logo

Chinese Science Bulletin, Volume 64 , Issue 30 : 3070-3076(2019) https://doi.org/10.1360/N972019-00303

Humanized mouse models for human viral hepatitis and related liver diseases

More info
  • ReceivedApr 9, 2019
  • AcceptedMay 8, 2019
  • PublishedJun 13, 2019

Abstract


Funded by

国家科技重大专项(2017ZX10304402-001-012,2017ZX10304402-001-006)


References

[1] Allweiss L, Dandri M. Experimental in vitro and in vivo models for the study of human hepatitis B virus infection. J Hepatol, 2016, 64: S17-S31 CrossRef PubMed Google Scholar

[2] Rhim J A, Sandgren E P, Degen J L, et al. Replacement of diseased mouse liver by hepatic cell transplantation. Science, 1994, 263: 1149-1152 CrossRef ADS Google Scholar

[3] Song X, Guo Y, Duo S, et al. A mouse model of inducible liver injury caused by tet-on regulated urokinase for studies of hepatocyte transplantation. Am J Pathol, 2009, 175: 1975-1983 CrossRef PubMed Google Scholar

[4] Azuma H, Paulk N, Ranade A, et al. Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat Biotechnol, 2007, 25: 903-910 CrossRef PubMed Google Scholar

[5] Hasegawa M, Kawai K, Mitsui T, et al. The reconstituted “humanized liver” in TK-NOG mice is mature and functional. Biochem BioPhys Res Commun, 2011, 405: 405-410 CrossRef PubMed Google Scholar

[6] Zhang R R, Zheng Y W, Li B, et al. Human hepatic stem cells transplanted into a fulminant hepatic failure Alb-TRECK/SCID mouse model exhibit liver reconstitution and drug metabolism capabilities. Stem Cell Res Ther, 2015, 6: 49 CrossRef PubMed Google Scholar

[7] Ren X N, Ren R R, Yang H, et al. Human liver chimeric mouse model based on diphtheria toxin-induced liver injury. WJG, 2017, 23: 4935-4941 CrossRef PubMed Google Scholar

[8] Washburn M L, Bility M T, Zhang L, et al. A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology, 2011, 140: 1334-1344 CrossRef PubMed Google Scholar

[9] Wilson E M, Bial J, Tarlow B, et al. Extensive double humanization of both liver and hematopoiesis in FRGN mice. Stem Cell Res, 2014, 13: 404-412 CrossRef PubMed Google Scholar

[10] Gutti T L, Knibbe J S, Makarov E, et al. Human hepatocytes and hematolymphoid dual reconstitution in treosulfan-conditioned uPA-NOG mice. Am J Pathol, 2014, 184: 101-109 CrossRef PubMed Google Scholar

[11] Yuan L, Jiang J, Liu X, et al. HBV infection-induced liver cirrhosis development in dual-humanised mice with human bone mesenchymal stem cell transplantation. Gut, 2019, doi: 10.1136/gutjnl-2018-316091. Google Scholar

[12] Hwang J R, Park S G. Mouse models for hepatitis B virus research. Lab Anim Res, 2018, 34: 85-91 CrossRef PubMed Google Scholar

[13] Allweiss L, Volz T, Lütgehetmann M, et al. Immune cell responses are not required to induce substantial hepatitis B virus antigen decline during pegylated interferon-alpha administration. J Hepatol, 2014, 60: 500-507 CrossRef PubMed Google Scholar

[14] Ishida Y, Chung T L, Imamura M, et al. Acute hepatitis B virus infection in humanized chimeric mice has multiphasic viral kinetics. Hepatology, 2018, 68: 473-484 CrossRef PubMed Google Scholar

[15] Bility M T, Cheng L, Zhang Z, et al. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: Induction of human-specific liver fibrosis and M2-like macrophages. PLoS Pathog, 2014, 10: e1004032 CrossRef PubMed Google Scholar

[16] Dusséaux M, Masse-Ranson G, Darche S, et al. Viral load affects the immune response to HBV in mice with humanized immune system and liver. Gastroenterology, 2017, 153: 1647−1661. Google Scholar

[17] Shoukry N H. Hepatitis C vaccines, antibodies, and T cells. Front Immunol, 2018, 28: 1480. Google Scholar

[18] Mercer D F, Schiller D E, Elliott J F, et al. Hepatitis C virus replication in mice with chimeric human livers. Nat Med, 2001, 7: 927-933 CrossRef PubMed Google Scholar

[19] Bissig K D, Wieland S F, Tran P, et al. Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. J Clin Invest, 2010, 120: 924-930 CrossRef PubMed Google Scholar

[20] Keng C T, Sze C W, Zheng D, et al. Characterisation of liver pathogenesis, human immune responses and drug testing in a humanised mouse model of HCV infection. Gut, 2016, 65: 1744-1753 CrossRef PubMed Google Scholar

[21] Ji C, Liu Y, Pamulapati C, et al. Prevention of hepatitis C virus infection and spread in human liver chimeric mice by an anti-CD81 monoclonal antibody. Hepatology, 2015, 61: 1136−1144. Google Scholar

[22] Sureau C, Negro F. The hepatitis delta virus: Replication and pathogenesis. J Hepatol, 2016, 64: S102-S116 CrossRef PubMed Google Scholar

[23] Lütgehetmann M, Mancke L V, Volz T, et al. Humanized chimeric uPA mouse model for the study of hepatitis B and D virus interactions and preclinical drug evaluation. Hepatology, 2012, 55: 685-694 CrossRef PubMed Google Scholar

[24] Giersch K, Allweiss L, Volz T, et al. Hepatitis Delta co-infection in humanized mice leads to pronounced induction of innate immune responses in comparison to HBV mono-infection. J Hepatol, 2015, 63: 346-353 CrossRef PubMed Google Scholar

[25] Giersch K, Homs M, Volz T, et al. Both interferon alpha and lambda can reduce all intrahepatic HDV infection markers in HBV/HDV infected humanized mice. Sci Rep, 2017, 7: 3757 CrossRef PubMed ADS Google Scholar

[26] Kamar N, Izopet J, Pavio N, et al. Hepatitis E virus infection. Nat Rev Dis Primers, 2017, 3: 17086 CrossRef PubMed Google Scholar

[27] Allweiss L, Gass S, Giersch K, et al. Human liver chimeric mice as a new model of chronic hepatitis E virus infection and preclinical drug evaluation. J Hepatol, 2016, 64: 1033-1040 CrossRef PubMed Google Scholar

[28] Sayed I M, Foquet L, Verhoye L, et al. Transmission of hepatitis E virus infection to human-liver chimeric FRG mice using patient plasma. Antiviral Res, 2017, 141: 150-154 CrossRef PubMed Google Scholar

[29] Katoh M, Matsui T, Nakajima M, et al. Expression of human cytochromes P450 in chimeric mice with humanized liver. Drug Metab Dispos, 2004, 32: 1402-1410 CrossRef PubMed Google Scholar

[30] Nishimura T, Nishimura T, Hu Y, et al. Using chimeric mice with humanized livers to predict human drug metabolism and a drug-drug interaction. J Pharmacol Exp Therapeut, 2013, 344: 388-396 CrossRef PubMed Google Scholar

[31] Xu D, Michie S A, Zheng M, et al. Humanized thymidine kinase-NOG mice can be used to identify drugs that cause animal-specific hepatotoxicity: A case study with furosemide. J Pharmacol Exp Therapeut, 2015, 354: 73-78 CrossRef PubMed Google Scholar

[32] Xu D, Wu M, Nishimura S, et al. Chimeric TK-NOG mice: A predictive model for cholestatic human liver toxicity. J Pharmacol Exp Therapeut, 2015, 352: 274-280 CrossRef PubMed Google Scholar

  • Table 1   Liver chimeric mouse models

    模型

    肝脏损伤的原因

    肝脏损伤的控制方式

    优势

    缺点

    uPA/SCID

    uPA的表达

    无法控制

    重建效率高

    无法控制肝损程度与时机, 无法进行免疫学研究

    FRG

    Fah的缺乏

    NTBC

    肝损程度可控

    无法进行免疫学研究

    TK-NOG

    HSVtk

    GSV

    肝损程度可控

    无法进行免疫学研究

    Alb-TRECK/SCID

    人HB-EGF样受体

    DT

    肝损程度可控

    无法进行免疫学研究

  • Table 2   Liver and immune system double chimeric mouse

    模型

    肝脏损伤的原因

    肝脏损伤的控制方式

    免疫缺陷背景

    优势

    缺点

    AFC8

    AFC8

    AP20187

    IL2rg–/– Rag2–/–

    可用于病毒感染后的免疫学相关研究

    病毒感染效率较低

    FRGN

    Fah的缺乏

    NTBC

    IL2rg–/– Rag2–/–

    uPA/NOG

    uPA的表达

    无法控制

    NOG

    FRGS

    Fah的缺乏

    NTBC

    IL2RγC–/–Rag2–/–SCID