logo

SCIENTIA SINICA Chimica, Volume 50 , Issue 10 : 1407-1421(2020) https://doi.org/10.1360/SSC-2020-0105

The importance of dynamic effects in chemical reactions in condensed phase

More info
  • ReceivedJul 1, 2020
  • AcceptedJul 31, 2020
  • PublishedSep 14, 2020

Abstract


Funded by

国家自然科学基金(21927901,21821004,21873007)

国家重点研发计划(2017YFA0204702)


Supplement

补充材料

本文的补充材料见网络版http://chemcn.scichina.com. 补充材料为作者提供的原始数据, 作者对其学术质量和内容负责.


References

[1] Eyring H. J Chem Phys, 1935, 3: 107-115 CrossRef ADS Google Scholar

[2] Hänggi P, Talkner P, Borkovec M. Rev Mod Phys, 1990, 62: 251-341 CrossRef ADS Google Scholar

[3] Shaik S, Mandal D, Ramanan R. Nat Chem, 2016, 8: 1091-1098 CrossRef PubMed Google Scholar

[4] Hiberty PC, Megret C, Song L, Wu W, Shaik S. J Am Chem Soc, 2006, 128: 2836-2843 CrossRef PubMed Google Scholar

[5] Aragonès AC, Haworth NL, Darwish N, Ciampi S, Bloomfield NJ, Wallace GG, Diez-Perez I, Coote ML. Nature, 2016, 531: 88-91 CrossRef PubMed ADS Google Scholar

[6] Alemani M, Peters MV, Hecht S, Rieder KH, Moresco F, Grill L. J Am Chem Soc, 2006, 128: 14446-14447 CrossRef PubMed Google Scholar

[7] Fried SD, Boxer SG. Annu Rev Biochem, 2017, 86: 387-415 CrossRef PubMed Google Scholar

[8] Warshel A. Acc Chem Res, 1981, 14: 284-290 CrossRef Google Scholar

[9] Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MHM. Chem Rev, 2006, 106: 3210-3235 CrossRef PubMed Google Scholar

[10] Fried SD, Bagchi S, Boxer SG. Science, 2014, 346: 1510-1514 CrossRef PubMed ADS Google Scholar

[11] Wu Y, Boxer SG. J Am Chem Soc, 2016, 138: 11890-11895 CrossRef PubMed Google Scholar

[12] Bunzel HA, Garrabou X, Pott M, Hilvert D. Curr Opin Struct Biol, 2018, 48: 149-156 CrossRef PubMed Google Scholar

[13] Kiss G, Çelebi-Ölçüm N, Moretti R, Baker D, Houk KN. Angew Chem Int Ed, 2013, 52: 5700-5725 CrossRef PubMed Google Scholar

[14] Kramers HA. Physica, 1940, 7: 284-304 CrossRef Google Scholar

[15] Tuñón I, Laage D, Hynes JT. Archives Biochem Biophys, 2015, 582: 42-55 CrossRef PubMed Google Scholar

[16] Gertner BJ, Wilson KR, Hynes JT. J Chem Phys, 1989, 90: 3537-3558 CrossRef ADS Google Scholar

[17] Northrup SH, Hynes JT. J Chem Phys, 1980, 73: 2700-2714 CrossRef ADS Google Scholar

[18] Grote RF, Hynes JT. J Chem Phys, 1980, 73: 2715-2732 CrossRef ADS Google Scholar

[19] Ruiz-Pernía JJ, Tuñón Ĩ, Moliner V, Hynes JT, Roca M. J Am Chem Soc, 2008, 130: 7477-7488 CrossRef PubMed Google Scholar

[20] Marcus RA. J Chem Phys, 1952, 20: 352-354 CrossRef ADS Google Scholar

[21] Marcus RA. J Chem Phys, 1952, 20: 359-364 CrossRef ADS Google Scholar

[22] Kassel LS. J Phys Chem, 1928, 32: 225-242 CrossRef Google Scholar

[23] Rice OK, Ramsperger HC. J Am Chem Soc, 1928, 49: 1617-1629 CrossRef Google Scholar

[24] Bar I, Cohen Y, David D, Arusi-Parpar T, Rosenwaks S, Valentini JJ. J Chem Phys, 1991, 95: 3341-3346 CrossRef ADS Google Scholar

[25] Chandler DW, Farneth WE, Zare RN. J Chem Phys, 1982, 77: 4447-4458 CrossRef ADS Google Scholar

[26] Vander Wal RL, Scott JL, Crim FF. J Chem Phys, 1990, 92: 803-805 CrossRef ADS Google Scholar

[27] Jasinski JM, Frisoli JK, Moore CB. J Phys Chem, 1983, 87: 2209-2213 CrossRef Google Scholar

[28] Lewis FD, Teng P, Weitz E. J Am Chem Soc, 1986, 108: 2818-2826 CrossRef Google Scholar

[29] Carpenter BK. Chem Rev, 2013, 113: 7265-7286 CrossRef PubMed Google Scholar

[30] Carpenter BK, Harvey JN, Orr-Ewing AJ. J Am Chem Soc, 2016, 138: 4695-4705 CrossRef PubMed Google Scholar

[31] Carpenter BK. Annu Rev Phys Chem, 2005, 56: 57-89 CrossRef PubMed ADS Google Scholar

[32] Hase WL. J Chem Phys, 2003, 69: 4711 CrossRef ADS Google Scholar

[33] Shalashilin DV, Thompson DL. J Chem Phys, 1996, 105: 1833-1845 CrossRef ADS Google Scholar

[34] Nordholm S, Bäck A. Phys Chem Chem Phys, 2001, 3: 2289-2295 CrossRef ADS Google Scholar

[35] Northrup SH, McCammon JA. J Chem Phys, 2003, 78: 987-989 CrossRef ADS Google Scholar

[36] Berezhkovskii AM, Berezhkovskii LM, Zitzerman VY. Chem Phys, 1989, 130: 55-63 CrossRef Google Scholar

[37] Laage D, Elsaesser T, Hynes JT. Chem Rev, 2017, 117: 10694-10725 CrossRef PubMed Google Scholar

[38] Lei H, Duan Y. Curr Opin Struct Biol, 2007, 17: 187-191 CrossRef PubMed Google Scholar

[39] Yang L, Liu CW, Shao Q, Zhang J, Gao YQ. Acc Chem Res, 2015, 48: 947-955 CrossRef PubMed Google Scholar

[40] Liwo A, Czaplewski C, Ołdziej S, Scheraga HA. Curr Opin Struct Biol, 2008, 18: 134-139 CrossRef PubMed Google Scholar

[41] Yang L, Qin Gao Y. J Chem Phys, 2009, 131: 214109 CrossRef PubMed ADS Google Scholar

[42] Zhang J, Zhang Z, Yang YI, Liu S, Yang L, Gao YQ. ACS Cent Sci, 2017, 3: 407-414 CrossRef PubMed Google Scholar

[43] Gao YQ. J Chem Phys, 2008, 128: 064105 CrossRef PubMed ADS Google Scholar

[44] Fu X, Yang L, Gao YQ. J Chem Phys, 2007, 127: 154106 CrossRef PubMed ADS Google Scholar

[45] Martín Castro AM. Chem Rev, 2004, 104: 2939-3002 CrossRef PubMed Google Scholar

[46] Li CJ, Chen L. Chem Soc Rev, 2006, 35: 68-82 CrossRef PubMed Google Scholar

[47] Ganem B. Angew Chem Int Ed Engl, 1996, 35: 936-945 CrossRef Google Scholar

[48] Lei YK, Zhang J, Zhang Z, Gao YQ. J Phys Chem Lett, 2019, 10: 2991-2997 CrossRef PubMed Google Scholar

[49] Meir R, Chen H, Lai W, Shaik S. ChemPhysChem, 2010, 11: 301-310 CrossRef PubMed Google Scholar

[50] Shaik SS. J Am Chem Soc, 1981, 103: 3692-3701 CrossRef Google Scholar

[51] Hummer G. J Chem Phys, 2004, 120: 516-523 CrossRef PubMed ADS Google Scholar

[52] Best RB, Hummer G. Proc Natl Acad Sci USA, 2005, 102: 6732-6737 CrossRef PubMed Google Scholar

[53] Lai W, Chen H, Cho KB, Shaik S. J Phys Chem Lett, 2010, 1: 2082-2087 CrossRef Google Scholar

[54] Hirao H, Chen H, Carvajal MA, Wang Y, Shaik S. J Am Chem Soc, 2008, 130: 3319-3327 CrossRef PubMed Google Scholar

[55] Lei YK. The theoretic study of dynamic effects in chemical reaction in condensed phase. Dissertation for the Doctoral Degree. Beijing: Peking University, 2020. Google Scholar

[56] Duboué-Dijon E, Fogarty AC, Hynes JT, Laage D. J Am Chem Soc, 2016, 138: 7610-7620 CrossRef PubMed Google Scholar

[57] Zoi I, Antoniou D, Schwartz SD. J Phys Chem Lett, 2017, 8: 6165-6170 CrossRef PubMed Google Scholar

[58] Harijan RK, Zoi I, Antoniou D, Schwartz SD, Schramm VL. Proc Natl Acad Sci USA, 2018, 115: E6209-E6216 CrossRef PubMed Google Scholar

[59] Hong NS, Petrović D, Lee R, Gryn'ova G, Purg M, Saunders J, Bauer P, Carr PD, Lin CY, Mabbitt PD, Zhang W, Altamore T, Easton C, Coote ML, Kamerlin SCL, Jackson CJ. Nat Commun, 2018, 9: 3900 CrossRef PubMed ADS Google Scholar

[60] Tao G, Stratt RM. J Chem Phys, 2006, 125: 114501 CrossRef PubMed ADS Google Scholar

[61] Berg MA, Kaur H. J Chem Phys, 2017, 146: 054104 CrossRef PubMed ADS Google Scholar

[62] Verma SD, Vanden Bout DA, Berg MA. J Chem Phys, 2015, 143: 024110 CrossRef PubMed ADS Google Scholar

[63] Kaur H, Verma SD, Paeng K, Kaufman LJ, Berg MA. Phys Rev E, 2018, 98: 1-7 CrossRef ADS Google Scholar

[64] Seyf HR, Gordiz K, DeAngelis F, Henry A. J Appl Phys, 2019, 125: 081101 CrossRef ADS Google Scholar

[65] Leitner DM, Yamato T. Mapping energy transport networks in proteins. Rev Comput Chem, 2018, 31 (Md): 63–113. Google Scholar

[66] Lv W, Winters RM, DeAngelis F, Weinberg G, Henry A. J Phys Chem A, 2017, 121: 5586-5596 CrossRef PubMed ADS arXiv Google Scholar

[67] Sääskilahti K, Oksanen J, Volz S, Tulkki J. Phys Rev B, 2015, 91: 115426 CrossRef ADS arXiv Google Scholar

[68] Sääskilahti K, Oksanen J, Tulkki J, McGaughey AJH, Volz S. AIP Adv, 2016, 6: 121904 CrossRef ADS arXiv Google Scholar

  • Figure 1

    Scheme of ESoRT. (a) A double well potential model system. (b) The barrier in the original potential (black solid line) is lowered in the biased potential (black broken line). A successful transition trajectory under bias potential is shown with the gray arrow line. Points such as 1, 2, and 3 in the dotted rectangular region were chosen for trajectory shooting. (c–e) Shooting trajectories starting from points 1, 2, and 3 in (b). The gray arrow lines represent the backward shooting trajectories and the black arrow lines denote the forward shooting trajectories [44].

  • Figure 2

    Scheme of forward and backward reactions. cis-2-vinylcyclopropanecarboxaldehyde (left) interconverts to 2,5-dihydrooxepin (right), with the bond forming/breaking sites indexed in red characters [48] (color online).

  • Figure 3

    Two representative reactive trajectories from Cluster 1 (hollow square symbol) and Cluster 2 (open circle symbol). The Cluster 1 and Cluster 2 respectively correspond to the Type A and Type B trajectory mentioned in text. Every trajectory starts from red-colored basin, passing by the green-colored transition-path region and arrives at the blue-colored basin. The probability distribution (−lnPsus) of initial configurations for successful shootings is shown in a heat map, rendered according to the upper-right color scale [42] (color online).

  • Figure 4

    Force constant of C3–C8 and C12–O15, and bond length of C3–C8 for Type A trajectory (a) and Type B trajectory (b). K1 (black line), K2 (blue line), d1 (red line). When force constant is less than zero, bonding or bond breaking has been finished. For the Type A trajectory, bond breaking and bonding is very close in time. Mulliken charge for C1 (blue line), C12 (green line) and O15 (red line) for the Type A trajectory (c) and Type B trajectory (b). Charge redistribution is retarded during 2,000–2,300 fs [48]. And in all trajectories, the origin of time is realigned, so that the first 2,000 fs corresponds to reactant, the last 2,000 fs to product, and the reaction takes place at around ~2,000 fs (color online).

  • Figure 5

    (a) Intramolecular potential energy averaging over all reactive trajectories; (b) interaction between solute and solvents (electrostatic energy+van der waals energy) (blue line: averaging over all reactive trajectories; black line, only Type A trajectories; red line, only Type B trajectories); (c) O15 charge averaging over all reactive trajectories (blue line), only Type A trajectories (black line) and only Type B trajectories (red line) [48] (color online).

  • Figure 6

    Sketch map for electric field (E1, E2) (color online).

  • Figure 7

    (a) The change of E1 following reaction progression averaging over all reactive trajectories. (b) The change of E2 following reaction progression: averaging over all reactive trajectories, Type A trajectories and Type B trajectories. (c–e) Time series of external electric fields (E1, E2) and key bond lengths (d1, d2) for Type A trajectory (c), Type B trajectory (d), and unreactive trajectory (e) [48] (color online).

  • Figure 8

    Reaction in water solution. (a) The non-equilibrium relaxation function SE(t) (black line) in forward reaction and it’s exponential fit (red line). (b) The non-equilibrium relaxation function SE(t) (black line) in backward reaction and it’s exponential fit (red line) [55] (color online).

  • Figure 9

    (a) The contributions of solvents within different distance from solute to the energy change of solute in toluene solution; (b) the contributions of solvents within different distances from solute to the energy change of solute in water solution; (c) the convergence behavior of the contributions of solvents within different distances from solute to the energy change of solute [55] (color online).

  • Figure 10

    The reactant is divided into two zones by polarity. The red one is more polar than blue one [55] (color online).

  • Figure 11

    (a) The conductivity coefficients of atoms of solute in water solution; (b) the conductivity coefficients of atoms of solute in toluene solution. The results are averaged over all trajectories [55] (color online).

  • Figure 12

    (a) The conductivity coefficient of each water molecule with solute in backward direction; (b) the conductivity coefficient of each water molecule with solute in forward direction; (c) the conductivity coefficient of each toluene molecule with solute in backward direction; (d) the conductivity coefficient of each toluene molecule with solute in forward direction. The solute atoms are colored by atom type (red: oxygen, cyan: carbon, white: hydroxy). The solvent atoms are colored according to their conductivity coefficients. The colorbar is placed on the right side [55] (color online).

  • Figure 13

    (a) The conductivity coefficient in frequency domain in backward reaction; (b) the conductivity coefficient in frequency domain in forward reaction. All trajectories are averaged over all trajectories [55] (color online).

  • Figure 14

    (a) the work done on solute by interaction between solute and solvents transformed into frequency domain in water solution: Aenv(t0,τ,ω); (b) the work done on solvents by interaction between solute and solvents transformed into frequency domain in water solution: Denv(t0,τ,ω); (c) the work done on solute by interaction between solute and solvents transformed into frequency domain in toluene solution: Aenv(t0,τ,ω); (d) the work done on solvents by interaction between solute and solvents transformed into frequency domain in toluene solution: Denv(t0,τ,ω) [55] (color online).

  • Table 1   The relaxation timescale of intermolecular energy transfer

    溶剂

    τforw a) (ps)

    τback b) (ps)

    7.57

    6.79

    甲苯

    6.72

    6.90

    τforw为前向反应的能量耗散的周期, b) τback为反向的能量聚集的周期

qqqq

Contact and support