logo

SCIENTIA SINICA Chimica, Volume 50 , Issue 11 : 1575-1584(2020) https://doi.org/10.1360/SSC-2020-0118

Design and applications of NIR lanthanide molecular probes for bioimaging and biosensing

More info
  • ReceivedJul 3, 2020
  • AcceptedAug 4, 2020
  • PublishedOct 26, 2020

Abstract


Funded by

国家重点基础研究发展计划(2015CB856301)

国家自然科学基金(21571007,21621061,21778002,21861162008)

吉林省教育厅项目(JJKH20200647KJ)

吉林省科技厅项目(20200403154SF)


Acknowledgment

本工作得到了北京大学高性能计算平台的支持, 特此致谢.


Contributions statement

同等贡献

These authors contributed equally to this work.


References

[1] Ning Y, Zhu M, Zhang JL. Coord Chem Rev, 2019, 399: 213028 CrossRef Google Scholar

[2] Jin GQ, Ning Y, Geng JX, Jiang ZF, Wang Y, Zhang JL. Inorg Chem Front, 2020, 7: 289-299 CrossRef Google Scholar

[3] Peng XX, Zhu XF, Zhang JL. J Inorg Biochem, 2020, 209: 111118 CrossRef Google Scholar

[4] Bünzli JCG. Chem Rev, 2010, 110: 2729-2755 CrossRef Google Scholar

[5] Aletti AB, Gillen DM, Gunnlaugsson T. Coord Chem Rev, 2018, 354: 98-120 CrossRef Google Scholar

[6] Qi J, Qiao W, Wang ZY. Chem Record, 2016, 16: 1531-1548 CrossRef Google Scholar

[7] Schnermann MJ. Nature, 2017, 551: 176-177 CrossRef ADS Google Scholar

[8] Yang Q, Hu Z, Zhu S, Ma R, Ma H, Ma Z, Wan H, Zhu T, Jiang Z, Liu W, Jiao L, Sun H, Liang Y, Dai H. J Am Chem Soc, 2018, 140: 1715-1724 CrossRef Google Scholar

[9] Hong G, Zou Y, Antaris AL, Diao S, Wu D, Cheng K, Zhang X, Chen C, Liu B, He Y, Wu JZ, Yuan J, Zhang B, Tao Z, Fukunaga C, Dai H. Nat Commun, 2014, 5: 4206-4215 CrossRef ADS arXiv Google Scholar

[10] Liu HY, Wu PJ, Kuo SY, Chen CP, Chang EH, Wu CY, Chan YH. J Am Chem Soc, 2015, 137: 10420-10429 CrossRef Google Scholar

[11] Li C, Zhang Y, Wang M, Zhang Y, Chen G, Li L, Wu D, Wang Q. Biomaterials, 2014, 35: 393-400 CrossRef Google Scholar

[12] Hu J, Ortgies DH, Aguliar Torres R, Fernández N, Porto L, Martín Rodríguez E, García Solé J, Jaque D, Alfonso F, Rivero F. Adv Funct Mater, 2017, 27: 1703276 CrossRef Google Scholar

[13] Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, Zhang PZ, Zhang C, Yan CH. Chem Rev, 2015, 115: 10725-10815 CrossRef Google Scholar

[14] Dong H, Sun LD, Yan CH. Chem Soc Rev, 2015, 44: 1608-1634 CrossRef Google Scholar

[15] Boisselier E, Astruc D. Chem Soc Rev, 2009, 38: 1759-1782 CrossRef Google Scholar

[16] Welsher K, Sherlock SP, Dai H. Proc Natl Acad Sci USA, 2011, 108: 8943-8948 CrossRef ADS arXiv Google Scholar

[17] Gong H, Peng R, Liu Z. Adv Drug Deliver Rev, 2013, 65: 1951-1963 CrossRef Google Scholar

[18] Zhu S, Tian R, Antaris AL, Chen X, Dai H. Adv Mater, 2019, 31: 1900321 CrossRef Google Scholar

[19] Martinić I, Eliseeva SV, Petoud S. J Lumin, 2017, 189: 19-43 CrossRef ADS Google Scholar

[20] Zhou Z, Zhang CC, Zheng Y, Wang Q. Dyes Pigments, 2018, 150: 151-157 CrossRef Google Scholar

[21] Gupta K, Patra AK. Eur J Inorg Chem, 2018, 2018: 1882-1890 CrossRef Google Scholar

[22] Walter ERH, Williams JAG, Parker D. Chem Eur J, 2018, 24: 7724-7733 CrossRef Google Scholar

[23] Aulsebrook ML, Starck M, Grace MR, Graham B, Thordarson P, Pal R, Tuck KL. Inorg Chem, 2019, 58: 495-505 CrossRef Google Scholar

[24] Butler SJ, McMahon BK, Pal R, Parker D, Walton JW. Chem Eur J, 2013, 19: 9511-9517 CrossRef Google Scholar

[25] Hou Z, Li P, Wang HY, Li Z, Li H. Dyes Pigments, 2017, 147: 429-435 CrossRef Google Scholar

[26] Singh K, Goenka A, Ganesh S, Patra AK. Eur J Inorg Chem, 2018, 2018: 3942-3951 CrossRef Google Scholar

[27] Eliseeva SV, Bünzli JCG. Chem Soc Rev, 2010, 39: 189-227 CrossRef Google Scholar

[28] Amoroso AJ, Pope SJA. Chem Soc Rev, 2015, 44: 4723-4742 CrossRef Google Scholar

[29] Surender EM, Comby S, Cavanagh BL, Brennan O, Lee TC, Gunnlaugsson T. Chem, 2016, 1: 438-455 CrossRef Google Scholar

[30] Bünzli JCG. Coord Chem Rev, 2015, 293-294: 19-47 CrossRef Google Scholar

[31] Alcala MA, Shade CM, Uh H, Kwan SY, Bischof M, Thompson ZP, Gogick KA, Meier AR, Strein TG, Bartlett DL, Modzelewski RA, Lee YJ, Petoud S, Brown CK. Biomaterials, 2011, 32: 9343-9352 CrossRef Google Scholar

[32] Zhang T, Zhu X, Cheng CCW, Kwok WM, Tam HL, Hao J, Kwong DWJ, Wong WK, Wong KL. J Am Chem Soc, 2011, 133: 20120-20122 CrossRef Google Scholar

[33] D’Aléo A, Bourdolle A, Brustlein S, Fauquier T, Grichine A, Duperray A, Baldeck PL, Andraud C, Brasselet S, Maury O. Angew Chem Int Ed, 2012, 51: 6622-6625 CrossRef Google Scholar

[34] Bui AT, Beyler M, Grichine A, Duperray A, Mulatier JC, Guyot Y, Andraud C, Tripier R, Brasselet S, Maury O. Chem Commun, 2017, 53: 6005-6008 CrossRef Google Scholar

[35] Foucault-Collet A, Shade CM, Nazarenko I, Petoud S, Eliseeva SV. Angew Chem Int Ed, 2014, 53: 2927-2930 CrossRef Google Scholar

[36] Trivedi ER, Eliseeva SV, Jankolovits J, Olmstead MM, Petoud S, Pecoraro VL. J Am Chem Soc, 2014, 136: 1526-1534 CrossRef Google Scholar

[37] Martinić I, Eliseeva SV, Nguyen TN, Pecoraro VL, Petoud S. J Am Chem Soc, 2017, 139: 8388-8391 CrossRef Google Scholar

[38] Martinić I, Eliseeva SV, Nguyen TN, Foucher F, Gosset D, Westall F, Pecoraro VL, Petoud S. Chem Sci, 2017, 8: 6042-6050 CrossRef Google Scholar

[39] Kwong WL, Wai-Yin Sun R, Lok CN, Siu FM, Wong SY, Low KH, Che CM. Chem Sci, 2013, 4: 747-754 CrossRef Google Scholar

[40] Wang X, Chang H, Xie J, Zhao B, Liu B, Xu S, Pei W, Ren N, Huang L, Huang W. Coord Chem Rev, 2014, 273-274: 201-212 CrossRef Google Scholar

[41] Butler SJ, Parker D. Chem Soc Rev, 2013, 42: 1652-1666 CrossRef Google Scholar

[42] Sy M, Nonat A, Hildebrandt N, Charbonnière LJ. Chem Commun, 2016, 52: 5080-5095 CrossRef Google Scholar

[43] Cui Y, Yue Y, Qian G, Chen B. Chem Rev, 2012, 112: 1126-1162 CrossRef Google Scholar

[44] He S, Song J, Qu J, Cheng Z. Chem Soc Rev, 2018, 47: 4258-4278 CrossRef Google Scholar

[45] Rocha J, Carlos LD, Paz FAA, Ananias D. Chem Soc Rev, 2011, 40: 926-940 CrossRef Google Scholar

[46] Weissman SI. J Chem Phys, 1942, 10: 214-217 CrossRef ADS Google Scholar

[47] Crosby GA, Whan RE, Alire RM. J Chem Phys, 1961, 34: 743-748 CrossRef ADS Google Scholar

[48] Moore EG, Samuel APS, Raymond KN. Acc Chem Res, 2009, 42: 542-552 CrossRef Google Scholar

[49] Ke XS, Yang BY, Cheng X, Chan SLF, Zhang JL. Chem Eur J, 2014, 20: 4324-4333 CrossRef Google Scholar

[50] Yang ZS, Ning Y, Yin HY, Zhang JL. Inorg Chem Front, 2018, 5: 2291-2299 CrossRef Google Scholar

[51] Ning Y, Jin GQ, Zhang JL. Acc Chem Res, 2019, 52: 2620-2633 CrossRef Google Scholar

[52] Yao Y, Rao Y, Liu Y, Jiang L, Xiong J, Fan YJ, Shen Z, Sessler JL, Zhang JL. Phys Chem Chem Phys, 2019, 21: 10152-10162 CrossRef ADS Google Scholar

[53] Ke XS, Chang Y, Chen JZ, Tian J, Mack J, Cheng X, Shen Z, Zhang JL. J Am Chem Soc, 2014, 136: 9598-9607 CrossRef Google Scholar

[54] Ke XS, Zhao H, Zou X, Ning Y, Cheng X, Su H, Zhang JL. J Am Chem Soc, 2015, 137: 10745-10752 CrossRef Google Scholar

[55] Ning Y, Ke XS, Hu JY, Liu YW, Ma F, Sun HL, Zhang JL. Inorg Chem, 2017, 56: 1897-1905 CrossRef Google Scholar

[56] Ye HQ, Li Z, Peng Y, Wang CC, Li TY, Zheng YX, Sapelkin A, Adamopoulos G, Hernández I, Wyatt PB, Gillin WP. Nat Mater, 2014, 13: 382-386 CrossRef ADS Google Scholar

[57] Sveshnikova EB, Ermolaev VL. Opt Spectrosc, 2011, 111: 34-50 CrossRef ADS Google Scholar

[58] Doffek C, Seitz M. Angew Chem Int Ed, 2015, 54: 9719-9721 CrossRef Google Scholar

[59] Souri N, Tian P, Platas-Iglesias C, Wong KL, Nonat A, Charbonnière LJ. J Am Chem Soc, 2017, 139: 1456-1459 CrossRef Google Scholar

[60] Nonat A, Bahamyirou S, Lecointre A, Przybilla F, Mély Y, Platas-Iglesias C, Camerel F, Jeannin O, Charbonnière LJ. J Am Chem Soc, 2019, 141: 1568-1576 CrossRef Google Scholar

[61] Hu JY, Ning Y, Meng YS, Zhang J, Wu ZY, Gao S, Zhang JL. Chem Sci, 2017, 8: 2702-2709 CrossRef Google Scholar

[62] Hu JY, Wu ZY, Chai K, Yang ZS, Meng YS, Ning Y, Zhang J, Zhang JL. Inorg Chem Front, 2017, 4: 1539-1545 CrossRef Google Scholar

[63] Ning Y, Liu YW, Meng YS, Zhang JL. Inorg Chem, 2018, 57: 1332-1341 CrossRef Google Scholar

[64] Foucault-Collet A, Shade CM, Nazarenko I, Petoud S, Eliseeva SV. Angew Chem, 2014, 126: 2971-2974 CrossRef Google Scholar

[65] Martinić I, Eliseeva SV, Collet G, Luo TY, Rosi N, Petoud S. ACS Appl Bio Mater, 2019, 2: 1667-1675 CrossRef Google Scholar

[66] Foucault-Collet A, Gogick KA, White KA, Villette S, Pallier A, Collet G, Kieda C, Li T, Geib SJ, Rosi NL, Petoud S. Proc Natl Acad Sci USA, 2013, 110: 17199-17204 CrossRef ADS Google Scholar

[67] Ning Y, Tang J, Liu YW, Jing J, Sun Y, Zhang JL. Chem Sci, 2018, 9: 3742-3753 CrossRef Google Scholar

[68] Li Y, Li X, Xue Z, Jiang M, Zeng S, Hao J. Biomaterials, 2018, 169: 35-44 CrossRef Google Scholar

[69] Yang Y, Wang P, Lu L, Fan Y, Sun C, Fan L, Xu C, El-Toni AM, Alhoshan M, Zhang F. Anal Chem, 2018, 90: 7946-7952 CrossRef Google Scholar

[70] Ning Y, Chen S, Chen H, Wang JX, He S, Liu YW, Cheng Z, Zhang JL. Inorg Chem Front, 2019, 6: 1962-1967 CrossRef Google Scholar

[71] Sarder P, Maji D, Achilefu S. Bioconj Chem, 2015, 26: 963-974 CrossRef Google Scholar

[72] Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Chem Rev, 2018, 118: 1770-1839 CrossRef Google Scholar

[73] Liao Z, Tropiano M, Faulkner S, Vosch T, Sørensen TJ. RSC Adv, 2015, 5: 70282-70286 CrossRef Google Scholar

[74] Bui AT, Grichine A, Duperray A, Lidon P, Riobé F, Andraud C, Maury O. J Am Chem Soc, 2017, 139: 7693-7696 CrossRef Google Scholar

[75] Ning Y, Cheng S, Wang JX, Liu YW, Feng W, Li F, Zhang JL. Chem Sci, 2019, 10: 4227-4235 CrossRef Google Scholar

[76] Zhou Y, Chan CF, Kwong DWJ, Law GL, Cobb S, Wong WK, Wong KL. Chem Commun, 2017, 53: 557-560 CrossRef Google Scholar

[77] Ning Y, Liu YW, Yang ZS, Yao Y, Kang L, Sessler JL, Zhang JL. J Am Chem Soc, 2020, 142: 6761-6768 CrossRef Google Scholar

  • Figure 1

    (a) 17 lanthanide elements and (b, c) the emissions of some trivalent lanthanide ions in NIR region (color online).

  • Figure 2

    Simplified Jablonski diagram for the antenna of ligand effect on lanthanide sensitization (color online).

  • Figure 3

    Schematic diagram of adjusting the porphyrinic T1 energy state of porphyrin by changing the number and orientation alteration of β-substituent (color online).

  • Figure 4

    Effect of high energy vibration oscillators on non-radiative transition process of rare earth (color online).

  • Figure 5

    (a) The structures of Yb-up and Yb-down. (b) Luminescence intensity and decay lifetime monitored at 974 nm of Yb-up and Yb-down in CH2Cl2 at room temperature (λex=406 nm, A406 nm=0.1). (c) Decay lifetime of Yb-up-X referred to Yb-down-X (X=H, D, CD3) monitored at 974 nm in CH2Cl2 at room temperature (color online).

  • Figure 6

    (a) The structures and the synthetic routes for biocompatible β-fluorinated Yb3+ complexes Yb-1-5 and β-hydrogenated analogues Yb-2c-5c. (b) NIR time-resolved images of living HeLa cells incubated with 10 mM Yb-4 and Yb-4c (λex: 408 nm; λem: 935/170 nm bandpass; dwell time: 4 ms). Scale bar: 10 mm [67] (color online).

  • Figure 7

    β-Fluorinated Yb3+ complexes were successfully applied in in vivo imaging and helped fluorescence-guided sentinel lymph node surgery [70]. (a) Whole body NIR-II fluorescence images of Yb-2 (150 μL, 3 mg/mL) after 5 min intravenous injection into C57BL/6 mice (λex, 520 nm; λem, 1000 nm longpass filter; 3000 ms exposure; color bar ranges from 5000 to 40000, n=3 per group); (b) ex vivo biodistribution studies at 12 h after the injection of Yb-2. (c–h) In vivo NIR-II image-guided popliteal and sacral lymph node mapping and biopsy. NIR-II fluorescence image at ~24 h post-injection of 3 mg/mL Yb-2 in the left foot of nude mice (n=3 per group; λex, 520 nm; λem, 1000 nm longpass filter; 1000 ms exposure; color bar ranges from 1200 to 50000). (c–e) Photograph depicting a nude mouse at a prone position for imaging popliteal (black arrow) and sacral (black arrowhead) lymph nodes by dissecting the skin in (c), then dissecting the muscles and exposing the lymph nodes in (d, e). (f–h) The popliteal (white arrow) and sacral (white arrowhead) lymph nodes were clearly identified and dissected at their precise position in a short time. Scale bar: 1 cm (color online).

  • Figure 8

    (a) Schematic illustration of metabolic process of β-fluorinated Yb3+ complex from stomach to intestine, NIR fluorescence intensity imaging and FLIM images; (b) emission intensity and lifetime of β-fluorinated Yb3+ complex in different pH values and penetration depths [75] (color online).

  • Figure 9

    (a) Schematic illustration of monitoring pH changes by F-Yb in the anti-acid process in stomach. (b) NIR intensity fluorescence imaging (exposure time, 25 ms). The green triangle at the top indicates the gavage of hydrotalcite. (c) FLIM images (exposure time, 250 ms).λex: 532 nm; λem: 1000 nm longpass [75] (color online)

  • Figure 10

    Steady-state fluorescence imaging of Yb-cis-/trans-2+ in HeLa cells, H2DCFDA fluorescence images of HeLa cells. In vivo (A–C) and representative ex vivo biodistribution (bottom) NIR fluorescence images recorded 48 h after the injection of Yb-cis-/trans-2-MSN [77] (color online).

qqqq

Contact and support