] Dibia V, Demiralp C. Data2Vis: Automatic Generation of Data Visualizations Using Sequence-to-Sequence Recurrent Neural Networks.. IEEE Comput Grap Appl, 2019, 39: 33-46 CrossRef PubMed Google Scholar

[13] Hu K, Bakker M A, Li S, et al. Vizml: A machine learning approach to visualization recommendation. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, 2019. 1--12. Google Scholar

[14] He W, Wang J, Guo H. InSituNet: Deep Image Synthesis for Parameter Space Exploration of Ensemble Simulations.. IEEE Trans Visual Comput Graphics, 2019, : 1-1 CrossRef PubMed Google Scholar

[15] Zhu M, Chen W, Hu Y. DRGraph: An Efficient Graph Layout Algorithm for Large-scale Graphs by Dimensionality Reduction.. IEEE Trans Visual Comput Graphics, 2021, 27: 1666-1676 CrossRef PubMed Google Scholar

[16] Jung Y, Kim D, Woo S, et al. Hide-and-tell: learning to bridge photo streams for visual storytelling. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2020. 11213--11220. Google Scholar

[17] Tan S, Bhowmick S S, Chua H E, et al. LATTE: visual construction of smart contracts. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, 2020. 2713--2716. Google Scholar

[18] Liu S, Wang X, Liu M. Towards better analysis of machine learning models: A visual analytics perspective. Visual Inf, 2017, 1: 48-56 CrossRef Google Scholar

[19] Hohman F, Kahng M, Pienta R. Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers.. IEEE Trans Visual Comput Graphics, 2019, 25: 2674-2693 CrossRef PubMed Google Scholar

[20] Zhang Q, Zhu S. Visual interpretability for deep learning: a survey. Front Inf Technol Electron Eng, 2018, 19: 27-39 CrossRef Google Scholar

[21] Sacha D, Kraus M, Keim D A. VIS4ML: An Ontology for Visual Analytics Assisted Machine Learning.. IEEE Trans Visual Comput Graphics, 2019, 25: 385-395 CrossRef PubMed Google Scholar

[22] Taleb I, Serhani M A, Dssouli R. Big data quality: a survey. In: Proceedings of the IEEE International Congress on Big Data, 2018. 166--173. Google Scholar

[23] von Zernichow B M, Roman D. Usability of visual data profiling in data cleaning and transformation. In: Proceedings of the OTM Confederated International Conferences On the Move to Meaningful Internet Systems, 2017. 480--496. Google Scholar

[24] Liu S, Andrienko G, Wu Y. Steering data quality with visual analytics: The complexity challenge. Visual Inf, 2018, 2: 191-197 CrossRef Google Scholar

[25] Oliveira P, Rodrigues F, Henriques P R. A formal definition of data quality problems. In: Proceedings of the ICIQ, 2005. Google Scholar

[26] Sidi F, Panahy P H S, Affendey L S, et al. Data quality: a survey of data quality dimensions. In: Proceedings of the International Conference on Information Retrieval & Knowledge Management, 2012. 300--304. Google Scholar

[27] Chandola V, Banerjee A, Kumar V. Anomaly detection. ACM Comput Surv, 2009, 41: 1-58 CrossRef Google Scholar

[28] Butscher S, Hubenschmid S, Müller J, et al. Clusters, trends, and outliers: how immersive technologies can facilitate the collaborative analysis of multidimensional data. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, 2018. 1--12. Google Scholar

[29] Wilkinson L. Visualizing Big Data Outliers through Distributed Aggregation.. IEEE Trans Visual Comput Graphics, 2018, 24: 256-266 CrossRef PubMed Google Scholar

[30] Cao N, Lin Y R, Gotz D. Z-Glyph: Visualizing outliers in multivariate data. Inf Visualization, 2018, 17: 22-40 CrossRef Google Scholar

[31] Xu K, Xia M, Mu X. EnsembleLens: Ensemble-based Visual Exploration of Anomaly Detection Algorithms with Multidimensional Data.. IEEE Trans Visual Comput Graphics, 2019, 25: 109-119 CrossRef PubMed Google Scholar

[32] Zhao X, Cui W, Wu Y. Oui Outlier Interpretation on Multi?dimensional Data via Visual Analytics. Comput Graphics Forum, 2019, 38: 213-224 CrossRef Google Scholar

[33] Gschwandtner T, Erhart O. Know your enemy: Identifying quality problems of time series data. In: Proceedings of the IEEE Pacific Visualization Symposium, 2018. 205--214. Google Scholar

[34] Tao J, Shi L, Zhuang Z, et al. Visual analysis of collective anomalies through high-order correlation graph. In: Proceedings of the IEEE Pacific Visualization Symposium, 2018. 150--159. Google Scholar

[35] Xie C, Xu W, Mueller K. A Visual Analytics Framework for the Detection of Anomalous Call Stack Trees in High Performance Computing Applications.. IEEE Trans Visual Comput Graphics, 2019, 25: 215-224 CrossRef PubMed Google Scholar

[36] B?gl M, Filzmoser P, Gschwandtner T. Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance?Based Abstraction. Comput Graphics Forum, 2017, 36: 227-238 CrossRef Google Scholar

[37] Arbesser C, Spechtenhauser F, Muhlbacher T. Visplause: Visual Data Quality Assessment of Many Time Series Using Plausibility Checks.. IEEE Trans Visual Comput Graphics, 2017, 23: 641-650 CrossRef PubMed Google Scholar

[38] Dixit P M, Suriadi S, Andrews R, et al. Detection and interactive repair of event ordering imperfection in process logs. In: Proceedings of the International Conference on Advanced Information Systems Engineering, 2018. 274--290. Google Scholar

[39] Goodall J R, Ragan E D, Steed C A. Situ: Identifying and Explaining Suspicious Behavior in Networks.. IEEE Trans Visual Comput Graphics, 2019, 25: 204-214 CrossRef PubMed Google Scholar

[40] Song H, Szafir D A. Where's My Data? Evaluating Visualizations with Missing Data.. IEEE Trans Visual Comput Graphics, 2019, 25: 914-924 CrossRef PubMed Google Scholar

[41] Xu K, Wang Y, Yang L. CloudDet: Interactive Visual Analysis of Anomalous Performances in Cloud Computing Systems.. IEEE Trans Visual Comput Graphics, 2019, : 1-1 CrossRef PubMed Google Scholar

[42] Mu X, Xu K, Chen Q, et al. MOOCad: visual analysis of anomalous learning activities in massive open online courses. In: Proceedings of the EuroVis, 2019. 91--95. Google Scholar

[43] Wu W, Zheng Y, Chen K, et al. A visual analytics approach for equipment condition monitoring in smart factories of process industry. In: Proceedings of the IEEE Pacific Visualization Symposium, 2018. 140--149. Google Scholar

[44] Xu K, Guo S, Cao N, et al. Ecglens: interactive visual exploration of large scale ecg data for arrhythmia detection. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, 2018. 1--12. Google Scholar

[45] Zhao Y, Luo X, Lin X. Visual Analytics for Electromagnetic Situation Awareness in Radio Monitoring and Management.. IEEE Trans Visual Comput Graphics, 2020, 26: 590-600 CrossRef PubMed Google Scholar

[46] Zhao Y, Wang L, Li S. A Visual Analysis Approach for Understanding Durability Test Data of Automotive Products. ACM Trans Intell Syst Technol, 2019, 10: 1-23 CrossRef Google Scholar

[47] Zhao Y, Luo F, Chen M. Evaluating Multi-Dimensional Visualizations for Understanding Fuzzy Clusters.. IEEE Trans Visual Comput Graphics, 2019, 25: 12-21 CrossRef PubMed Google Scholar

[48] Cao N, Lin C, Zhu Q. Voila: Visual Anomaly Detection and Monitoring with Streaming Spatiotemporal Data.. IEEE Trans Visual Comput Graphics, 2018, 24: 23-33 CrossRef PubMed Google Scholar

[49] Lin C, Zhu Q, Guo S. Anomaly detection in spatiotemporal data via regularized non-negative tensor analysis. Data Min Knowl Disc, 2018, 32: 1056-1073 CrossRef Google Scholar

[50] Shi Y, Xu M, Zhao R. Interactive Context-Aware Anomaly Detection Guided by User Feedback. IEEE Trans Human-Mach Syst, 2019, 49: 550-559 CrossRef Google Scholar

[51] Bernard J, Hutter M, Zeppelzauer M. Comparing Visual-Interactive Labeling with Active Learning: An Experimental Study.. IEEE Trans Visual Comput Graphics, 2018, 24: 298-308 CrossRef PubMed Google Scholar

[52] Xiang S, Ye X, Xia J, et al. Interactive correction of mislabeled training data. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2019. 57--68. Google Scholar

[53] Park J H, Nadeem S, Boorboor S. CMed: Crowd Analytics for Medical Imaging Data.. IEEE Trans Visual Comput Graphics, 2021, 27: 2869-2880 CrossRef PubMed Google Scholar

[54] Liu S, Chen C, Lu Y. An Interactive Method to Improve Crowdsourced Annotations.. IEEE Trans Visual Comput Graphics, 2019, 25: 235-245 CrossRef PubMed Google Scholar

[55] Kurzhals K, Hlawatsch M, Seeger C. Visual Analytics for Mobile Eye Tracking.. IEEE Trans Visual Comput Graphics, 2017, 23: 301-310 CrossRef PubMed Google Scholar

[56] Khayat M, Karimzadeh M, Zhao J. VASSL: A Visual Analytics Toolkit for Social Spambot Labeling.. IEEE Trans Visual Comput Graphics, 2020, 26: 874-883 CrossRef PubMed Google Scholar

[57] Halter G, Ballester?\Ripoll R, Flueckiger B. VIAN: A Visual Annotation Tool for Film Analysis. Comput Graphics Forum, 2019, 38: 119-129 CrossRef Google Scholar

[58] de Rooij O, van Wijk J J, Worring M. MediaTable: interactive categorization of multimedia collections.. IEEE Comput Grap Appl, 2010, 30: 42-51 CrossRef PubMed Google Scholar

[59] Stein M, Janetzko H, Breitkreutz T. Director's Cut: Analysis and Annotation of Soccer Matches.. IEEE Comput Grap Appl, 2016, 36: 50-60 CrossRef PubMed Google Scholar

[60] Bernard J, Zeppelzauer M, Sedlmair M. VIAL: a unified process for visual interactive labeling. Vis Comput, 2018, 34: 1189-1207 CrossRef Google Scholar

[61] Sperrle F, Sevastjanova R, Kehlbeck R, et al. Viana: visual interactive annotation of argumentation. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2019. 11--22. Google Scholar

[62] Soares Junior A, Renso C, Matwin S. ANALYTiC: An Active Learning System for Trajectory Classification.. IEEE Comput Grap Appl, 2017, 37: 28-39 CrossRef PubMed Google Scholar

[63] Snyder L S, Lin Y S, Karimzadeh M. Interactive Learning for Identifying Relevant Tweets to Support Real-time Situational Awareness.. IEEE Trans Visual Comput Graphics, 2019, : 1-1 CrossRef PubMed Google Scholar

[64] Lekschas F, Peterson B, Haehn D. Comput Graphics Forum, 2020, 39: 167-179 CrossRef Google Scholar

[65] Bernard J, Zeppelzauer M, Lehmann M. Towards User-Centered Active Learning Algorithms. Comput Graphics Forum, 2018, 37: 121-132 CrossRef Google Scholar

[66] Chang J C, Amershi S, Kamar E. Revolt: collaborative crowdsourcing for labeling machine learning datasets. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, 2017. 2334--2346. Google Scholar

[67] Chou J K, Wang Y, Ma K L. Privacy Preserving Visualization: A Study on Event Sequence Data. Comput Graphics Forum, 2019, 38: 340-355 CrossRef Google Scholar

[68] Chou J K, Bryan C, Ma K L. Privacy preserving visualization for social network data with ontology information. In: Proceedings of the IEEE Pacific Visualization Symposium, 2017. 11--20. Google Scholar

[69] Chou J K, Bryan C, Li J, et al. An empirical study on perceptually masking privacy in graph visualizations. In: Proceedings of the IEEE Symposium on Visualization for Cyber Security, 2018. 1--8. Google Scholar

[70] Wang X, Chou J K, Chen W. A Utility-Aware Visual Approach for Anonymizing Multi-Attribute Tabular Data.. IEEE Trans Visual Comput Graphics, 2018, 24: 351-360 CrossRef PubMed Google Scholar

[71] Wang X, Chen W, Chou J K. GraphProtector: A Visual Interface for Employing and Assessing Multiple Privacy Preserving Graph Algorithms.. IEEE Trans Visual Comput Graphics, 2019, 25: 193-203 CrossRef PubMed Google Scholar

[72] Xia J, Chen T, Zhang L, et al. SMAP: a joint dimensionality reduction scheme for secure multi-party visualization. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2020. 107--118. Google Scholar

[73] Sacha D, Sedlmair M, Zhang L. What you see is what you can change: Human-centered machine learning by interactive visualization. Neurocomputing, 2017, 268: 164-175 CrossRef Google Scholar

[74] Miller T. Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 2019, 267: 1-38 CrossRef Google Scholar

[75] Chatzimparmpas A, Martins R M, Jusufi I. A survey of surveys on the use of visualization for interpreting machine learning models. Inf Visualization, 2020, 19: 207-233 CrossRef Google Scholar

[76] Wexler J, Pushkarna M, Bolukbasi T. The What-If Tool: Interactive Probing of Machine Learning Models.. IEEE Trans Visual Comput Graphics, 2019, : 1-1 CrossRef PubMed Google Scholar

[77] Hohman F, Head A, Caruana R, et al. Gamut: a design probe to understand how data scientists understand machine learning models. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, 2019. 1--13. Google Scholar

[78] Spinner T, Schlegel U, Schafer H. explAIner: A Visual Analytics Framework for Interactive and Explainable Machine Learning.. IEEE Trans Visual Comput Graphics, 2019, : 1-1 CrossRef PubMed Google Scholar

[79] Cheng H F, Wang R, Zhang Z, et al. Explaining decision-making algorithms through UI: strategies to help non-expert stakeholders. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, 2019. 1--12. Google Scholar

[80] Cabrera Á A, Epperson W, Hohman F, et al. Fairvis: visual analytics for discovering intersectional bias in machine learning. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2019. 46--56. Google Scholar

[81] Ahn Y, Lin Y R. FairSight: Visual Analytics for Fairness in Decision Making.. IEEE Trans Visual Comput Graphics, 2019, : 1-1 CrossRef PubMed Google Scholar

[82] Yan J N, Gu Z, Lin H, et al. Silva: interactively assessing machine learning fairness using causality. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, 2020. 1--13. Google Scholar

[83] Krause J, Dasgupta A, Swartz J, et al. A workflow for visual diagnostics of binary classifiers using instance-level explanations. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2017. 162--172. Google Scholar

[84] Ma Y, Xie T, Li J. Explaining Vulnerabilities to Adversarial Machine Learning through Visual Analytics.. IEEE Trans Visual Comput Graphics, 2020, 26: 1075-1085 CrossRef PubMed Google Scholar

[85] Zhao X, Wu Y, Lee D L. iForest: Interpreting Random Forests via Visual Analytics.. IEEE Trans Visual Comput Graphics, 2019, 25: 407-416 CrossRef PubMed Google Scholar

[86] Liu S, Xiao J, Liu J. Visual Diagnosis of Tree Boosting Methods.. IEEE Trans Visual Comput Graphics, 2018, 24: 163-173 CrossRef PubMed Google Scholar

[87] Ren D, Amershi S, Lee B. Squares: Supporting Interactive Performance Analysis for Multiclass Classifiers.. IEEE Trans Visual Comput Graphics, 2017, 23: 61-70 CrossRef PubMed Google Scholar

[88] Gleicher M, Barve A, Yu X. Boxer: Interactive Comparison of Classifier Results. Comput Graphics Forum, 2020, 39: 181-193 CrossRef Google Scholar

[89] Cavallo M, Demiralp . Track Xplorer: A System for Visual Analysis of Sensor-based Motor Activity Predictions. Comput Graphics Forum, 2018, 37: 339-349 CrossRef Google Scholar

[90] Muhlbacher T, Linhardt L, Moller T. TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees.. IEEE Trans Visual Comput Graphics, 2018, 24: 174-183 CrossRef PubMed Google Scholar

[91] Dingen D, van't Veer M, Houthuizen P. RegressionExplorer: Interactive Exploration of Logistic Regression Models with Subgroup Analysis.. IEEE Trans Visual Comput Graphics, 2019, 25: 246-255 CrossRef PubMed Google Scholar

[92] Das S, Cashman D, Chang R. BEAMES: Interactive Multimodel Steering, Selection, and Inspection for Regression Tasks.. IEEE Comput Grap Appl, 2019, 39: 20-32 CrossRef PubMed Google Scholar

[93] Zhang C, Yang J, Zhan F B, et al. A visual analytics approach to high-dimensional logistic regression modeling and its application to an environmental health study. In: Proceedings of the IEEE Pacific Visualization Symposium, 2016. 136--143. Google Scholar

[94] Cavallo M, Demiralp Ç. A visual interaction framework for dimensionality reduction based data exploration. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, 2018. 1--13. Google Scholar

[95] Faust R, Glickenstein D, Scheidegger C. DimReader: Axis lines that explain non-linear projections.. IEEE Trans Visual Comput Graphics, 2019, 25: 481-490 CrossRef PubMed Google Scholar

[96] Kwon B C, Kim H, Wall E. AxiSketcher: Interactive Nonlinear Axis Mapping of Visualizations through User Drawings.. IEEE Trans Visual Comput Graphics, 2017, 23: 221-230 CrossRef PubMed Google Scholar

[97] Li Q, Njotoprawiro K S, Haleem H, et al. Embeddingvis: a visual analytics approach to comparative network embedding inspection. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2018. 48--59. Google Scholar

[98] Lu M, Wang S, Lanir J. Winglets: Visualizing Association with Uncertainty in Multi-class Scatterplots.. IEEE Trans Visual Comput Graphics, 2020, 26: 770-779 CrossRef PubMed Google Scholar

[99] Bian R, Xue Y, Zhou L. Implicit Multidimensional Projection of Local Subspaces.. IEEE Trans Visual Comput Graphics, 2021, 27: 1558-1568 CrossRef PubMed Google Scholar

[100] Cavallo M, Demiralp ?. Clustrophile 2: Guided visual clustering analysis. IEEE Trans Vis Comput Graph, 2018, 25: 267-276. Google Scholar

[101] Kwon B C, Eysenbach B, Verma J. Clustervision: Visual Supervision of Unsupervised Clustering.. IEEE Trans Visual Comput Graphics, 2018, 24: 142-151 CrossRef PubMed Google Scholar

[102] Sacha D, Kraus M, Bernard J. SOMFlow: Guided Exploratory Cluster Analysis with Self-Organizing Maps and Analytic Provenance.. IEEE Trans Visual Comput Graphics, 2018, 24: 120-130 CrossRef PubMed Google Scholar

[103] Yang W, Wang X, Lu J. Interactive Steering of Hierarchical Clustering.. IEEE Trans Visual Comput Graphics, 2020, : 1-1 CrossRef PubMed Google Scholar

[104] Kwon B C, Anand V, Severson K A. DPVis: Visual Analytics with Hidden Markov Models for Disease Progression Pathways.. IEEE Trans Visual Comput Graphics, 2020, : 1-1 CrossRef PubMed Google Scholar

[105] Bilal A, Jourabloo A, Ye M. Do Convolutional Neural Networks Learn Class Hierarchy?. IEEE Trans Visual Comput Graphics, 2018, 24: 152-162 CrossRef PubMed Google Scholar

[106] Qin Z, Yu F, Liu C. Math Found Computing, 2018, 1: 149-180 CrossRef Google Scholar

[107] Du M, Liu N, Hu X. Techniques for interpretable machine learning. Commun ACM, 2019, 63: 68-77 CrossRef Google Scholar

[108] Fong R C, Vedaldi A. Interpretable explanations of black boxes by meaningful perturbation. In: Proceedings of the IEEE International Conference on Computer Vision, 2017. 3429--3437. Google Scholar

[109] Dabkowski P, Gal Y. Real time image saliency for black box classifiers. In: Proceedings of the International Conference on Neural Information Processing Systems, 2017. 6970--6979. Google Scholar

[110] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision, 2014. 818--833. Google Scholar

[111] Springenberg J T, Dosovitskiy A, Brox T, et al. Striving for simplicity: The all convolutional net. arXiv preprint,. arXiv Google Scholar

[112] Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint,. arXiv Google Scholar

[113] On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation. PLoS ONE, 2015, 10: e0130140 CrossRef PubMed ADS Google Scholar

[114] Ancona M, Ceolini E, ?ztireli C, et al. Towards better understanding of gradient-based attribution methods for deep neural networks. In: Proceedings of the International Conference on Learning Representations, 2018. Google Scholar

[115] Li G, Wang J, Shen H W. CNNPruner: Pruning Convolutional Neural Networks with Visual Analytics.. IEEE Trans Visual Comput Graphics, 2021, 27: 1364-1373 CrossRef PubMed Google Scholar

[116] Mahendran A, Vedaldi A. Visualizing Deep Convolutional Neural Networks Using Natural Pre-images. Int J Comput Vis, 2016, 120: 233-255 CrossRef Google Scholar

[117] Dosovitskiy A, Brox T. Inverting visual representations with convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. 4829--4837. Google Scholar

[118] Mahendran A, Vedaldi A. Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. 5188--5196. Google Scholar

[119] Erhan D, Bengio Y, Courville A, et al. Visualizing higher-layer features of a deep network. University of Montreal, 2009, 1341: 1. Google Scholar

[120] Yosinski J, Clune J, Nguyen A, et al. Understanding neural networks through deep visualization. 2015,. arXiv Google Scholar

[121] Nguyen A, Dosovitskiy A, Yosinski J, et al. Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. 2016,. arXiv Google Scholar

[122] Nguyen A, Yosinski J, Clune J. Understanding neural networks via feature visualization: a survey. In: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Cham: Springer, 2019. 55--76. Google Scholar

[123] Bau D, Zhou B, Khosla A, et al. Network dissection: Quantifying interpretability of deep visual representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. 6541--6549. Google Scholar

[124] Fong R, Vedaldi A. Net2vec: quantifying and explaining how concepts are encoded by filters in deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. 8730--8738. Google Scholar

[125] Abadi M, Agarwal A, Barham P, et al. Tensorflow: large-scale machine learning on heterogeneous distributed systems. 2016,. arXiv Google Scholar

[126] Liu M, Shi J, Li Z. Towards Better Analysis of Deep Convolutional Neural Networks.. IEEE Trans Visual Comput Graphics, 2017, 23: 91-100 CrossRef PubMed Google Scholar

[127] Liu G, Gifford D. Visualizing feature maps in deep neural networks using deepresolve a genomics case study. BMC Bioinform, 2019, 20: 1471-2105. Google Scholar

[128] Liu M, Liu S, Su H, et al. Analyzing the noise robustness of deep neural networks. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2018. 60--71. Google Scholar

[129] Shen Q, Wu Y, Jiang Y, et al. Visual interpretation of recurrent neural network on multi-dimensional time-series forecast. In: Proceedings of the IEEE Pacific Visualization Symposium, 2020. 61--70. Google Scholar

[130] Liu D, Cui W, Jin K. DeepTracker. ACM Trans Intell Syst Technol, 2019, 10: 1-25 CrossRef Google Scholar

[131] Wongsuphasawat K, Smilkov D, Wexler J. Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow. IEEE Trans Visual Comput Graphics, 2018, 24: 1-12 CrossRef Google Scholar

[132] Smilkov D, Carter S, Sculley D, et al. Direct-manipulation visualization of deep networks. arXiv preprint,. arXiv Google Scholar

[133] Hohman F, Park H, Robinson C. Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations.. IEEE Trans Visual Comput Graphics, 2020, 26: 1096-1106 CrossRef PubMed Google Scholar

[134] Nie S, Healey C, Padia K, et al. Visualizing deep neural networks for text analytics. In: Proceedings of the IEEE Pacific Visualization Symposium, 2018. 180--189. Google Scholar

[135] Kahng M, Andrews P Y, Kalro A. ACTIVIS: Visual Exploration of Industry-Scale Deep Neural Network Models.. IEEE Trans Visual Comput Graphics, 2018, 24: 88-97 CrossRef PubMed Google Scholar

[136] Rauber P E, Fadel S G, Falcao A X. Visualizing the Hidden Activity of Artificial Neural Networks.. IEEE Trans Visual Comput Graphics, 2017, 23: 101-110 CrossRef PubMed Google Scholar

[137] Zhang J, Wang Y, Molino P. Manifold: A Model-Agnostic Framework for Interpretation and Diagnosis of Machine Learning Models.. IEEE Trans Visual Comput Graphics, 2019, 25: 364-373 CrossRef PubMed Google Scholar

[138] Murugesan S, Malik S, Du F. DeepCompare: Visual and Interactive Comparison of Deep Learning Model Performance.. IEEE Comput Grap Appl, 2019, 39: 47-59 CrossRef PubMed Google Scholar

[139] Liu S, Li Z, Li T. NLIZE: A Perturbation-Driven Visual Interrogation Tool for Analyzing and Interpreting Natural Language Inference Models.. IEEE Trans Visual Comput Graphics, 2019, 25: 651-660 CrossRef PubMed Google Scholar

[140] Ming Y, Xu P, Cheng F. ProtoSteer: Steering Deep Sequence Model with Prototypes.. IEEE Trans Visual Comput Graphics, 2020, 26: 238-248 CrossRef PubMed Google Scholar

[141] Ming Y, Xu P, Qu H, et al. Interpretable and steerable sequence learning via prototypes. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019. 903--913. Google Scholar

[142] Kahng M, Thorat N, Chau D H P. GAN Lab: Understanding Complex Deep Generative Models using Interactive Visual Experimentation.. IEEE Trans Visual Comput Graphics, 2019, 25: 310-320 CrossRef PubMed Google Scholar

[143] Collaris D, van Wijk J J. ExplainExplore: visual exploration of machine learning explanations. In: Proceedings of the IEEE Pacific Visualization Symposium, 2020. 26--35. Google Scholar

[144] Wang J, Gou L, Zhang W. DeepVID: Deep Visual Interpretation and Diagnosis for Image Classifiers via Knowledge Distillation.. IEEE Trans Visual Comput Graphics, 2019, 25: 2168-2180 CrossRef PubMed Google Scholar

[145] Ming Y, Qu H, Bertini E. RuleMatrix: Visualizing and Understanding Classifiers with Rules.. IEEE Trans Visual Comput Graphics, 2019, 25: 342-352 CrossRef PubMed Google Scholar

[146] Zeng W, Lin C, Lin J. Revisiting the Modifiable Areal Unit Problem in Deep Traffic Prediction with Visual Analytics.. IEEE Trans Visual Comput Graphics, 2021, 27: 839-848 CrossRef PubMed Google Scholar

[147] Pezzotti N, Hollt T, Van Gemert J. DeepEyes: Progressive Visual Analytics for Designing Deep Neural Networks.. IEEE Trans Visual Comput Graphics, 2018, 24: 98-108 CrossRef PubMed Google Scholar

[148] Wang J, Zhang W, Yang H. SCANViz: interpreting the symbol-concept association captured by deep neural networks through visual analytics. In: Proceedings of the IEEE Pacific Visualization Symposium, 2020. 51--60. Google Scholar

[149] Cashman D, Perer A, Chang R. Ablate, Variate, and Contemplate: Visual Analytics for Discovering Neural Architectures.. IEEE Trans Visual Comput Graphics, 2020, 26: 863-873 CrossRef PubMed Google Scholar

[150] Wang X, Chen W, Xia J, et al. ConceptExplorer: visual analysis of concept drifts in multi-source time-series data. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2020. 1--11. Google Scholar

[151] Yang W, Li Z, Liu M, et al. Diagnosing concept drift with visual analytics. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2020. 12--23. Google Scholar

[152] Strobelt H, Gehrmann S, Pfister H. LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks.. IEEE Trans Visual Comput Graphics, 2018, 24: 667-676 CrossRef PubMed Google Scholar

[153] Cashman D, Patterson G, Mosca A. RNNbow: Visualizing Learning Via Backpropagation Gradients in RNNs.. IEEE Comput Grap Appl, 2018, 38: 39-50 CrossRef PubMed Google Scholar

[154] Strobelt H, Gehrmann S, Behrisch M. SEQ2SEQ-VIS : A Visual Debugging Tool for Sequence-to-Sequence Models.. IEEE Trans Visual Comput Graphics, 2019, 25: 353-363 CrossRef PubMed Google Scholar

[155] Jaunet T, Vuillemot R, Wolf C. DRLViz: Understanding Decisions and Memory in Deep Reinforcement Learning. Comput Graphics Forum, 2020, 39: 49-61 CrossRef Google Scholar

[156] Wang J, Gou L, Shen H W. DQNViz: A Visual Analytics Approach to Understand Deep Q-Networks.. IEEE Trans Visual Comput Graphics, 2019, 25: 288-298 CrossRef PubMed Google Scholar

[157] Wang J, Gou L, Yang H. GANViz: A Visual Analytics Approach to Understand the Adversarial Game.. IEEE Trans Visual Comput Graphics, 2018, 24: 1905-1917 CrossRef PubMed Google Scholar

[158] Fujiwara T, Chou J K, Shilpika J K. An Incremental Dimensionality Reduction Method for Visualizing Streaming Multidimensional Data.. IEEE Trans Visual Comput Graphics, 2020, 26: 418-428 CrossRef PubMed Google Scholar

[159] Gortler J, Spinner T, Streeb D. Uncertainty-Aware Principal Component Analysis.. IEEE Trans Visual Comput Graphics, 2020, 26: 822-831 CrossRef PubMed Google Scholar

[160] Watanabe K, Wu H Y, Niibe Y, et al. Biclustering multivariate data for correlated subspace mining. In: Proceedings of the IEEE Pacific Visualization Symposium, 2015. 287--294. Google Scholar

[161] Liu S, Wang B, Thiagarajan J J. Visual Exploration of High-Dimensional Data through Subspace Analysis and Dynamic Projections. Comput Graphics Forum, 2015, 34: 271-280 CrossRef Google Scholar

[162] Wang Y, Li J, Nie F. Linear Discriminative Star Coordinates for Exploring Class and Cluster Separation of High Dimensional Data. Comput Graphics Forum, 2017, 36: 401-410 CrossRef Google Scholar

[163] Zhou F, Li J, Huang W, et al. Dimension reconstruction for visual exploration of subspace clusters in high-dimensional data. In: Proceedings of the IEEE Pacific Visualization Symposium, 2016. 128--135. Google Scholar

[164] Zhou Z, Meng L, Tang C. Visual Abstraction of Large Scale Geospatial Origin-Destination Movement Data.. IEEE Trans Visual Comput Graphics, 2019, 25: 43-53 CrossRef PubMed Google Scholar

[165] Zhu M, Chen W, Xia J. Location2vec: A Situation-Aware Representation for Visual Exploration of Urban Locations. IEEE Trans Intell Transp Syst, 2019, 20: 3981-3990 CrossRef Google Scholar

[166] Xie P, Tao W, Li J, et al. Exploring multi-dimensional data via subset embedding. In: Proceedings of the EuroVis, 2021. Google Scholar

[167] Kwon O H, Ma K L. A Deep Generative Model for Graph Layout.. IEEE Trans Visual Comput Graphics, 2020, 26: 665-675 CrossRef PubMed Google Scholar

[168] Ma Y, Tung A K H, Wang W. ScatterNet: A Deep Subjective Similarity Model for Visual Analysis of Scatterplots.. IEEE Trans Visual Comput Graphics, 2020, 26: 1562-1576 CrossRef PubMed Google Scholar

[169] Jackle D, Fischer F, Schreck T. Temporal MDS Plots for Analysis of Multivariate Data.. IEEE Trans Visual Comput Graphics, 2016, 22: 141-150 CrossRef PubMed Google Scholar

[170] Haehn D, Tompkin J, Pfister H. Evaluating 'Graphical Perception' with CNNs.. IEEE Trans Visual Comput Graphics, 2019, 25: 641-650 CrossRef PubMed Google Scholar

[171] Krueger R, Beyer J, Jang W D. Facetto: Combining Unsupervised and Supervised Learning for Hierarchical Phenotype Analysis in Multi-Channel Image Data.. IEEE Trans Visual Comput Graphics, 2020, 26: 227-237 CrossRef PubMed Google Scholar

[172] Han J, Tao J, Wang C. FlowNet: A Deep Learning Framework for Clustering and Selection of Streamlines and Stream Surfaces.. IEEE Trans Visual Comput Graphics, 2019, : 1-1 CrossRef PubMed Google Scholar

[173] Berger M, McDonough K, Seversky L M. cite2vec: Citation-Driven Document Exploration via Word Embeddings.. IEEE Trans Visual Comput Graphics, 2017, 23: 691-700 CrossRef PubMed Google Scholar

[174] Tkachev G, Frey S, Ertl T. Local Prediction Models for Spatiotemporal Volume Visualization.. IEEE Trans Visual Comput Graphics, 2021, 27: 3091-3108 CrossRef PubMed Google Scholar

[175] Maljovec D, Wang B, Rosen P, et al. Rethinking sensitivity analysis of nuclear simulations with topology. In: Proceedings of the IEEE Pacific Visualization Symposium, 2016. 64--71. Google Scholar

[176] Mafrur R, Sharaf M A, Khan H A. Dive: diversifying view recommendation for visual data exploration. In: Proceedings of the ACM International Conference on Information and Knowledge Management, 2018. 1123--1132. Google Scholar

[177] Milo T, Somech A. Next-step suggestions for modern interactive data analysis platforms. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018. 576--585. Google Scholar

[178] Chen C, Wang C, Bai X. GenerativeMap: Visualization and Exploration of Dynamic Density Maps via Generative Learning Model.. IEEE Trans Visual Comput Graphics, 2019, : 1-1 CrossRef PubMed Google Scholar

[179] Berger M, Li J, Levine J A. A Generative Model for Volume Rendering.. IEEE Trans Visual Comput Graphics, 2019, 25: 1636-1650 CrossRef PubMed Google Scholar

[180] Kim B, Günther T. Robust Reference Frame Extraction from Unsteady 2D Vector Fields with Convolutional Neural Networks. Comput Graphics Forum, 2019, 38: 285-295 CrossRef Google Scholar

[181] Guo L, Ye S, Han J, et al. SSR-VFD: spatial super-resolution for vector field data analysis and visualization. In: Proceedings of the IEEE Pacific Visualization Symposium, 2020. 71--80. Google Scholar

[182] Zhang P, Li C, Wang C. VisCode: Embedding Information in Visualization Images using Encoder-Decoder Network.. IEEE Trans Visual Comput Graphics, 2021, 27: 326-336 CrossRef PubMed Google Scholar

[183] Ge T, Zhao Y, Lee B. Canis: A High?Łevel Language for Data?Driven Chart Animations. Comput Graphics Forum, 2020, 39: 607-617 CrossRef Google Scholar

[184] Wang Y, Chen X, Ge T. Optimizing Color Assignment for Perception of Class Separability in Multiclass Scatterplots.. IEEE Trans Visual Comput Graphics, 2019, 25: 820-829 CrossRef PubMed Google Scholar

[185] Lu K, Feng M, Chen X. Palettailor: Discriminable Colorization for Categorical Data. IEEE Trans Visual Comput Graphics, 2021, 27: 475-484 CrossRef PubMed Google Scholar

[186] Zheng J X, Pawar S, Goodman D F M. Graph Drawing by Stochastic Gradient Descent.. IEEE Trans Visual Comput Graphics, 2019, 25: 2738-2748 CrossRef PubMed Google Scholar

[187] Wakita K, Takami M, Hosobe H. Interactive high-dimensional visualization of social graphs. In: Proceedings of the IEEE Pacific Visualization Symposium, 2015. 303--310. Google Scholar

[188] Weng D, Chen R, Deng Z. SRVis: Towards Better Spatial Integration in Ranking Visualization.. IEEE Trans Visual Comput Graphics, 2019, 25: 459-469 CrossRef PubMed Google Scholar

[189] Wu Y, Cao N, Archambault D. Evaluation of Graph Sampling: A Visualization Perspective.. IEEE Trans Visual Comput Graphics, 2017, 23: 401-410 CrossRef PubMed Google Scholar

[190] Chen X, Ge T, Zhang J. A Recursive Subdivision Technique for Sampling Multi-class Scatterplots.. IEEE Trans Visual Comput Graphics, 2020, 26: 729-738 CrossRef PubMed Google Scholar

[191] Zhao Y, Jiang H, Chen Q. Preserving Minority Structures in Graph Sampling.. IEEE Trans Visual Comput Graphics, 2021, 27: 1698-1708 CrossRef PubMed Google Scholar

[192] Zhou Z, Zhang X, Yang Z, et al. Visual abstraction of geographical point data with spatial autocorrelations. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2020. 60--71. Google Scholar

[193] Zhou Z, Shi C, Shen X. Context-aware Sampling of Large Networks via Graph Representation Learning.. IEEE Trans Visual Comput Graphics, 2021, 27: 1709-1719 CrossRef PubMed Google Scholar

[194] Wang Y, Zhong Z, Hua J. DeepOrganNet: On-the-Fly Reconstruction and Visualization of 3D / 4D Lung Models from Single-View Projections by Deep Deformation Network.. IEEE Trans Visual Comput Graphics, 2019, : 1-1 CrossRef PubMed Google Scholar

[195] Hu R, Sha T, Van Kaick O. Data Sampling in Multi-view and Multi-class Scatterplots via Set Cover Optimization.. IEEE Trans Visual Comput Graphics, 2020, 26: 739-748 CrossRef PubMed Google Scholar

[196] Wang Y, Lee B, Chu X. ShapeWordle: Tailoring Wordles using Shape-aware Archimedean Spirals.. IEEE Trans Visual Comput Graphics, 2020, 26: 991-1000 CrossRef PubMed Google Scholar

[197] Bae J, Helldin T, Riveiro M. Understanding Indirect Causal Relationships in Node?Łink Graphs. Comput Graphics Forum, 2017, 36: 411-421 CrossRef Google Scholar

[198] Bhowmick S S, Huang K, Chua H E, et al. AURORA: data-driven construction of visual graph query interfaces for graph databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, 2020. 2689--2692. Google Scholar

[199] Song Y, Chua H E, Bhowmick S S, et al. BOOMER: a tool for blending visual p-homomorphic queries on large networks. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, 2020. 2685--2688. Google Scholar

[200] Meng Y, Zhang H, Liu M, et al. Clutter-aware label layout. In: Proceedings of the IEEE Pacific Visualization Symposium, 2015. 207--214. Google Scholar

[201] Chen X, Zeng W, Lin Y. Composition and Configuration Patterns in Multiple-View Visualizations.. IEEE Trans Visual Comput Graphics, 2021, 27: 1514-1524 CrossRef PubMed Google Scholar

[202] Fan C, Hauser H. Fast and Accurate CNN-based Brushing in Scatterplots. Comput Graphics Forum, 2018, 37: 111-120 CrossRef Google Scholar

[203] Chen Z, Zeng W, Yang Z. LassoNet: Deep Lasso-Selection of 3D Point Clouds.. IEEE Trans Visual Comput Graphics, 2019, : 1-1 CrossRef PubMed Google Scholar

[204] Ottley A, Garnett R, Wan R. Follow The Clicks: Learning and Anticipating Mouse Interactions During Exploratory Data Analysis. Comput Graphics Forum, 2019, 38: 41-52 CrossRef Google Scholar

[205] Savvides R, Henelius A, Oikarinen E, et al. Significance of patterns in data visualisations. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019. 1509--1517. Google Scholar

[206] Gao L, Cao Y P, Lai Y K. Active Exploration of Large 3D Model Repositories.. IEEE Trans Visual Comput Graphics, 2015, 21: 1390-1402 CrossRef PubMed Google Scholar

[207] Hazarika S, Li H, Wang K C. NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simulation.. IEEE Trans Visual Comput Graphics, 2019, : 1-1 CrossRef PubMed Google Scholar

[208] Zhang L, Alghamdi N, Eltabakh M Y, et al. Big data series analytics using TARDIS and its exploitation in geospatial applications. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, 2020. 2785--2788. Google Scholar

[209] Hong F, Liu C, Yuan X. DNN-VolVis: interactive volume visualization supported by deep neural network. In: Proceedings of the IEEE Pacific Visualization Symposium, 2019. 282--291. Google Scholar

[210] Huang Z, Zhao Y, Chen W. A Natural-language-based Visual Query Approach of Uncertain Human Trajectories.. IEEE Trans Visual Comput Graphics, 2019, : 1-1 CrossRef PubMed Google Scholar

[211] Wang Z, Ferreira N, Wei Y. Gaussian Cubes: Real-Time Modeling for Visual Exploration of Large Multidimensional Datasets.. IEEE Trans Visual Comput Graphics, 2017, 23: 681-690 CrossRef PubMed Google Scholar

[212] Mei H, Chen W, Wei Y. RSATree: Distribution-Aware Data Representation of Large-Scale Tabular Datasets for Flexible Visual Query.. IEEE Trans Visual Comput Graphics, 2020, 26: 1161-1171 CrossRef PubMed Google Scholar

[213] Liu C, Wu C, Shao H. SmartCube: An Adaptive Data Management Architecture for the Real-Time Visualization of Spatiotemporal Datasets.. IEEE Trans Visual Comput Graphics, 2019, : 1-1 CrossRef PubMed Google Scholar

[214] Dong L, Bai Q, Kim T, et al. Marviq: quality-aware geospatial visualization of range-selection queries using materialization. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, 2020. 67--82. Google Scholar

[215] Lin Q, Ke W, Lou J G, et al. BigIN4: instant, interactive insight identification for multi-dimensional big data. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018. 547--555. Google Scholar

[216] Li J, Chen S, Chen W. Semantics-Space-Time Cube: A Conceptual Framework for Systematic Analysis of Texts in Space and Time.. IEEE Trans Visual Comput Graphics, 2020, 26: 1789-1806 CrossRef PubMed Google Scholar

[217] El?\Assady M, Sevastjanova R, Gipp B. NEREx: Named?Entity Relationship Exploration in Multi?¶arty Conversations. Comput Graphics Forum, 2017, 36: 213-225 CrossRef Google Scholar

[218] El-Assady M, Kehlbeck R, Collins C. Semantic Concept Spaces: Guided Topic Model Refinement using Word-Embedding Projections.. IEEE Trans Visual Comput Graphics, 2019, : 1-1 CrossRef PubMed Google Scholar

[219] Guo H, Laidlaw D H. Topic-Based Exploration and Embedded Visualizations for Research Idea Generation.. IEEE Trans Visual Comput Graphics, 2020, 26: 1592-1607 CrossRef PubMed Google Scholar

[220] Leventidis A, Zhang J, Dunne C, et al. QueryVis: logic-based diagrams help users understand complicated SQL queries faster. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, 2020. 2303--2318. Google Scholar

[221] Xu P, Cao N, Qu H, et al. Interactive visual co-cluster analysis of bipartite graphs. In: Proceedings of the IEEE Pacific Visualization Symposium, 2016. 32--39. Google Scholar

[222] Wu T H, Zhao Y, Amiruzzaman M. Interactive visualization of AI-based speech recognition texts. In: Proceedings of the International EuroVis Workshop on Visual Analytics, 2020. 79--83. Google Scholar

[223] Cui W, Zhang X, Wang Y. Text-to-Viz: Automatic Generation of Infographics from Proportion-Related Natural Language Statements.. IEEE Trans Visual Comput Graphics, 2020, 26: 906-916 CrossRef PubMed Google Scholar

[224] Wang Y, Sun Z, Zhang H. DataShot: Automatic Generation of Fact Sheets from Tabular Data.. IEEE Trans Visual Comput Graphics, 2020, 26: 895-905 CrossRef PubMed Google Scholar

[225] Zeng H, Wang X, Wu A, et al. EmoCo: visual analysis of emotion coherence in presentation videos. IEEE Trans Vis Comput Graph, 2019, 26: 927--937. Google Scholar

[226] Shi Y, Bryan C, Bhamidipati S. MeetingVis: Visual Narratives to Assist in Recalling Meeting Context and Content.. IEEE Trans Visual Comput Graphics, 2018, 24: 1918-1929 CrossRef PubMed Google Scholar

[227] Tang T, Rubab S, Lai J. iStoryline: Effective Convergence to Hand-drawn Storylines.. IEEE Trans Visual Comput Graphics, 2019, 25: 769-778 CrossRef PubMed Google Scholar

[228] Lai C, Lin Z, Jiang R, et al. Automatic annotation synchronizing with textual description for visualization. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, 2020. 1--13. Google Scholar

[229] Liu C, Xie L, Han Y, et al. AutoCaption: an approach to generate natural language description from visualization automatically. In: Proceedings of the IEEE Pacific Visualization Symposium, 2020. 191--195. Google Scholar

[230] Wang R, Wei Z, Li P, et al. Storytelling from an image stream using scene graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2020. 9185--9192. Google Scholar

[231] Chen S, Li J, Andrienko G. Supporting Story Synthesis: Bridging the Gap between Visual Analytics and Storytelling.. IEEE Trans Visual Comput Graphics, 2020, 26: 2499-2516 CrossRef PubMed Google Scholar

[232] Yang P, Luo F, Chen P, et al. Knowledgeable storyteller: a commonsense-driven generative model for visual storytelling. In: Proceedings of the International Joint Conference on Artificial Intelligence, 2019. 5356--5362. Google Scholar

[233] Chen Z, Wang Y, Wang Q. Towards Automated Infographic Design: Deep Learning-based Auto-Extraction of Extensible Timeline.. IEEE Trans Visual Comput Graphics, 2019, : 1-1 CrossRef PubMed Google Scholar

[234] Jung Y, Kim D, Woo S, et al. Hide-and-tell: learning to bridge photo streams for visual storytelling. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2020. 11213--11220. Google Scholar

[235] Hu J, Cheng Y, Gan Z, et al. What makes a good story? Designing composite rewards for visual storytelling. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2020. 7969--7976. Google Scholar

[236] Fulda J, Brehmer M, Munzner T. TimeLineCurator: Interactive Authoring of Visual Timelines from Unstructured Text.. IEEE Trans Visual Comput Graphics, 2016, 22: 300-309 CrossRef PubMed Google Scholar

[237] Chiang F, Miller R J. Discovering data quality rules. In: Proceedings of the VLDB Endowment, 2008. 1166--1177. Google Scholar

[238] Yeh P Z, Puri C A. An efficient and robust approach for discovering data quality rules. In: Proceedings of the IEEE International Conference on Tools with Artificial Intelligence, 2010. 248--255. Google Scholar

[239] Narayanan V, Wu K, Yuksel C. Visual knitting machine programming. ACM Trans Graph, 2019, 38: 1-13 CrossRef Google Scholar

[240] Kraska T. Northstar. Proc VLDB Endow, 2018, 11: 2150-2164 CrossRef Google Scholar

[241] Moritz D, Fisher D, Ding B, et al. Trust, but verify: optimistic visualizations of approximate queries for exploring big data. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, 2017. 2904--2915. Google Scholar

[242] Pan J, Chen W, Zhao X. Exemplar-based Layout Fine-tuning for Node-link Diagrams.. IEEE Trans Visual Comput Graphics, 2021, 27: 1655-1665 CrossRef PubMed Google Scholar

  • Figure 1

    Visualization techniques driven by artificial intelligence, including intelligent feature extraction, automatic visualization layout and generating, intelligent interaction, and intelligent storytelling

qqqq

Contact and support