logo

SCIENTIA SINICA Informationis, Volume 50 , Issue 5 : 621-636(2020) https://doi.org/10.1360/SSI-2019-0189

The design of Apache IoTDB distributed framework

More info
  • ReceivedAug 30, 2019
  • AcceptedDec 17, 2019
  • PublishedApr 27, 2020

Abstract


Funded by

国家重点研发计划(2016YFB1000701)

国家自然科学基金(61802224,71690231)


References

[1] Fu T. A review on time series data mining. Eng Appl Artificial Intelligence, 2011, 24: 164-181 CrossRef Google Scholar

[2] Stonebraker M, Çetintemel U, Zdonik S. The 8 requirements of real-time stream processing. SIGMOD Rec, 2005, 34: 42-47 CrossRef Google Scholar

[3] Ongaro D, Ousterhout J. In search of an understandable consensus algorithm. In: Proceedings of USENIX Annual Technical Conference, 2014. 305--319. Google Scholar

[4] Karger D. Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the World Wide Web. In: Proceedings of ACM Symposium on Theory of Computing, 1997. Google Scholar

[5] Kwon Y C, Ren K, Balazinska M, et al. Managing Skew in Hadoop. IEEE Data Eng Bull, 2013, 36: 24-33. Google Scholar

[6] Shvachko K, Kuang H, Radia S, et al. The hadoop distributed file system. In: Proceedings of IEEE 26th Symposium on Mass Storage Systems and Technologies, 2010. 1--10. Google Scholar

[7] Dubreuil M, Gagne C, Parizeau M. Analysis of a master-slave architecture for distributed evolutionary computations.. IEEE Trans Syst Man Cybern B, 2006, 36: 229-235 CrossRef PubMed Google Scholar

[8] Lakshman A, Malik P. Cassandra. SIGOPS Oper Syst Rev, 2010, 44: 35 CrossRef Google Scholar

[9] Stoica I, Morris R, Liben-Nowell D. Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans Networking, 2003, 11: 17-32 CrossRef Google Scholar

[10] Chen P M, Lee E K, Gibson G A. RAID: high-performance, reliable secondary storage. ACM Comput Surv, 1994, 26: 145-185 CrossRef Google Scholar

[11] Aguilera M K. Stumbling Over Consensus Research: Misunderstandings and Issues. Berlin: Springer, 2010. 59--72. Google Scholar

[12] Stonebraker M. Retrospection on a database system. ACM Trans Database Syst, 1980, 5: 225-240 CrossRef Google Scholar

[13] Naqvi S N Z, Yfantidou S, Zimanyi E. Time Series Databases and InfluxDB. Studienarbeit, Universite Libre de Bruxelles, 2017. Google Scholar

[14] Prasad S, Avinash S B. Smart meter data analytics using OpenTSDB and Hadoop. In: Proceedings of IEEE Innovative Smart Grid Technologies-Asia, 2013. 1--6. Google Scholar

[15] Vora M N. Hadoop-HBase for large-scale data. In: Proceedings of International Conference on Computer Science and Network Technology, 2011. 1: 601--605. Google Scholar

[16] Van Renesse R, Dumitriu D, Gough V, et al. Efficient reconciliation and flow control for anti-entropy protocols. In: proceedings of the 2nd Workshop on Large-Scale Distributed Systems and Middleware, 2008. 6. Google Scholar

[17] Chang F, Dean J, Ghemawat S. Bigtable. ACM Trans Comput Syst, 2008, 26: 1-26 CrossRef Google Scholar

[18] DeCandia G, Hastorun D, Jampani M. Dynamo. SIGOPS Oper Syst Rev, 2007, 41: 205-220 CrossRef Google Scholar

[19] Chen Z, Yang S, Tan S, et al. Hybrid Range Consistent Hash Partitioning Strategy--A New Data Partition Strategy for NoSQL Database. In: Proceedings of the 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, 2013. 1161--1169. Google Scholar

[20] Hunt P, Konar M, Junqueira F P, et al. ZooKeeper: Wait-free Coordination for Internet-scale Systems. In: Proceedings of USENIX Annual Technical Conference, 2010. 8. Google Scholar

[21] Lamport L. Paxos made simple. ACM Sigact News, 2001, 32: 18--25. Google Scholar