logo

SCIENTIA SINICA Chimica, Volume 51 , Issue 7 : 862-875(2021) https://doi.org/10.1360/SSC-2020-0217

Research progress of carbon anode materials for sodium-ion batteries

More info
  • ReceivedNov 14, 2020
  • AcceptedDec 10, 2020
  • PublishedJun 8, 2021

Abstract


Funded by

国家自然科学基金(51761165025,21835004)


References

[1] Liu YC, Wang CC, Li HX, Li FJ. Sci Sin Chim, 2019, 49: 1351–1360 (in Chinese) [刘彦辰, 王晨晨, 李海霞, 李福军. 中国科学:化学, 2019, 49: 1351–1360]. Google Scholar

[2] Adams RA, Varma A, Pol VG. Adv Energy Mater, 2019, 9: 1900550 CrossRef Google Scholar

[3] Liu Y, Wang C, Zhao S, Zhang L, Zhang K, Li F, Chen J. Chem Sci, 2021, : doi:10.1039/D0SC05427E CrossRef Google Scholar

[4] Ren M, Fang H, Wang C, Li H, Li F. Energy Fuels, 2020, 34: 13412-13426 CrossRef Google Scholar

[5] Lu Y, Zhao Q, Zhang N, Lei K, Li F, Chen J. Adv Funct Mater, 2016, 26: 911-918 CrossRef Google Scholar

[6] Fang C, Huang Y, Zhang W, Han J, Deng Z, Cao Y, Yang H. Adv Energy Mater, 2016, 6: 1501727 CrossRef Google Scholar

[7] Song M, Wang C, Du D, Li F, Chen J. Sci China Chem, 2019, 62: 616-621 CrossRef Google Scholar

[8] Wang C, Wang L, Li F, Cheng F, Chen J. Adv Mater, 2017, 29: 1702212 CrossRef PubMed Google Scholar

[9] Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S. Phys Chem Chem Phys, 2014, 16: 15007 CrossRef PubMed ADS Google Scholar

[10] Doeff MM, Ma Y, Visco SJ, De Jonghe LC. J Electrochem Soc, 1993, 140: L169-L170 CrossRef ADS Google Scholar

[11] Irisarri E, Ponrouch A, Palacin MR. J Electrochem Soc, 2015, 162: A2476-A2482 CrossRef Google Scholar

[12] Yang C, Chen J, Ji X, Pollard TP, Lü X, Sun CJ, Hou S, Liu Q, Liu C, Qing T, Wang Y, Borodin O, Ren Y, Xu K, Wang C. Nature, 2019, 569: 245-250 CrossRef PubMed ADS Google Scholar

[13] Nobuhara K, Nakayama H, Nose M, Nakanishi S, Iba H. J Power Sources, 2013, 243: 585-587 CrossRef ADS Google Scholar

[14] Fan L, Ma R, Zhang Q, Jia X, Lu B. Angew Chem Int Ed, 2019, 58: 10500-10505 CrossRef PubMed Google Scholar

[15] Chen J, Fan X, Ji X, Gao T, Hou S, Zhou X, Wang L, Wang F, Yang C, Chen L, Wang C. Energy Environ Sci, 2018, 11: 1218-1225 CrossRef Google Scholar

[16] Kim H, Lim K, Yoon G, Park JH, Ku K, Lim HD, Sung YE, Kang K. Adv Energy Mater, 2017, 7: 1700418 CrossRef Google Scholar

[17] Komaba S, Hasegawa T, Dahbi M, Kubota K. Electrochem Commun, 2015, 60: 172-175 CrossRef Google Scholar

[18] Jache B, Adelhelm P. Angew Chem Int Ed, 2014, 53: 10169-10173 CrossRef PubMed Google Scholar

[19] Hou H, Qiu X, Wei W, Zhang Y, Ji X. Adv Energy Mater, 2017, 7: 1602898 CrossRef Google Scholar

[20] Xu ZL, Yoon G, Park KY, Park H, Tamwattana O, Joo Kim S, Seong WM, Kang K. Nat Commun, 2019, 10: 2598 CrossRef PubMed ADS Google Scholar

[21] Zhu Z, Cheng F, Hu Z, Niu Z, Chen J. J Power Sources, 2015, 293: 626-634 CrossRef ADS Google Scholar

[22] Yoon I, Abraham DP, Lucht BL, Bower AF, Guduru PR. Adv Energy Mater, 2016, 6: 1600099 CrossRef Google Scholar

[23] Yoon G, Kim H, Park I, Kang K. Adv Energy Mater, 2017, 7: 1601519 CrossRef Google Scholar

[24] Kim H, Hong J, Yoon G, Kim H, Park KY, Park MS, Yoon WS, Kang K. Energy Environ Sci, 2015, 8: 2963-2969 CrossRef Google Scholar

[25] Xu ZL, Park J, Yoon G, Kim H, Kang K. Small Methods, 2019, 3: 1800227 CrossRef Google Scholar

[26] Cohn AP, Share K, Carter R, Oakes L, Pint CL. Nano Lett, 2016, 16: 543-548 CrossRef PubMed ADS Google Scholar

[27] Kim H, Hong J, Park YU, Kim J, Hwang I, Kang K. Adv Funct Mater, 2014, 25: 534-541 CrossRef Google Scholar

[28] Wang YX, Chou SL, Liu HK, Dou SX. Carbon, 2013, 57: 202-208 CrossRef Google Scholar

[29] Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J. Nano Lett, 2012, 12: 3783-3787 CrossRef PubMed ADS Google Scholar

[30] Wan J, Shen F, Luo W, Zhou L, Dai J, Han X, Bao W, Xu Y, Panagiotopoulos J, Fan X, Urban D, Nie A, Shahbazian-Yassar R, Hu L. Chem Mater, 2016, 28: 6528-6535 CrossRef Google Scholar

[31] Forney MW, Ganter MJ, Staub JW, Ridgley RD, Landi BJ. Nano Lett, 2013, 13: 4158-4163 CrossRef PubMed ADS Google Scholar

[32] Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C. Nat Commun, 2014, 5: 4033 CrossRef PubMed ADS Google Scholar

[33] Bommier C, Ji X. Isr J Chem, 2015, 55: 486-507 CrossRef Google Scholar

[34] Jian Z, Bommier C, Luo L, Li Z, Wang W, Wang C, Greaney PA, Ji X. Chem Mater, 2017, 29: 2314-2320 CrossRef Google Scholar

[35] Cao B, Liu H, Xu B, Lei Y, Chen X, Song H. J Mater Chem A, 2016, 4: 6472-6478 CrossRef Google Scholar

[36] Xiao L, Cao Y, Henderson WA, Sushko ML, Shao Y, Xiao J, Wang W, Engelhard MH, Nie Z, Liu J. Nano Energy, 2016, 19: 279-288 CrossRef Google Scholar

[37] Xiao B, Rojo T, Li X. ChemSusChem, 2019, 12: 133-144 CrossRef PubMed Google Scholar

[38] Saurel D, Orayech B, Xiao B, Carriazo D, Li X, Rojo T. Adv Energy Mater, 2018, 8: 1703268 CrossRef Google Scholar

[39] Xiao L, Lu H, Fang Y, Sushko ML, Cao Y, Ai X, Yang H, Liu J. Adv Energy Mater, 2018, 8: 1703238 CrossRef Google Scholar

[40] Yang Y, Tang DM, Zhang C, Zhang Y, Liang Q, Chen S, Weng Q, Zhou M, Xue Y, Liu J, Wu J, Cui QH, Lian C, Hou G, Yuan F, Bando Y, Golberg D, Wang X. Energy Environ Sci, 2017, 10: 979-986 CrossRef Google Scholar

[41] Zhu YE, Yang L, Zhou X, Li F, Wei J, Zhou Z. J Mater Chem A, 2017, 5: 9528-9532 CrossRef Google Scholar

[42] Yan Y, Yin YX, Guo YG, Wan LJ. Adv Energy Mater, 2014, 4: 1301584 CrossRef Google Scholar

[43] Stevens DA, Dahn JR. J Electrochem Soc, 2000, 147: 1271-1273 CrossRef ADS Google Scholar

[44] Stevens DA, Dahn JR. J Electrochem Soc, 2001, 148: A803 CrossRef ADS Google Scholar

[45] Qiu S, Xiao L, Sushko ML, Han KS, Shao Y, Yan M, Liang X, Mai L, Feng J, Cao Y, Ai X, Yang H, Liu J. Adv Energy Mater, 2017, 7: 1700403 CrossRef Google Scholar

[46] Alvin S, Yoon D, Chandra C, Cahyadi HS, Park JH, Chang W, Chung KY, Kim J. Carbon, 2019, 145: 67-81 CrossRef Google Scholar

[47] Wang Y, Wang C, Wang Y, Liu H, Huang Z. ACS Appl Mater Interfaces, 2016, 8: 18860-18866 CrossRef PubMed Google Scholar

[48] Fu L, Tang K, Song K, Aken PA, Yu Y, Maier J. Nanoscale, 2014, 6: 1384-1389 CrossRef PubMed ADS Google Scholar

[49] Hou H, Shao L, Zhang Y, Zou G, Chen J, Ji X. Adv Sci, 2017, 4: 1600243 CrossRef PubMed Google Scholar

[50] Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K. Energy Environ Sci, 2015, 8: 2916-2921 CrossRef Google Scholar

[51] Wang Z, Qie L, Yuan L, Zhang W, Hu X, Huang Y. Carbon, 2012, 55: 328-334 CrossRef Google Scholar

[52] Xu J, Wang M, Wickramaratne NP, Jaroniec M, Dou S, Dai L. Adv Mater, 2015, 27: 2042-2048 CrossRef PubMed Google Scholar

[53] Wang Z, Li Y, Lv XJ. RSC Adv, 2014, 4: 62673-62677 CrossRef Google Scholar

[54] Wang S, Xia L, Yu L, Zhang L, Wang H, Lou XWD. Adv Energy Mater, 2016, 6: 1502217 CrossRef Google Scholar

[55] Li D, Chen H, Liu G, Wei M, Ding L, Wang S, Wang H. Carbon, 2015, 94: 888-894 CrossRef Google Scholar

[56] Qie L, Chen W, Xiong X, Hu C, Zou F, Hu P, Huang Y. Adv Sci, 2015, 2: advs.201500195 CrossRef PubMed Google Scholar

[57] Ling C, Mizuno F. Phys Chem Chem Phys, 2014, 16: 10419-10424 CrossRef PubMed ADS Google Scholar

[58] Xu D, Chen C, Xie J, Zhang B, Miao L, Cai J, Huang Y, Zhang L. Adv Energy Mater, 2016, 6: 1501929 CrossRef Google Scholar

[59] Li Y, Wang Z, Li L, Peng S, Zhang L, Srinivasan M, Ramakrishna S. Carbon, 2016, 99: 556-563 CrossRef Google Scholar

[60] Gaddam RR, Yang D, Narayan R, Raju K, Kumar NA, Zhao XS. Nano Energy, 2016, 26: 346-352 CrossRef Google Scholar

[61] Hong K, Qie L, Zeng R, Yi Z, Zhang W, Wang D, Yin W, Wu C, Fan Q, Zhang W, Huang Y. J Mater Chem A, 2014, 2: 12733-12738 CrossRef Google Scholar

[62] Ou J, Yang L, Zhang Z. Powder Tech, 2019, 344: 89-95 CrossRef Google Scholar

[63] Wang P, Qiao B, Du Y, Li Y, Zhou X, Dai Z, Bao J. J Phys Chem C, 2015, 119: 21336-21344 CrossRef Google Scholar

[64] Wu T, Zhang C, Zou G, Hu J, Zhu L, Cao X, Hou H, Ji X. Sci China Mater, 2019, 62: 1127-1138 CrossRef Google Scholar

[65] Lu PR, Xia JL, Dong XL. ACS Sustain Chem Eng, 2019, 7: 14841-14847 CrossRef Google Scholar

[66] Wu F, Liu L, Yuan Y, Li Y, Bai Y, Li T, Lu J, Wu C. ACS Appl Mater Interfaces, 2018, 10: 27030-27038 CrossRef PubMed Google Scholar

[67] Huang S, Li Z, Wang B, Zhang J, Peng Z, Qi R, Wang J, Zhao Y. Adv Funct Mater, 2018, 28: 1706294 CrossRef Google Scholar

[68] Li Y, Hu YS, Li H, Chen L, Huang X. J Mater Chem A, 2016, 4: 96-104 CrossRef Google Scholar

[69] Li Y, Xu S, Wu X, Yu J, Wang Y, Hu YS, Li H, Chen L, Huang X. J Mater Chem A, 2015, 3: 71-77 CrossRef Google Scholar

[70] Li Y, Hu YS, Titirici MM, Chen L, Huang X. Adv Energy Mater, 2016, 6: 1600659 CrossRef Google Scholar

[71] Lei KX, Wang J, Chen C, Li SY, Wang SW, Zheng SJ, Li FJ. Rare Met, 2020, 39: 989-1004 CrossRef Google Scholar

[72] Zhu Y, Chen M, Li Q, Yuan C, Wang C. Carbon, 2018, 129: 695-701 CrossRef Google Scholar

[73] Li R, Huang J, Li W, Li J, Cao L, Xu Z, He Y, Yu A, Lu G. Electrochim Acta, 2019, 313: 109-115 CrossRef Google Scholar

[74] Gaddam RR, Farokh Niaei AH, Hankel M, Searles DJ, Kumar NA, Zhao XS. J Mater Chem A, 2017, 5: 22186-22192 CrossRef Google Scholar

[75] Wang Y, Xiao N, Wang Z, Li H, Yu M, Tang Y, Hao M, Liu C, Zhou Y, Qiu J. Chem Eng J, 2018, 342: 52-60 CrossRef Google Scholar

[76] Ding J, Wang H, Li Z, Kohandehghan A, Cui K, Xu Z, Zahiri B, Tan X, Lotfabad EM, Olsen BC, Mitlin D. ACS Nano, 2013, 7: 11004-11015 CrossRef PubMed Google Scholar

[77] Sun N, Liu H, Xu B. J Mater Chem A, 2015, 3: 20560-20566 CrossRef Google Scholar

[78] Wang L, Ni Y, Hou X, Chen L, Li F, Chen J. Angew Chem Int Ed, 2020, 59: 22126-22131 CrossRef PubMed Google Scholar

  • Figure 1

    (a) Formation energy of binary graphite intercalation compounds with alkali metals [15]; (b) discharge/charge curves of graphite in diglyme at 37 mA g−1 [18]; (c) cyclic voltammetry curves of graphite in various electrolytes (PC: propylene carbonate; EC: ethylene carbonate; DEC: diethyl carbonate; DMC: dimethyl carbonate; THF: tetrahydrofuran; DOL: dioxolane; TEGDME: tetraethylene glycol dimethyl ether; DEGDME: diethylene glycol dimethyl ether; DME: ethylene glycol dimethyl ether) [23]; (d) contribution of intercalation and capacitance responses in different Na+ storage stages [23]; (e) influence of solvent energy and LUMO energy level on the co-intercalation behavior [23] (color online).

  • Figure 2

    (a) Discharge/charge curves of the first five cycles at 0.2 A g−1; (b) discharge/charge curves at 1/5/10/20/30 A g−1; (c) rate capability; (d) cycling performances; (e) discharge/charge curves after 10/4000/8000 cycles of FLG anodes [26] (color online).

  • Figure 3

    (a) Pristine graphite; (b) graphite oxide; (c) reduced graphite oxide; (d) rapidly reduced graphite oxide [19] (color online).

  • Figure 4

    (a) Discharge/charge curves at 25/50/125/250/500 mA g−1; (b) rate capability; (c) cycling performance of rapid rGO [30] (color online).

  • Figure 5

    Discharge/charge curves and selected area electron diffraction patterns (inset) at different states of soft carbon [34] (color online).

  • Figure 6

    Na+ storage sites in hard carbon [37] (color online).

  • Figure 7

    (a) Discharge/charge curves; (b) rate capability of HC-0.5 [39]; (c) SEM image; (d) discharge/charge curves of G@HPC [42] (color online).

  • Figure 8

    Schematic diagrams of sodium storage mechanisms for hard carbon materials. (a) Intercalation-adsorption mechanism; (b) adsorption-insertion mechanism [45]; (c) adsorption-pore filling-insertion-pore filling mechanism [46] (color online)

  • Figure 9

    (a) SEM image; (b) TEM image; (c) discharge/charge curves; (d) rate performance of N-CNF [54] (color online).

  • Figure 10

    (a) Low magnification SEM image; (b) higher magnification SEM image; (c) HAADF TEM image; (d) discharge/charge curves of CPM [76] (color online).

qqqq

Contact and support