logo

Chinese Science Bulletin, Volume 64 , Issue 17 : 1799-1816(2019) https://doi.org/10.1360/N972018-01136

The geotectonic features of the Southeast Indian Ridge and its current research progress

More info
  • ReceivedNov 17, 2018
  • AcceptedMar 25, 2019
  • PublishedMay 17, 2019

Abstract


Funded by

国家自然科学基金(41872242)

浙江省自然科学基金(LY17D02001)

大洋“十三五”资源环境专项(DY135-S2-1-02)

自然资源部第二海洋研究所基本科研业务费专项(JG1518)


Acknowledgment

感谢北京大学李江海教授和中国海洋大学李三忠教授在印度洋构造演化方面给予的有益讨论和建议. 感谢EarthByte工作组和Gplate提供的洋底磁条带年龄数据和板块重建素材, 为本文分析讨论洋中脊构造演化提供了极大的便利. 感谢匿名审稿人对本文提出的宝贵修改意见, 感谢帕多瓦大学Christine Meyzen教授对英文摘要的仔细修改.


References

[1] Norton I O, Sclater J G. A model for the evolution of the Indian Ocean and the breakup of Gondwanaland. J Geophys Res, 1979, 84: 6803-6830 CrossRef ADS Google Scholar

[2] Tarling D H. Gondwanaland and the evolution of the Indian Ocean. Geol Soc London Spec Pub, 1988, 37: 61-77 CrossRef ADS Google Scholar

[3] Eagles G, König M. A model of plate kinematics in Gondwana breakup. Geophys J Int, 2008, 173: 703-717 CrossRef ADS Google Scholar

[4] Cochran J R, Sempéré J C. The Southeast Indian Ridge between 88°E and 118°E: Gravity anomalies and crustal accretion at intermediate spreading rates. J Geophys Res, 1997, 102: 15463-15487 CrossRef ADS Google Scholar

[5] Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge. Nature, 2003, 426: 405-412 CrossRef PubMed ADS Google Scholar

[6] Ray D, Misra S, Banerjee R. Geochemical variability of MORBs along slow to intermediate spreading Carlsberg-Central Indian Ridge, Indian Ocean. J Asian Earth Sci, 2013, 70-71: 125-141 CrossRef ADS Google Scholar

[7] Tao C H, Li H M, Jin X B, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge. Chin Sci Bull, 2014, 59: 2266-2276 CrossRef ADS Google Scholar

[8] Han X Q, Wu Z C, Qiu B B. Segmentation of Carlsberg Ridge in Northwest Indian Ocean and its tectonic and morphologic features—The introduction to the Result from DY24 Cruise (in Chinese). 2012 [韩喜球, 吴招才, 裘碧波. 西北印度洋Carlsberg脊的分段性及其构造地貌特征—中国大洋24航次调查成果介绍. 2012]. Google Scholar

[9] Wang T T, Chen Y S J, Tao C H. Revisit the K-segment of the Southeast Indian Ridge for new evidence of hydrothermal plumes. Chin Sci Bull, 2011, 56: 3605-3609 CrossRef ADS Google Scholar

[10] Li J H, Zhang H T, Li H L. The tectonic setting and evolution of Indian Ocean——Research progress of tectonic map of Indian Ocean (in Chinese). Acta Oceanolog Sin, 2015, 37: 1−14 [李江海, 张华添, 李洪林. 印度洋大地构造背景及其构造演化——印度洋底大地构造图研究进展. 海洋学报, 2015, 37: 1−14]. Google Scholar

[11] Sempéré J, Palmer J, Christie D M, et al. Australian-Antarctic discordance. Geology, 1991, 19: 429–432. Google Scholar

[12] Royer J Y, Schlich R. Southeast Indian Ridge between the Rodriguez Triple Junction and the Amsterdam and Saint-Paul Islands: Detailed kinematics for the past 20 Ma. J Geophys Res, 1988, 93: 13524-13550 CrossRef ADS Google Scholar

[13] Graham D W, Johnson K T M, Priebe L D, et al. Hotspot-ridge interaction along the Southeast Indian Ridge near Amsterdam and St. Paul islands: Helium isotope evidence. Earth Planet Sci Lett, 1999, 167: 297-310 CrossRef ADS Google Scholar

[14] Conder J A, Scheirer D S, Forsyth D W. Seafloor spreading on the Amsterdam-St. Paul hotspot plateau. J Geophys Res, 2000, 105: 8263-8277 CrossRef ADS Google Scholar

[15] Scheirer D S, Forsyth D W, Conder J A, et al. Anomalous seafloor spreading of the Southeast Indian Ridge near the Amsterdam-St. Paul Plateau. J Geophys Res, 2000, 105: 8243-8262 CrossRef ADS Google Scholar

[16] Dubinin E P, Galushkin Y I, Grokholskii A L, et al. Hot and cold zones of the Southeast Indian Ridge and their influence on the peculiarities of its structure and magmatism (Numerical and Physical Modelling). Geotectonics, 2017, 51: 209-229 CrossRef ADS Google Scholar

[17] Burnard P, Graham D, Farley K. Fractionation of noble gases (He, Ar) during MORB mantle melting: A case study on the Southeast Indian Ridge. Earth Planet Sci Lett, 2004, 227: 457-472 CrossRef ADS Google Scholar

[18] Christie D M, Pedersen R B, Miller D J, et al. Proceedings of the Ocean Drilling Program, Initial Reports, 2001, 187: 1. Google Scholar

[19] Hanan B B, Graham D W, Hemond C, et al. Geochemical and isotopic variations along the southeast Indian ridge (126°E−140°E) related to mantle flow originating from beneath Antarctica. American Geophysical Union, Fall Meeting 2017, Abstract #T33G-08. Google Scholar

[20] Weissel J K, Hayes D E. Asymmetric seafloor spreading south of Australia. Nature, 1971, 231: 518-522 CrossRef ADS Google Scholar

[21] West B P, Fujimoto H, Honsho C, et al. A three-dimensional gravity study of the Rodrigues Triple Junction and Southeast Indian Ridge. Earth Planet Sci Lett, 1995, 133: 175-184 CrossRef ADS Google Scholar

[22] Honsho C, Tamaki K, Fujimoto H. Three-dimensional magnetic and gravity studies of the Rodriguez Triple Junction in the Indian Ocean. J Geophys Res, 1996, 101: 15837-15848 CrossRef ADS Google Scholar

[23] West B P, Sempéré J C. Gravity anomalies, flexure of axial lithosphere, and along-axis asthenospheric flow beneath the Southeast Indian Ridge. Earth Planet Sci Lett, 1998, 156: 253-266 CrossRef ADS Google Scholar

[24] Okino K, Matsuda K, Christie D M, et al. Development of oceanic detachment and asymmetric spreading at the Australian-Antarctic Discordance. Geochem Geophys Geosyst, 2004, 5: Q12012 CrossRef ADS Google Scholar

[25] Suo Y H. Tectonic-magmatic processes of the Indian Ocean: Evidence on the residual mantle Bouguer anomaly (in Chinese). Doctor Disseration. Qingdao: China University of Oceanography, 2014 [索艳慧. 印度洋构造——岩浆过程: 剩余地幔布格重力异常证据. 博士学位论文. 青岛: 中国海洋大学, 2014]. Google Scholar

[26] Sandwell D T, Müller R D, Smith W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 2014, 346: 65-67 CrossRef PubMed ADS Google Scholar

[27] Ma Y, Cochran J R. Transitions in axial morphology along the Southeast Indian Ridge. J Geophys Res, 1996, 101: 15849-15866 CrossRef ADS Google Scholar

[28] Maus S, Barckhausen U, Berkenbosch H, et al. EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochem Geophys Geosyst, 2009, 10: Q8005. Google Scholar

[29] Li S Z, Suo Y H, Liu X, et al. Tectonic reconstruction and mineralization models of the Indian Ocean: Insights from SWIR (in Chinese). Geotect Metall, 2015, 39: 30−43 [李三忠, 索艳慧, 刘鑫, 等. 印度洋构造过程重建与成矿模式: 西南印度洋洋中脊的启示. 大地构造与成矿学, 2015, 39: 30–43]. Google Scholar

[30] Johnson K T M, Graham D W, Rubin K H, et al. Boomerang Seamount: The active expression of the Amsterdam–St. Paul hotspot, Southeast Indian Ridge. Earth Planet Sci Lett, 2000, 183: 245-259 CrossRef ADS Google Scholar

[31] Doucet S, Weis D, Scoates J S, et al. Geochemical and Hf–Pb–Sr–Nd isotopic constraints on the origin of the Amsterdam–St. Paul (Indian Ocean) hotspot basalts. Earth Planet Sci Lett, 2004, 218: 179-195 CrossRef ADS Google Scholar

[32] Burnard P G, Graham D W, Farley K A. Mechanisms of magmatic gas loss along the Southeast Indian Ridge and the Amsterdam –St. Paul Plateau. Earth Planet Sci Lett, 2002, 203: 131-148 CrossRef ADS Google Scholar

[33] Nicolaysen K P, Frey F A, Mahoney J J, et al. Influence of the Amsterdam/St. Paul hot spot along the Southeast Indian Ridge between 77° and 88°E: Correlations of Sr, Nd, Pb, and He isotopic variations with ridge segmentation. Geochem Geophys Geosyst, 2007, 8: Q9007. Google Scholar

[34] Janin M, Hémond C, Maia M, et al. The Amsterdam-St. Paul Plateau: A complex hot spot/DUPAL-flavored MORB interaction. Geochem Geophys Geosyst, 2012, 13: Q09016 CrossRef ADS Google Scholar

[35] Whittaker J M, Müller R D, Gurnis M. Development of the Australian-Antarctic depth anomaly. Geochem Geophys Geosyst, 2010, 11: Q11006 CrossRef ADS Google Scholar

[36] Klein E M, Langmuir C H, Zindler A, et al. Isotope evidence of a mantle convection boundary at the Australian-Antarctic Discordance. Nature, 1988, 333: 623-629 CrossRef ADS Google Scholar

[37] Pyle D G, Christie D M, Mahoney J J. Resolving an isotopic boundary within the Australian-Antarctic Discordance. Earth Planet Sci Lett, 1992, 112: 161-178 CrossRef ADS Google Scholar

[38] Holmes R C, Tolstoy M, Harding A J, et al. Australian Antarctic Discordance as a simple mantle boundary. Geophys Res Lett, 2010, 37: L09309 CrossRef ADS Google Scholar

[39] Kempton P D, Pearce J A, Barry T L, et al. Sr-Nd-Pb-Hf isotope results from ODP leg 187: Evidence for mantle dynamics of the Australian-Antarctic Discordance and origin of the Indian MORB source. Geochem Geophys Geosyst, 2002, 3: 1-35 CrossRef ADS Google Scholar

[40] Pedersen R B, Christie D M, Pyle D G. Regional and local mantle heterogeneities associated with the Australian Antarctic Discordance: Sr and Nd isotopic results from ODP Leg 187. In: Pedersen R B, Christie D M, Miller D J, eds. Proc ODP Sci Results, 2004, 187: 1–23. Google Scholar

[41] West B P, Wilcock W S D, Sempéré J C, et al. Three-dimensional structure of asthenospheric flow beneath the Southeast Indian Ridge. J Geophys Res, 1997, 102: 7783-7802 CrossRef ADS Google Scholar

[42] Coffin M F. Kerguelen hotspot magma output since 130 Ma. J Petrol, 2002, 43: 1121-1137 CrossRef ADS Google Scholar

[43] Nicolaysen K, Frey F A, Hodges K V, et al. 40Ar/39Ar geochronology of flood basalts from the Kerguelen Archipelago, southern Indian Ocean: Implications for Cenozoic eruption rates of the Kerguelen plume. Earth Planet Sci Lett, 2000, 174: 313-328 CrossRef ADS Google Scholar

[44] Weis D, Frey F A, Schlich R, et al. Trace of the Kerguelen mantle plume: Evidence from seamounts between the Kerguelen Archipelago and Heard Island, Indian Ocean. Geochem Geophys Geosyst, 2002, 3: 1-27 CrossRef ADS Google Scholar

[45] Storey M, Kent R W, Saunders A D, et al. Lower Cretaceous volcanic rocks on continental margins and their relationship to the Kerguelen Plateau. Ocean Drilling Program College Station, Texas. 1992, 33–53. Google Scholar

[46] Gregoire M, Mattielli N, Nicollet C, et al. Oceanic mafic granulite xenoliths from the Kerguelen archipelago. Nature, 1994, 367: 360-363 CrossRef ADS Google Scholar

[47] Weis D, Ingle S, Damasceno D, et al. Leg 183 Shipboard Scientific Party. Origin of continental components in Indian Ocean basalts: Evidence from Elan Bank (Kerguelen Plateau, ODP Leg183, Site 1137). Geology, 2001, 29: 147–150. Google Scholar

[48] Ingle S. Indian continental crust recovered from Elan Bank, Kerguelen plateau (ODP Leg 183, Site 1137). J Petrol, 2002, 43: 1241-1257 CrossRef ADS Google Scholar

[49] Mahoney J J, Jones W B, Frey F A, et al. Geochemical characteristics of lavas from Broken Ridge, the Naturaliste Plateau and southernmost Kerguelen Plateau: Cretaceous plateau volcanism in the southeast Indian Ocean. Chem Geol, 1995, 120: 315-345 CrossRef ADS Google Scholar

[50] Frey F A. Involvement of continental crust in the formation of the Cretaceous Kerguelen plateau: New perspectives from ODP Leg 120 Sites. J Petrol, 2002, 43: 1207-1239 CrossRef ADS Google Scholar

[51] Nobre Silva I G, Weis D, Scoates J S, et al. The Ninetyeast Ridge and its relation to the Kerguelen, Amsterdam and St. Paul Hotspots in the Indian Ocean. J Petrol, 2013, 54: 1177–1210. Google Scholar

[52] Whitford D J, Duncan R A. Origin of the Ninetyeast Ridge: Trace element and Sr isotope evidence. Annual Report of the Director, Department of Terrestrial Magnetism, Carnegie Institution Washington, 1978, 77: 606–613. Google Scholar

[53] Weis D, Frey F A, Saunders A, et al. Ninetyeast Ridge (Indian Ocean): A 5000 km record of a Dupal mantle plume. Geology, 1991, 19: 99–102. Google Scholar

[54] Saunders A D, Storey M, Kent R W, et al. Consequences of plume-lithosphere interactions. In: Storey B C, Alabaster T, Pankhurst R I, eds. Magmatism and the Causes of Continental Break-up. Geol Soc Spec Publ, 1992, 68: 41–60. Google Scholar

[55] Sager W W, Paul C F, Krishna K S, et al. Large fault fabric of the Ninetyeast Ridge implies near-spreading ridge formation. Geophys Res Lett, 2010, 37: L17304 CrossRef ADS Google Scholar

[56] Sushchevskaya N M, Levchenko O V, Dubinin E P, et al. Ninetyeast ridge: Magmatism and geodynamics. Geochem Int, 2016, 54: 237-256 CrossRef Google Scholar

[57] Frey F A, Pringle M, Meleney P, et al. Diverse mantle sources for Ninetyeast Ridge magmatism: Geochemical constraints from basaltic glasses. Earth Planet Sci Lett, 2011, 303: 215-224 CrossRef ADS Google Scholar

[58] Frey F A, Nobre Silva I G, Huang S, et al. Depleted components in the source of hotspot magmas: Evidence from the Ninetyeast Ridge (Kerguelen). Earth Planet Sci Lett, 2015, 426: 293-304 CrossRef ADS Google Scholar

[59] Krishna K S, Neprochnov Y P, Rao D G, et al. Crustal structure and tectonics of the Ninetyeast Ridge from seismic and gravity studies. Tectonics, 2001, 20: 416-433 CrossRef ADS Google Scholar

[60] Whittaker J, Halpin J A, Williams S E, et al. Tectonic evolution and continental fragmentation of the southern West Australian margin. West Australian Basins Symposium, 2013, 1–18. Google Scholar

[61] Halpin J A, Crawford A J, Direen N G, et al. Naturaliste Plateau, offshore Western Australia: A submarine window into Gondwana assembly and breakup. Geology, 2008, 36: 807-810 CrossRef ADS Google Scholar

[62] Direen N. Naturaliste Plateau: Constraints on the timing and evolution of the Kerguelen Large Igneous Province and its role in Gondwana breakup. Austral J Earth Sci, 2017, 64: 851–869. Google Scholar

[63] Sushchevskaya N M, Kamenetsky V S, Belyatsky B V, et al. Geochemical evolution of Indian Ocean basaltic magmatism. Geochem Int, 2013, 51: 599-622 CrossRef Google Scholar

[64] Colwell J B, Symonds P A, Crawford A J. The nature of the Wallaby (Cuvier) Plateau and other igneous provines of the west Australian margin. J Austr Geol Geophysics, 1994, 15: 137–156. Google Scholar

[65] Olierook H K H, Merle R E, Jourdan F, et al. Age and geochemistry of magmatism on the oceanic Wallaby Plateau and implications for the opening of the Indian Ocean. Geology, 2015, 43: 971-974 CrossRef ADS Google Scholar

[66] Coffin M F, Eldholm O. Volcanism and continental break-up: A global compilation of large igneous provinces. Geol Soc London Spec Pub, 1992, 68: 17-30 CrossRef ADS Google Scholar

[67] Zhu D C, Xia Y, Qiu B B, et al. Why do we need to propose the Early Cretaceous Comei large igneous province in southeastern Tibet (in Chinese)? Acta Petrol Sin, 29: 3659−3670 [朱弟成, 夏瑛, 裘碧波, 等. 为什么要提出西藏东南部早白垩世措美大火成岩省? 岩石学报, 2013, 29: 3659−3670]. Google Scholar

[68] Kennett J P. Paleoceanographic and biogeographic evolution of the Southern Ocean during the Cenozoic, and Cenozoic microfossil datums. Palaeogeogr Palaeoclimatol Palaeoecol, 1980, 31: 123-152 CrossRef ADS Google Scholar

[69] Li J H, Zhang H T, Li H L, et al. Mid-ocean ridge jump and extension in the context of hotspots: Discussion on the tectonic evolution of Indian Ocean (in Chinese). Geol J Chin Univ, 2016, 1: 74−80 [李江海, 张华添, 李洪林, 等. 热点作用背景下的洋中脊跃迁和扩展作用: 印度洋盆地张开过程探讨. 高校地质学报, 2016, 1: 74−80]. Google Scholar

[70] Yu X, Han X Q, Qiu Z Y, et al. Definition of Northwest Indian Ridge and its geologic and tectonic signature (in Chinese). Earth Sci, 2019, 44: 626−639 [余星, 韩喜球, 邱中炎, 等. 西北印度洋脊的厘定及地质构造特征分析. 地球科学, 2019, 44: 626−639]. Google Scholar

  • Figure 1

    The topography of the Southeast Indian Ridge (SEIR) and its adjacent area. (a) The topographic map of the Southeast Indian Ridge (SEIR) in projection of Azimuthal Equidistant. The red curves mark the spreading center. The blank curves across the ridge indicate the fracture zones. The red dashed lines show the profile locations in Figure 2. The read open boxes show the locations of ASP (c) and AAD (d), respectively. The bathymetric data are from GEBCO, with resolution of 30″. (b) Location of the Southeast Indian Ridge (SEIR). (c) The topography of ASP and its adjacent area. The contours shown in the map are the isobaths of –2000 m. (d) The topography of AAD and its adjacent area. The contours shown in the map are the isobaths of –4000 m

  • Figure 2

    The bathymetric profiles of Southeast Indian Ridge. (a) The profiles across the ridge of selected sections. The locations of profiles are marked in Figure 1 as dashed red line. The latitude labeled in each plot is the position of intersecting points of ridge axis and the profile. (b) Along-axis bathymetry profile of the Southeast Indian Ridge

  • Figure 3

    The free-air gravity anomalies of the Southeast Indian Ridge and its segmentation. The numbers along the ridge indicate the segment sequence for the SEIR. The dot dashed line indicates the –3000 m isobaths of the within plate plateaus near the SEIR. The gravity data are according to Sandwell et al.[26]

  • Figure 4

    The magnetic anomalies of the Southeast Indian Ridge and the adjacent area. The white lines indicate the boundaries between different types of magnetic lineations. The white polygons enclaved by dash dotted lines indicate the –3000 m isobaths of the within plate plateaus near the SEIR. The magnetic data are from EMAG2[28]

  • Figure 5

    The isochrones for the ocean floor around the Southeast Indian Ridge. The white lines indicate the boundaries between different types of magnetic lineations. The white polygons enclaved by dash dotted lines indicate the –3000 m isobaths of the within plate plateaus near the SEIR. The oceanic crust ages are from EarthByte

  • Figure 6

    The evolution of spreading ridges in Southeast Indian Ocean after 114 Ma. (a)−(f) The reconstructed plates at 114, 84, 60, 45, 38, and 0 Ma, respectively. The model is generated by Gplate based on the oceanic crust age data from EarthByte. The fixed reference is African Plate. The thin white lines represent the isochron of oceanic crust at 10 Ma interval. The red lines represent the location of spreading center. The little triangles represent the location of hotspots

  • Figure 7

    The distribution of MORBs along the Southeast Indian Ridge and their Sr-Nd-Pb-He isotopic compositions. The isotopic data were collected from PetDB

  • Figure 8

    The Sr-Nd-Pb isotopic composition for the basalts from oceanic plateaus adjacent to the Southeast Indian Ridge basalts. The dashed lines are the average ratios of 90°E ridge as a reference. The isotopic data were collected from PetDB

  • Figure 9

    The Sr-Nd-Pb isotopic compositions for the Southeast Indian Ridge and its adjacent ridges, including Southwest Indian Ridge, Northwest Indian Ridge and Pacific-Antarctic ridge. The isotopic data were collected from PetDB

  • Table 1   The segmentation of Southeast Indian Ridge and the attributes of main transform faults

    分段编号

    分段别名

    转换断层边界(东南界)

    断层英文名

    断距 (km)

    断层位置

    滑动方向

    经度

    纬度

    1

    Aa)

    71°E断裂带*

    71°E FZ

    77

    71°05′E

    26°06′S

    左旋

    2

    Ba)

    73°E断裂带*

    73°E FZ

    55

    73°E

    27°18′S

    左旋

    3

    Ca)

    74°E断裂带*

    74°E FZ

    40

    74°20′E

    28°26′S

    右旋

    4

    Da)

    75°E断裂带*

    75°E FZ

    45

    75°15′E

    29°46′S

    右旋

    5

    Ea)

    76°40′E断裂带*

    76°40′E FZ

    37

    76°40′E

    31°37′S

    右旋

    6

    Fa)

    特梭仑断裂带

    Ter Tholen FZ

    88

    77°43′E

    33°31′S

    右旋

    7

    Ga)

    席沃夫断裂带

    Zeewolf FZ

    71

    78°36′E

    35°11′S

    右旋

    8

    Ha)

    阿姆斯特丹断裂带

    Amsterdam FZ

    104

    78°50′E

    36°38′S

    右旋

    9

    Ia)

    圣保罗断裂带

    St. Paul FZ

    148

    77°54′E

    39°48′S

    右旋

    10

    Ja)

    弗拉明断裂带

    Vlamingh FZ

    101

    80°22′E

    41°30′S

    左旋

    11

    Ka)

    希尔芬克断裂带

    Geelvinck FZ

    290

    84°46′E

    41°57′S

    左旋

    12

    La)

    88°E断裂带*

    88°E FZ

    63

    88°22′E

    42°S

    左旋

    13

    Ma); C17~C14b)

    95°55′E断裂带*

    95°55′E FZ

    76

    95°55′E

    45°45′S

    右旋

    14

    Na); C13/14b)

    96°E断裂带*

    96°E FZ

    37

    96°E

    46°29′S

    右旋

    15

    Oa); C13b)

    99°38′E断裂带*

    99°38′E FZ

    152

    99°38′E

    47°43′S

    左旋

    16

    Pa); C12~C10b)

    105°E断裂带*

    105°E FZ

    24

    105°13′E

    48°51′S

    右旋

    17

    Qa); C9b)

    106°E断裂带*

    106°E FZ

    143

    106°39′E

    48°50′S

    左旋

    18

    Ra); C8b)

    108.5°E断裂带*

    108.5°E FZ

    60

    108°30′E

    49°S

    右旋

    19

    Sa); C7~C4b)

    席汉断裂带*

    Zeehaen FZ

    80

    114°07′E

    50°06′S

    左旋

    20

    Ta); C3b)

    海姆斯凯克断裂带

    Heemskerk FZ

    100

    116°19′E

    49°34′S

    左旋

    21

    Ua); C2~C1b)

    120°E断裂带*

    120°E FZ

    150

    120°34′E

    49°28′S

    左旋

    22

    B1c) ; AAD-Ad)

    121°E断裂带*

    121°E FZ

    79

    121°32′E

    49°22′S

    右旋

    23

    B2c); AAD-Bd)

    123°E断裂带*

    123°E FZ

    122

    123°44′E

    49°20′S

    左旋

    24

    B3~B4c); AAD-Bd)

    126°E断裂带*

    126°E FZ

    136

    126°08′E

    49°18′S

    左旋

    25

    B5c); AAD-Cd)

    127°E断裂带*

    127°E FZ

    156

    127°23′E

    49°28′S

    右旋

    26

    A1~A5c)

    乔治五世断裂带

    George V FZ

    434

    140°30′E

    53°S

    右旋

    27

    圣文森特断裂带

    Saint Vincent FZ

    72

    144°5′E

    54°27′S

    右旋

    28

    甘比尔断裂带

    Gambier FZ

    352

    146°47′E

    56°24′S

    右旋

    29

    塔斯曼断裂带

    Tasman FZ

    358

    149°27′E

    59°12′S

    右旋

    30

    巴勒尼断裂带

    Balleny FZ

    355

    154°34′E

    61°19′S

    右旋

    31

    麦考瑞三联点

    Macquarie triple junction

    162°29′E

    61°54′S

     

    Royer和Schlich[12], Cochran和Sempéré[4], Graham等人[13], Conder等人[14], Scheirer等人[15]和Dubinin等人[16]沿用的分段命名方法; b) Burnard等人[17]采用的分段命名方法; c) Sempéré等人[11], Christie等人[18]和Hanan等人[19]采用的分段命名方法; d) Dubinin等人[16]选用的命名方法. 带*表示本文使用的断裂带名称

  • Table 2   Half spreading rates of typical segments of the Southeast Indian Ridge during different episodes after 90 Ma (mm/a)

    时代

    剖面位置(经度)

    71°E

    78°E

    101°E

    122°E

    135°E

    152°E

    160°E

    90~60 Ma

    北翼

    ~36

    ~4.5

    ~3.6

    ~2.0

    南翼

    ~54.3

    ~5.4

    ~4.4

    60~38 Ma

    北翼

    42.2

    ~80

    ~8.3

    ~9.2

    ~8.5

    ~12.3

    南翼

    50.5

    ~26.2

    ~7.0

    ~9.7

    ~9.3

    ~10.1

    38~10 Ma

    北翼

    29.9

    34.6

    31.5

    34.4

    36.3

    45.3

    32.9

    南翼

    29.8

    31.1

    37.2

    33.1

    30.2

    25.4

    26.3

    10~0 Ma

    北翼

    29.3

    31.8

    32.7

    39

    34.1

    21.2

    34.5

    南翼

    25.1

    30.4

    31.9

    28.9

    33.3

    44.2

    24.9

    剖面位置是指剖面与洋脊扩张中心相交点的经度, 除160°E以外, 其他剖面位置同图2. 半扩张速率的计算方法为某时段洋脊一翼生成洋壳宽度除以时间间隔. ~表示磁条带不清晰, 计算结果误差较大; –表示未识别出对应的磁条带, 无法计算扩张速率

qqqq

Contact and support