SCIENTIA SINICA Informationis, Volume 51 , Issue 5 : 834(2021) https://doi.org/10.1360/SSI-2020-0184

Minimum eigenvalue-based adaptive compensation of actuator faults for flexible spacecraft

More info
  • ReceivedJun 18, 2020
  • AcceptedAug 18, 2020
  • PublishedApr 19, 2021


Funded by









[1] Xiao B, Karimi H R, Yu X. IEEE Access Special Section: Recent Advances in Fault Diagnosis and Fault-Tolerant Control of Aerospace Engineering Systems. IEEE Access, 2020, 8: 61157-61160 CrossRef Google Scholar

[2] Zhao D, Yang H, Jiang B. Attitude stabilization of a flexible spacecraft under actuator complete failure. Acta Astronaut, 2016, 123: 129-136 CrossRef ADS Google Scholar

[3] Yang H, Zhang Z, Zhang C. Fault-tolerant control of energy-conserving networks. Sci China Inf Sci, 2020, 63: 179204 CrossRef Google Scholar

[4] Shi L, Zhao Z, Lin Z. Robust semi-global leader-following practical consensus of a group of linear systems with imperfect actuators. Sci China Inf Sci, 2017, 60: 072201 CrossRef Google Scholar

[5] Lin Z. Control design in the presence of actuator saturation: from individual systems to multi-agent systems. Sci China Inf Sci, 2019, 62: 26201 CrossRef Google Scholar

[6] Shi J, Zhou D, Yang Y. Fault tolerant multivehicle formation control framework with applications in multiquadrotor systems. Sci China Inf Sci, 2018, 61: 124201 CrossRef Google Scholar

[7] Wang J, Liu Z, Chen C L P. Extended dimension fuzzy adaptive control for nonlinear uncertain stochastic systems with actuator constraints. NOnlinear Dyn, 2019, 98: 1315-1329 CrossRef Google Scholar

[8] Zhang Y, Jiang J. Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control, 2008, 32: 229-252 CrossRef Google Scholar

[9] Qiao J Z, Guo L, Lei Y J, et al. Subtle anti-disturbance tolerant control of attitude control systems for microsatellites. Sci China Inform Sci, 2012, 42: 1327--1337. Google Scholar

[10] Bennani S, van der Sluis R, Schram G, et al. Control law reconfiguration using robust linear parameter varying control. In: Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, 1999. Google Scholar

[11] Boskovic J D, Li S M, Mehra R K. Intelligent control of spacecraft in the presence of actuator failures. In: Proceedings of the 38th IEEE Conference on Decision and Control, Institute of Electrical and Electronic Engineers, 1999. 4472--4477. Google Scholar

[12] Xiao B, Hu Q, Singhose W. Reaction Wheel Fault Compensation and Disturbance Rejection for Spacecraft Attitude Tracking. J Guidance Control Dyn, 2013, 36: 1565-1575 CrossRef ADS Google Scholar

[13] Chen T, Shan J. Rotation-Matrix-Based Attitude Tracking for Multiple Flexible Spacecraft with Actuator Faults. J Guidance Control Dyn, 2019, 42: 181-188 CrossRef ADS Google Scholar

[14] Cao X, Yue C, Liu M. Fault-tolerant sliding mode attitude tracking control for flexible spacecraft with disturbance and modeling uncertainty. Advances in Mechanical Engineering, 2017, 9:1-9, doi: 10.1177/1687814017690341. Google Scholar

[15] Sun G, Xu S, Li Z. Finite-Time Fuzzy Sampled-Data Control for Nonlinear Flexible Spacecraft With Stochastic Actuator Failures. IEEE Trans Ind Electron, 2017, 64: 3851-3861 CrossRef Google Scholar

[16] Liu Q, Liu M, Yu J. Adaptive Fault-Tolerant Control for Attitude Tracking of Flexible Spacecraft With Limited Data Transmission. IEEE Trans Syst Man Cybern Syst, 2019, : 1-9 CrossRef Google Scholar

[17] Shen Q, Yue C, Goh C H. Active Fault-Tolerant Control System Design for Spacecraft Attitude Maneuvers with Actuator Saturation and Faults. IEEE Trans Ind Electron, 2019, 66: 3763-3772 CrossRef Google Scholar

[18] Boulouma S, Labiod S, Boubertakh H. Direct adaptive control of a flexible spacecraft with disturbances and uncertain actuator failures. Mech Syst Signal Processing, 2018, 110: 73-89 CrossRef ADS Google Scholar

[19] Hu Q L, Zhang A H, Li B. Adaptive variable structure fault tolerant control of rigid spacecraft under thruster faults. Acta Aeronautica et Astronautica Sin, 2013, 34: 909--918. Google Scholar

[20] Ma Y, Jiang B, Tao G. Uncertainty decomposition-based fault-tolerant adaptive control of flexible spacecraft. IEEE Trans Aerosp Electron Syst, 2015, 51: 1053-1068 CrossRef ADS Google Scholar

[21] Hu Q, Tan X, Akella M R. Finite-Time Fault-Tolerant Spacecraft Attitude Control with Torque Saturation. J Guidance Control Dyn, 2017, 40: 2524-2537 CrossRef ADS Google Scholar

[22] Hu Q L, Jiang B Y, Shi Z. Novel terminal sliding mode based fault tolerant attitude control for spacecraft under actuator faults. Acta Aeronautica et Astronautica Sin, 2014, 35: 249--258. Google Scholar

[23] Shen Q, Wang D, Zhu S. Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation. IEEE Trans Aerosp Electron Syst, 2015, 51: 2390-2405 CrossRef ADS Google Scholar

[24] Zhu S, Wang D, Shen Q. Satellite Attitude Stabilization Control with Actuator Faults. J Guidance Control Dyn, 2017, 40: 1304-1313 CrossRef ADS Google Scholar

[25] Xiao B, Hu Q, Zhang Y. Adaptive Sliding Mode Fault Tolerant Attitude Tracking Control for Flexible Spacecraft Under Actuator Saturation. IEEE Trans Contr Syst Technol, 2012, 20: 1605-1612 CrossRef Google Scholar

[26] Wie B. Space Vehicle Dynamics and Control. 2nd ed. Reston: AIAA, 2008. Google Scholar

[27] Di Gennaro S. Output attitude tracking for flexible spacecraft. Automatica, 2002, 38: 1719-1726 CrossRef Google Scholar

[28] Tao G. Adaptive Control Design and Analysis. Hoboken: John Wiley & Sons, 2003. Google Scholar

[29] Xiao B, Hu Q, Zhang Y. Fault-Tolerant Attitude Control for Flexible Spacecraft Without Angular Velocity Magnitude Measurement. J Guidance Control Dyn, 2011, 34: 1556-1561 CrossRef ADS Google Scholar


Contact and support