logo

Chinese Science Bulletin, Volume 62 , Issue 34 : 4068-4076(2017) https://doi.org/10.1360/N972017-00698

A phenomenological theory of heavy fermion superconductivity in CeCoIn5

Yu LI 1,2, YiFeng YANG 1,2,3,*
More info
  • ReceivedJun 22, 2017
  • AcceptedAug 4, 2017
  • PublishedNov 16, 2017

Abstract


Funded by

国家优秀青年科学基金(11522435)

国家重点研发计划(2017YFA0303103)


References

[1] White B D, Thompson J D, Maple M B. Unconventional superconductivity in heavy-fermion compounds. Physica C-Superconductivity its Appl, 2015, 514: 246-278 CrossRef ADS Google Scholar

[2] Steglich F, Aarts J, Bredl C D, et al. Superconductivity in the Presence of Strong Pauli Paramagnetism: Ce Cu2 Si 2 . Phys Rev Lett, 1979, 43: 1892-1896 CrossRef ADS Google Scholar

[3] Bardeen J, Cooper L N, Schrieffer J R. Theory of Superconductivity. Phys Rev, 1957, 108: 1175-1204 CrossRef ADS Google Scholar

[4] Bednorz J G, Müller K A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Zeitschr Phys B, 1986, 64: 189–193. Google Scholar

[5] Yang Y F, Li Y. Heavy-fermion superconductivity and competing orders (in Chinese). Acta Phys Sin, 2015, 64: 217401 [杨义峰, 李宇. 重费米子超导与竞争序. 物理学报, 2015, 64: 217401]. Google Scholar

[6] Yang Y F, Fisk Z, Lee H O, et al. Scaling the Kondo lattice. Nature, 2008, 454: 611-613 CrossRef PubMed ADS Google Scholar

[7] Schuberth E, Tippmann M, Steinke L, et al. Emergence of superconductivity in the canonical heavy-electron metal YbRh2Si2. Science, 2016, 351: 485-488 CrossRef PubMed ADS arXiv Google Scholar

[8] Curro N J, Caldwell T, Bauer E D, et al. Unconventional superconductivity in PuCoGa5. Nature, 2005, 434: 622-625 CrossRef PubMed ADS Google Scholar

[9] Allan M P, Massee F, Morr D K, et al. Imaging Cooper pairing of heavy fermions in CeCoIn5. Nat Phys, 2013, 9: 468-473 CrossRef ADS arXiv Google Scholar

[10] Sigrist M, Ueda K. Phenomenological theory of unconventional superconductivity. Rev Mod Phys, 1991, 63: 239-311 CrossRef ADS Google Scholar

[11] Bredl C D, Spille H, Rauchschwalbe U, et al. Gapless superconductivity and variation of Tc in the heavy-fermion system CeCu2Si2. J Magn Magn Mater, 1983, 31-34: 373-376 CrossRef ADS Google Scholar

[12] Bredl C D, Lieke W, Schefzyk R, et al. Specific heat and thermal expansion of CeCu2Si2 at low temperature. J Magn Magn Mater, 1985, 47-48: 30-32 CrossRef ADS Google Scholar

[13] Kitaoka Y, Ueda K, Fujiwara K, et al. NMR Investigation of Superconductivity and Kondo-Coherency in CeCu2 Si2. J Phys Soc Jpn, 1986, 55: 723-726 CrossRef ADS Google Scholar

[14] Kittaka S, Aoki Y, Shimura Y, et al. Multiband Superconductivity with Unexpected Deficiency of Nodal Quasiparticles in CeCu 2 Si 2 . Phys Rev Lett, 2014, 112: 067002 CrossRef PubMed ADS arXiv Google Scholar

[15] Pang G M, Smidman M, Zhang J L, et al. Evidence for fully gapped d-wave superconductivity in CeCu2Si2,. arXiv Google Scholar

[16] Yamashita T, Takenaka T, Tokiwa Y, et al. Fully gapped superconductivity with no sign change in the prototypical heavy-fermion CeCu2 Si2. Sci Adv, 2017, 3: e1601667 CrossRef PubMed Google Scholar

[17] Shimizu Y, Kittaka S, Sakakibara T, et al. Field-Orientation Dependence of Low-Energy Quasiparticle Excitations in the Heavy-Electron Superconductor UBe13. Phys Rev Lett, 2015, 114: 147002 CrossRef PubMed ADS arXiv Google Scholar

[18] Schemm E R, Gannon W J, Wishne C M, et al. Observation of broken time-reversal symmetry in the heavy-fermion superconductor UPt3. Science, 2014, 345: 190-193 CrossRef PubMed ADS arXiv Google Scholar

[19] Schemm E R, Baumbach R E, Tobash P H, et al. Evidence for broken time-reversal symmetry in the superconducting phase of URu2Si2. Phys Rev B, 2015, 91: 140506 CrossRef ADS arXiv Google Scholar

[20] Suzuki M T, Harima H. Change of Fermi Surface Topology in CeRu2 Si2 Studied by LSDA+U Method. J Phys Soc Jpn, 2010, 79: 024705-024705 CrossRef ADS Google Scholar

[21] Ikeda H, Suzuki M T, Arita R. Emergent Loop-Nodal s±-Wave Superconductivity in CeCu 2 Si 2 : Similarities to the Iron-Based Superconductors. Phys Rev Lett, 2015, 114: 147003 CrossRef PubMed ADS arXiv Google Scholar

[22] Shim J H, Haule K, Kotliar G. Modeling the Localized-to-Itinerant Electronic Transition in the Heavy Fermion System CeIrIn5. Science, 2007, 318: 1615-1617 CrossRef PubMed ADS arXiv Google Scholar

[23] Zwicknagl G. The utility of band theory in strongly correlated electron systems. Rep Prog Phys, 2016, 79: 124501 CrossRef PubMed ADS Google Scholar

[24] Gerber S, Bartkowiak M, Gavilano J L, et al. Switching of magnetic domains reveals spatially inhomogeneous superconductivity. Nat Phys, 2014, 10: 126-129 CrossRef ADS arXiv Google Scholar

[25] Tsujimoto M, Matsumoto Y, Tomita T, et al. Heavy-Fermion Superconductivity in the Quadrupole Ordered State of PrV 2Al 20 . Phys Rev Lett, 2014, 113: 267001 CrossRef PubMed ADS arXiv Google Scholar

[26] Kung H H, Baumbach R E, Bauer E D, et al. Chirality density wave of the "hidden order" phase in URu2Si2. Science, 2015, 347: 1339-1342 CrossRef PubMed ADS arXiv Google Scholar

[27] Scalapino D J. A common thread: The pairing interaction for unconventional superconductors. Rev Mod Phys, 2012, 84: 1383-1417 CrossRef ADS arXiv Google Scholar

[28] Miyake K, Watanabe S. Unconventional Quantum Criticality Due to Critical Valence Transition. J Phys Soc Jpn, 2014, 83: 061006 CrossRef ADS arXiv Google Scholar

[29] Thalmeier P, Maki K, Yuan Q. Multiple superconducting phases in skutterudite PrOs4Sb12. Physica C-Superconductivity, 2004, 408-410: 177-178 CrossRef ADS Google Scholar

[30] Das T, Zhu J X, Graf M J. Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family. Sci Rep, 2015, 5: 8632 CrossRef PubMed ADS Google Scholar

[31] Takimoto T, Hotta T, Ueda K. Strong-coupling theory of superconductivity in a degenerate Hubbard model. Phys Rev B, 2004, 69: 104504 CrossRef ADS Google Scholar

[32] Millis A J, Monien H, Pines D. Phenomenological model of nuclear relaxation in the normal state of YBa2 Cu 3 O 7 . Phys Rev B, 1990, 42: 167-178 CrossRef ADS Google Scholar

[33] Monthoux P, Balatsky A V, Pines D. Toward a theory of high-temperature superconductivity in the antiferromagnetically correlated cuprate oxides. Phys Rev Lett, 1991, 67: 3448-3451 CrossRef PubMed ADS Google Scholar

[34] Monthoux P, Balatsky A V, Pines D. Weak-coupling theory of high-temperature superconductivity in the antiferromagnetically correlated copper oxides. Phys Rev B, 1992, 46: 14803-14817 CrossRef ADS Google Scholar

[35] Monthoux P, Lonzarich G G. p -wave andd-wave superconductivity in quasi-two-dimensional metals. Phys Rev B, 1999, 59: 14598-14605 CrossRef ADS Google Scholar

[36] Monthoux P, Lonzarich G G. Magnetically mediated superconductivity in quasi-two and three dimensions. Phys Rev B, 2001, 63: 054529 CrossRef ADS Google Scholar

[37] Monthoux P, Lonzarich G G. Magnetically mediated superconductivity:  Crossover from cubic to tetragonal lattice. Phys Rev B, 2002, 66: 224504 CrossRef ADS Google Scholar

[38] Nishiyama S, Miyake K, Varma C M. Superconducting transition temperatures for spin-fluctuation superconductivity: Application to heavy-fermion compounds. Phys Rev B, 2013, 88: 014510 CrossRef ADS arXiv Google Scholar

[39] Yang Y F, Pines D. Universal Behavior in Heavy-Electron Materials. Phys Rev Lett, 2008, 100: 096404 CrossRef PubMed ADS arXiv Google Scholar

[40] Yang Y, Pines D. Emergent states in heavy-electron materials. Proc Natl Acad Sci USA, 2012, 109: E3060-E3066 CrossRef PubMed ADS arXiv Google Scholar

[41] Ruderman M A, Kittel C. Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons. Phys Rev, 1954, 96: 99-102 CrossRef ADS Google Scholar

[42] Kasuya T. A theory of metallic ferro- and antiferromagnetism on Zener′s model. Prog Theor Phys, 1956, 16: 45–57. Google Scholar

[43] Yosida K. Magnetic Properties of Cu-Mn Alloys. Phys Rev, 1957, 106: 893-898 CrossRef ADS Google Scholar

[44] Yang Y F. Two-fluid model for heavy electron physics. Rep Prog Phys, 2016, 79: 074501 CrossRef PubMed ADS arXiv Google Scholar

[45] Yang Y, Pines D, Curro N J. Quantum critical scaling and superconductivity in heavy electron materials. Phys Rev B, 2015, 92: 195131 CrossRef ADS arXiv Google Scholar

[46] Yang Y, Pines D. Emergence of superconductivity in heavy-electron materials. Proc Natl Acad Sci USA, 2014, 111: 18178-18182 CrossRef PubMed ADS arXiv Google Scholar

[47] Monthoux P, Pines D, Lonzarich G G. Superconductivity without phonons. Nature, 2007, 450: 1177-1183 CrossRef PubMed ADS Google Scholar

[48] Stock C, Broholm C, Hudis J, et al. Spin Resonance in the d-Wave Superconductor CeCoIn5 . Phys Rev Lett, 2008, 100: 087001 CrossRef PubMed ADS arXiv Google Scholar

[49] Graser S, Maier T A, Hirschfeld P J, et al. Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides. New J Phys, 2009, 11: 025016 CrossRef ADS arXiv Google Scholar

[50] Monthoux P, Pines D. Spin-fluctuation-induced superconductivity in the copper oxides: A strong coupling calculation. Phys Rev Lett, 1992, 69: 961-964 CrossRef PubMed ADS Google Scholar

[51] Aynajian P, da Silva Neto E H, Gyenis A, et al. Visualizing heavy fermions emerging in a quantum critical Kondo lattice. Nature, 2012, 486: 201-206 CrossRef PubMed ADS arXiv Google Scholar

[52] Wray L A, Denlinger J, Huang S W, et al. Spectroscopic Determination of the Atomic f-Electron Symmetry Underlying Hidden Order in URu2 Si2 . Phys Rev Lett, 2015, 114: 236401 CrossRef PubMed ADS arXiv Google Scholar

[53] Shishido H, Shibauchi T, Yasu K, et al. Tuning the Dimensionality of the Heavy Fermion Compound CeIn3. Science, 2010, 327: 980-983 CrossRef PubMed ADS Google Scholar

[54] Kim D Y, Lin S Z, Weickert F, et al. Intertwined orders in heavy-fermion superconductor CeCoIn5. Phys Rev X, 2016, 6: 041059. Google Scholar

[55] Bauer E D, Thompson J D. Plutonium-Based Heavy-Fermion Systems. Annu Rev Condens Matter Phys, 2015, 6: 137-153 CrossRef ADS arXiv Google Scholar

  • Figure 1

    (Color online) Schematic plot of the two-fluid phase diagram for heavy fermion superconductors. QCP denotes the quantum critical point

  • Figure 2

    (Color online) Fermi surface structures of CeCoIn5. (a) The ″heavy″ electron Fermi surface; (b) the ″light″ electron Fermi surface. υkF represents the Fermi velocity

  • Figure 3

    (Color online) Superconducting gap structures of CeCoIn5 and the eigenvalues λ as a function of the chemical potential in the weak-coupling calculations. (a)–(d) Gap structures ( ψk ) of the largest 4 eigenvalues at δμ = 0. The symbol ″+″ ″−″ reflect the signs of the gap structure; (e) variation of the largest λ as a function of the chemical potential for 4 different symmetry representations (A1g, A2g, B1g, B2g) of the point group D4h

  • Figure 4

    (Color online) Temperature evolution of the eigenvalues in the strong-coupling calculations. (a) T-evolution of the 4 leading solutions of λ′ at geff 2 χ0 =500 meV ; (b) T-evolution of the largest eigenvalue λ max at different g eff 2χ0 . The solid lines denoteλ=0

  • Figure 5

    (Color online) Dependence of Tc on geff 2 χ0 and ωs f. (a) Tc as a function of ωsf for different g eff 2χ0 ; (b) Tc as a function of g eff2χ 0for different ωsf ; (c) a scaling relation of Tc versus of NFgeff

  • Figure 6

    (Color online) Comparison of experimental measured Tc as a function of pressure or doping. (a) CeCoIn5; (b) CeRhIn5. The solid lines denote the theoretical predictions, the points are the experimental data for Tc (circles) and the Néel temperature TN (squares), T0 marks the measured onset of the long-range antiferromagnetic correlations, TL denotes the predicted temperature below which all f electrons become fully delocalized, and pL is the pressure where Tc and TL intersect[46]

qqqq

Contact and support