logo

Chinese Science Bulletin, Volume 62 , Issue 26 : 3008-3022(2017) https://doi.org/10.1360/N972017-00362

Chinese Color Nest Project: Growing up in China

Ning YANG 1,2,3, Ye HE 1,2,3,4, Zhe ZHANG 1,2,3, HaoMing DONG 1,2,3,5, Lei ZHANG 1,2,3, XingTing ZHU 1,2,3,6, XiaoHui HOU 1,2,3,7, YinShan WANG 1,2,3, Quan ZHOU 1,2,3, ZhuQing GONG 1,2,3, LiZhi CAO 1,2,3, Ping WANG 1,2,3, YiWeng ZHANG 1,2,3, DanYang SUI 1,2,3, Ting XU 1,2,3,8, GaoXia WEI 1,2,3, Zhi YANG 1,10,2,3,5, LiLi JIANG 1,2,3, HuiJie LI 1,2,3, TingYong FENG 9, AnTao CHEN 9, Jiang QIU 9, Xu CHEN 9, XiNian ZUO 1,2,3,5,7,9,*
More info
  • ReceivedMar 27, 2017
  • AcceptedMay 26, 2017
  • PublishedJul 14, 2017

Abstract


Funded by

国家自然科学基金重点国际合作交流项目(81220108014)

中国科学院重点部署项目(KSZD-EW-TZ-002)

国家重点基础研究发展计划(2015CB351702)

中国科学院-荷兰科研组织国际合作项目(153111KYSB20160020)

北京市科技重大专项(Z171100000117012)

北京市国家重大研发计划匹配(Z161100002616023)


Acknowledgment

本计划的顺利启动得力于中国科学院心理研究所、西南大学心理学部在人员、场所等方面的大力支持, 以及重庆市北碚区参与项目的中小学校给予的宣传许可与协助. 感谢中国科学院心理研究所刘勋、曹筱燕、李甦为项目设计提供的意见. 感谢陈兵制作志愿者招募宣传视频. 在数据采集过程中, 西南大学郝磊、周娅菲、蒙杰、田雪、尹首航、刘颖、翟晶、王康程、侯鑫、魏佳丽、唐清婷、胡佳、张兴、马原啸、杨正宇、毛毓、孙江洲、胡娜、刘欣怡、杨兵兵、庄恺祥、施亮、任芷葶、唐炎程、李含笑、杨崇、唐妍、陆丹丹、朱文荣、管景、高青、陈群林、赵远方、王洋、曹国光、李宝林、董德波、冯攀、郭逸群、车先伟、赵海潮、陈圣栋、吴欣然、邓翔、杨润澜等为项目贡献了力量. 感谢西南大学况晨等对数据电子化做的工作. 感谢重庆市北碚区天生街道文琼女士对项目后勤工作的鼎力支持.


Contributions statement

同等贡献

Equally contributed to this work


References

[1] de Onis M. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ, 2007, 85: 660-667 CrossRef Google Scholar

[2] World Health Organization. WHO child growth standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: Methods and development. Geneva: World Health Organization, 2006. Google Scholar

[3] Tanner J M, Whitehouse R H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty.. Archives Dis Childhood, 1976, 51: 170-179 CrossRef Google Scholar

[4] de Onis M, Garza C, Victora C G, et al. The WHO Multicentre Growth Reference Study: Planning, Study Design, and Methodology. Food Nutr Bull, 2004, 25: S15-S26 CrossRef PubMed Google Scholar

[5] World Health Organization. WHO Child Growth Standards: Growth velocity based on weight, length and head circumference: Methods and development. Geneva: World Health Organization, 2009. Google Scholar

[6] Li H, Ji C Y, Zong X N, et al. Height and weight standardized growth charts for Chinese children and adolescents aged 0 to 18 years (in Chinese). Chin J Pediatr, 2009, 47: 487–492 [李辉, 季成叶, 宗心南, 等. 中国0~18岁儿童、青少年身高、体重的标准化生长曲线. 中华儿科杂志, 2009, 47: 487–492]. Google Scholar

[7] Li H, Ji C Y, Zong X N, et al. Body mass index growth carves for Chinese children and adolescents aged 0 to 18 years (in Chinese). Chin J Pediatr, 2009, 47: 493–498 [李辉, 季成叶, 宗心南, 等. 中国0~18岁儿童、青少年体块指数的生长曲线. 中华儿科杂志, 2009, 47: 493–498]. Google Scholar

[8] Li H, Zong X N. The reference values for body weight, body length and head circumference for Chinese infants aged 0 to 13 weeks (in Chinese). Chin J Neonatol, 2010, 25: 11–15 [李辉, 宗心南. 中国0~13周婴儿体重身长和头围的生长参照值. 中国新生儿科杂志, 2010, 25: 11–15]. Google Scholar

[9] Jin C H, Zhang Y, Li N, et al. Basic method to revise “China Developmental Scale for Children” (in Chinese). Chin J Child Health Care, 2014, 22: 899–901 [金春华, 张悦, 李娜, 等. 《中国儿童发育量表》修订的基本思路. 中国儿童保健杂志, 2014, 22: 899–901]. Google Scholar

[10] Li R L, Jin C H, Zhang L L, et al. Psychometric analysis of the “China Developmental Scale for Children” (aged 4–6 years old) (in Chinese). Chin J Child Health Care, 2015, 23: 934–936 [李瑞莉, 金春华, 张丽丽, 等. 《中国儿童发育量表》(4~6岁部分)信度与效度研究. 中国儿童保健杂志, 2015, 23: 934–936]. Google Scholar

[11] Zhang L L, Jin C H, Li R L, et al. Reliability of China Developmental Scale for Children aged 0-4 years in Beijing (in Chinese). Chin J Child Health Care, 2015, 23: 573–576 [张丽丽, 金春华, 李瑞莉, 等. 《中国儿童发育量表》北京地区常模(0~4岁部分)修订与信度分析. 中国儿童保健杂志, 2015, 23: 573–576]. Google Scholar

[12] Charlson F J, Baxter A J, Cheng H G, et al. The burden of mental, neurological, and substance use disorders in China and India: a systematic analysis of community representative epidemiological studies. Lancet, 2016, 388: 376-389 CrossRef Google Scholar

[13] 3 Whiteford H A, Degenhardt L, Rehm J, et al. Global burden of disease attributable to mental and substance use disorders: Findings from the Global Burden of Disease Study 2010. Lancet, 2013, 382: 1575–1586. Google Scholar

[14] Silberberg D, Anand N P, Michels K, et al. Brain and other nervous system disorders across the lifespan — global challenges and opportunities. Nature, 2015, 527: S151-S154 CrossRef PubMed ADS Google Scholar

[15] Kessler R C, Berglund P, Demler O, et al. Lifetime Prevalence and Age-of-Onset Distributions of DSM-IV Disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry, 2005, 62: 593-602 CrossRef PubMed Google Scholar

[16] Christiana J M, Gilman S E, Guardino M, et al. Duration between onset and time of obtaining initial treatment among people with anxiety and mood disorders: an international survey of members of mental health patient advocate groups. Psychol Med, 2000, 30: 693-703 CrossRef Google Scholar

[17] Grant B F, Dawson D A. Age of onset of drug use and its association with DSM-IV drug abuse and dependence: Results from the national longitudinal alcohol epidemiologic survey. J Substance Abuse, 1998, 10: 163-173 CrossRef Google Scholar

[18] Kessler R C, Avenevoli S, Ries Merikangas K. Mood disorders in children and adolescents: an epidemiologic perspective. Biol Psychiatry, 2001, 49: 1002-1014 CrossRef Google Scholar

[19] Kessler R C, Amminger G P, Aguilar-Gaxiola S, et al. Age of onset of mental disorders: a review of recent literature. Curr Opin Psychiatry, 2007, 20: 359-364 CrossRef PubMed Google Scholar

[20] Lavigne J V, Arend R, Rosenbaum D, et al. Psychiatric Disorders With Onset in the Preschool Years: I. Stability of Diagnoses. J Am Acad Child Adolescent Psychiatry, 1998, 37: 1246-1254 CrossRef PubMed Google Scholar

[21] Di Martino A, Fair D A, Kelly C, et al. Unraveling the Miswired Connectome: A Developmental Perspective. Neuron, 2014, 83: 1335-1353 CrossRef PubMed Google Scholar

[22] Shaw P, Greenstein D, Lerch J, et al. Intellectual ability and cortical development in children and adolescents. Nature, 2006, 440: 676-679 CrossRef PubMed ADS Google Scholar

[23] Gur R C, Calkins M E, Satterthwaite T D, et al. Neurocognitive Growth Charting in Psychosis Spectrum Youths. JAMA Psychiatry, 2014, 71: 366-374 CrossRef PubMed Google Scholar

[24] Dosenbach N U F, Nardos B, Cohen A L, et al. Prediction of Individual Brain Maturity Using fMRI. Science, 2010, 329: 1358-1361 CrossRef PubMed ADS Google Scholar

[25] Stevens M C. The contributions of resting state and task-based functional connectivity studies to our understanding of adolescent brain network maturation. NeuroSci BioBehaval Rev, 2016, 70: 13-32 CrossRef PubMed Google Scholar

[26] Kaufmann T, Alnæs D, Doan N T, et al. Delayed stabilization and individualization in connectome development are related to psychiatric disorders. Nat Neurosci, 2017, 20: 513-515 CrossRef PubMed Google Scholar

[27] Hazlett H C, Gu H, Munsell B C, et al. Early brain development in infants at high risk for autism spectrum disorder. Nature, 2017, 542: 348-351 CrossRef PubMed ADS Google Scholar

[28] Chang L, Oishi K, Skranes J, et al. Sex-Specific Alterations of White Matter Developmental Trajectories in Infants With Prenatal Exposure to Methamphetamine and Tobacco. JAMA Psychiatry, 2016, 73: 1217-1227 CrossRef PubMed Google Scholar

[29] Kessler D, Angstadt M, Sripada C. Growth Charting of Brain Connectivity Networks and the Identification of Attention Impairment in Youth. JAMA Psychiatry, 2016, 73: 481-489 CrossRef PubMed Google Scholar

[30] Yuste R, Bargmann C. Toward a Global BRAIN Initiative. Cell, 2017, 168: 956-959 CrossRef PubMed Google Scholar

[31] Kandel E R, Markram H, Matthews P M, et al. Neuroscience thinks big (and collaboratively). Nat Rev Neurosci, 2013, 14: 659-664 CrossRef PubMed Google Scholar

[32] Tavor I, Parker Jones O, Mars R B, et al. Task-free MRI predicts individual differences in brain activity during task performance. Science, 2016, 352: 216-220 CrossRef PubMed ADS Google Scholar

[33] Glasser M F, Coalson T S, Robinson E C, et al. A multi-modal parcellation of human cerebral cortex. Nature, 2016, 536: 171-178 CrossRef PubMed ADS Google Scholar

[34] Glasser M F, Smith S M, Marcus D S, et al. The Human Connectome Project's neuroimaging approach. Nat Neurosci, 2016, 19: 1175-1187 CrossRef PubMed Google Scholar

[35] Yan Z X, Liu X, Tan S P, et al. Developmental cognitive neuroscience: Functional connectomics agenda for human brain lifespan development (in Chinese). Chin Sci Bull, 2016, 61: 718–727 [颜志雄, 刘勋, 谭淑平, 等. 发展认知神经科学: 人脑毕生发展的功能连接组学时代. 科学通报, 2016, 61: 718–727]. Google Scholar

[36] Zuo X N, He Y, Betzel R F, et al. Human Connectomics across the Life Span. Trends Cognitive Sci, 2017, 21: 32-45 CrossRef PubMed Google Scholar

[37] Wang J, Yang N, Liao W, et al. Dorsal anterior cingulate cortex in typically developing children: Laterality analysis. Dev Cognitive Neuroscience, 2015, 15: 117-129 CrossRef PubMed Google Scholar

[38] Zuo X N, Anderson J S, Bellec P, et al. An open science resource for establishing reliability and reproducibility in functional connectomics. Sci Data, 2014, 1: 140049 CrossRef PubMed Google Scholar

[39] Nooner K B, Colcombe S J, Tobe R H, et al. The NKI-rockland sample: A model for accelerating the pace of discovery science in psychiatry. Front Neurosci, 2012, 6: 152. Google Scholar

[40] Thompson W K, Hallmayer J, O'Hara R, et al. Design Considerations for Characterizing Psychiatric Trajectories Across the Lifespan: Application to Effects of APOE-ε4 on Cerebral Cortical Thickness in Alzheimer's Disease. AJP, 2011, 168: 894-903 CrossRef PubMed Google Scholar

[41] Mills K L, Tamnes C K. Methods and considerations for longitudinal structural brain imaging analysis across development. Dev Cognitive Neuroscience, 2014, 9: 172-190 CrossRef PubMed Google Scholar

[42] Satterthwaite T D, Connolly J J, Ruparel K, et al. The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth. NeuroImage, 2016, 124: 1115-1119 CrossRef PubMed Google Scholar

[43] Jernigan T L, Brown T T, Hagler Jr. D J, et al. The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository. NeuroImage, 2016, 124: 1149-1154 CrossRef PubMed Google Scholar

[44] Su L Y, Li X R, Luo X R, et al. The newly revised norms of child behavior checklist in Hunan Province (in Chinese). Chin Mental Health J, 1998, 12: 67–69 [苏林雁, 李雪荣, 罗学荣, 等. Achenbach儿童行为量表的再标准化及效度检验. 中国心理卫生杂志, 1998, 12: 67–69]. Google Scholar

[45] Xin R E. Children’s psychological and behavioral assessment tool—Achenbach’s child behavior inventory (in Chinese). Psychol Dev Educat, 1994, 1: 26 [忻仁娥. 儿童心理与行为的评估工具——Achenbach’s儿童行为量表. 心理发展与教育, 1994, 1: 26]. Google Scholar

[46] Cohen S, Kamarck T, Mermelstein R. A Global Measure of Perceived Stress. J Health Social Behav, 1983, 24: 385-396 CrossRef Google Scholar

[47] Yang T Z, Huang H T. An epidemiological study on stress among urban residents in social transition period (in Chinese). Chin J Epidemio, 2003, 24: 760–764 [杨廷忠, 黄汉腾. 社会转型中城市居民心理压力的流行病学研究. 中华流行病学杂志, 2003, 24: 760–764]. Google Scholar

[48] Liu X C, Liu L Q, Yang J, et al. Establishment of adolescent life event scale and reliability and validity test (in Chinese). Shangdong Arch Psychiat, 1991, 10: 15–19 [刘贤臣, 刘连启, 杨杰, 等. 青少年生活事件量表的编制与信度效度测试. 山东精神医学, 1997, 10: 15–19]. Google Scholar

[49] Su L Y, Luo X R, Zhang J S, et al. Norms of the Plers-Harris children’s self-concept scale of Chinese urban children (in Chinese). Chin Mental Health J, 2002, 16: 31–34 [苏林雁, 罗学荣, 张纪水, 等. 儿童自我意识量表的中国城市常模. 中国心理卫生杂志, 2002, 16: 31–34]. Google Scholar

[50] Li F, Su L Y, Jin Y. Norm of the screen for child social anxiety related emotional disorders in Chinese urban children (in Chinese). Chin J Child Health Care, 2006, 14: 335–337 [李飞, 苏林雁, 金宇. 儿童社交焦虑量表的中国城市常模. 中国儿童保健杂志, 2006, 14: 335–337]. Google Scholar

[51] Zou T, Yao S Q, Zhu X Z, et al. Reliability and validity of the Chinese version of the multidimensional anxiety scale for Chinese (in Chinese). Chin J Clin Psychol, 2007, 15: 452–455 [邹涛, 姚树桥, 朱熊兆, 等. MASC中文版信效度的分析及与西方样本的比较. 中国临床心理学杂志, 2007, 15: 452–455]. Google Scholar

[52] Fu R J, Chen X. Relationship between self-esteem and anxiety of migrant Children in Chaoshan Area (in Chinese). China J Health Psychol, 2012, 20: 1381–1383 [付瑞娟, 陈洵. 潮汕地区流动儿童自尊与焦虑现状的关系研究. 中国健康心理学杂志, 2012, 20: 1381–1383]. Google Scholar

[53] Li W L, Qian M Y. Revision of the state-trait anxiety inventory with sample of Chinese college students (in Chinese). Acta Sci Nat Univ Pekinensis, 1995, 31: 108–112 [李文利, 钱铭怡. 状态特质焦虑量表中国大学生常模修订. 北京大学学报: 自然科学版, 1995, 31: 108–112]. Google Scholar

[54] Tong J. The relationship between status trait anxiety, learning motivation and academic possible selves in senior high school students (in Chinese). Master Dissertation. Xi’an: Shaanxi Normal University, 2011 [仝警. 高中生状态——特质焦虑、学习动机与学业可能自我的关系. 硕士学位论文. 西安: 陕西师范大学, 2011]. Google Scholar

[55] Wu W F, Lu Y B, Tan F R, et al. Reliability and validity of the Chinese version of Children’s depression inventory (in Chinese). Chin Mental Health J, 2010, 24: 775–779 [吴文峰, 卢永彪, 谭芙蓉, 等. 儿童抑郁量表中文版在中小学生中的信效度. 中国心理卫生杂志, 2010, 24: 775–779]. Google Scholar

[56] Gao J J, Chen Y W. Applicability of the Children’s loneliness scale in 1–2 grades pupils (in Chinese). Chin Ment Health J, 2011, 25: 361–364 [高金金, 陈毅文. 儿童孤独量表在1~2年级小学生中的应用. 中国心理卫生杂志, 2011, 25: 361–364]. Google Scholar

[57] Qiu L, Zheng X, Wang Y F. Revision of the Positive Affect and Negative Affect Scale (in Chinese). Chin J Appl Psychol, 2008, 14: 249–254 [邱林, 郑雪, 王雁飞. 积极情感消极情感量表(PANAS)的修订. 应用心理学, 2008, 14: 249–254]. Google Scholar

[58] Chen W F, Zhang J X. Factorial and construct validity of the Chinese positive and negative affect scale for student (in Chinese). Chin Ment Health J, 2004, 18: 763–765 [陈文锋, 张建新. 积极/消极情感量表中文版的结构和效度. 中国心理卫生杂志, 2004, 18: 763–765]. Google Scholar

[59] Zhao Q Q, Wei J, Ying B, et al. Reliability and validity of Chinese version of bar-on emotional quotient inventory: Youth version (in Chinese). China J Health Psychol, 2013, 21: 1511–1515 [赵清清, 韦嘉, 应斌, 等. 巴昂情绪智力量表青少年版的信效度检验. 中国健康心理学杂志, 2013, 21: 1511–1515]. Google Scholar

[60] Gong Y X. Eysenck personality questionnaire revised in China. Psychol Sci, 1984, 4: 11–18 [龚耀先. 艾森克个性问卷在我国的修订. 心理科学通讯, 1984, 4: 11–18]. Google Scholar

[61] Qian M Y, Wu G C, Zhu R C, et al. Development of the revised Eysenck Personality questionnaire short scale for Chinese (EPQ-RSC) (in Chinese). Acta Psychol Sin, 2000, 32: 317–323 [钱铭怡, 武国城, 朱荣春, 等. 艾森克人格问卷简式量表中国版(EPQ-RSC)的修订. 心理学报, 2000, 32: 317–323]. Google Scholar

[62] Ye R M, Hong D H, Torrance P E. Cross cultural comparison of creative thinking between Chinese and American students using torrance test (in Chinese). Chin J Appl Psychol, 1988, 3: 22–29 [叶仁敏, 洪德厚, 保尔·托兰斯. 《托兰斯创造性思维测验》(TTCT)的测试和中美学生的跨文化比较. 应用心理学, 1988, 3: 22–29]. Google Scholar

[63] Dollinger S J. “Standardized minds” or individuality? Admissions tests and creativity revisited. Psychol Aesthet Creat, 2011, 5: 329–341. Google Scholar

[64] Li W F. The neural basis of creativity via multi-modal brain imaging investigation (in Chinese). Doctor Dissertation. Chongqing: Southwest University, 2014 [李文福. 创造性的脑机制. 博士学位论文. 重庆: 西南大学, 2014]. Google Scholar

[65] Hao X. Relationship between cognitive styles and creative thinking (in Chinese). Master Dissertation. Chongqing: Southwest University, 2014 [郝鑫. 认知风格与创造性思维的关系. 硕士学位论文. 重庆: 西南大学, 2014]. Google Scholar

[66] Hwang W Y, Chen N S, Dung J J, et al. Multiple representation skills and creativity effects on mathematical problem solving using a multimedia whiteboard system. Educ Technol Soc, 2007, 10: 191–212. Google Scholar

[67] Xue J, Shu H, Li H, et al. The Stability of Literacy-Related Cognitive Contributions to Chinese Character Naming and Reading Fluency. J Psycholinguist Res, 2013, 42: 433-450 CrossRef PubMed Google Scholar

[68] Fan J, McCandliss B D, Sommer T, et al. Testing the Efficiency and Independence of Attentional Networks. J Cognitive Neuroscience, 2002, 14: 340-347 CrossRef PubMed Google Scholar

[69] Schuch S, Koch I. The role of response selection for inhibition of task sets in task shifting.. J Exp Psychology-Human Perception Performance, 2003, 29: 92-105 CrossRef Google Scholar

[70] Zhu D F, Wang Z X, Zhang D R, et al. fMRI revealed neural substrate for reversible working memory dysfunction in subclinical hypothyroidism. Brain, 2006, 129: 2923-2930 CrossRef PubMed Google Scholar

[71] Wechsler D. WISC-IV Administration and Scoring Manual. San Antonio: The Psychological Corporation, 2003. Google Scholar

[72] Wechsler D. WISC-IV Technical and Interpretive Manual. San Antonio: The Psychological Corporation, 2004. Google Scholar

[73] Zhang H C. The revision of WISC-IV Chinese version (in Chinese). Psychol Sci, 2009, 32: 1177–1179 [张厚粲. 韦氏儿童智力量表第四版(WISC-IV)中文版的修订. 心理科学, 2009, 32: 1177–1179]. Google Scholar

[74] Thomas Yeo B T, Krienen F M, Sepulcre J, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J NeuroPhysiol, 2011, 106: 1125-1165 CrossRef PubMed Google Scholar

[75] Manjón J V, Coupé P. volBrain: An online MRI brain volumetry system. Front Neuroinform, 2016, 10: 30. Google Scholar

[76] Insel T R. Mental Disorders in Childhood. JAMA, 2014, 311: 1727-1728 CrossRef PubMed Google Scholar

[77] Insel T R. Rethinking schizophrenia. Nature, 2010, 468: 187-193 CrossRef PubMed ADS Google Scholar

[78] Di Martino A, Yan C G, Li Q, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry, 2014, 19: 659-667 CrossRef PubMed Google Scholar

[79] Millan M J, Andrieux A, Bartzokis G, et al. Altering the course of schizophrenia: progress and perspectives. Nat Rev Drug Discov, 2016, 15: 485-515 CrossRef PubMed Google Scholar

[80] Marín O. Developmental timing and critical windows for the treatment of psychiatric disorders. Nat Med, 2016, 22: 1229–1238. Google Scholar

[81] Fonov V, Evans A, McKinstry R, et al. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, 2009, 47: S102 CrossRef Google Scholar

[82] Collins D L, Neelin P, Peters T M, et al. Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space. J Comp Assisted Tomography, 1994, 18: 192-205 CrossRef Google Scholar

[83] Hoeksma M R, Kenemans J L, Kemner C, et al. Variability in spatial normalization of pediatric and adult brain images. Clinical NeuroPhysiol, 2005, 116: 1188-1194 CrossRef PubMed Google Scholar

[84] Muzik O, Chugani D C, Juhász C, et al. Statistical Parametric Mapping: Assessment of Application in Children. NeuroImage, 2000, 12: 538-549 CrossRef PubMed Google Scholar

[85] Wilke M, Schmithorst V J, Holland S K. Assessment of spatial normalization of whole-brain magnetic resonance images in children. Hum Brain Mapp, 2002, 17: 48-60 CrossRef PubMed Google Scholar

[86] Wilke M, Schmithorst V J, Holland S K. Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data. Magn Reson Med, 2003, 50: 749-757 CrossRef PubMed Google Scholar

[87] Yoon U, Fonov V S, Perusse D, et al. The effect of template choice on morphometric analysis of pediatric brain data. NeuroImage, 2009, 45: 769-777 CrossRef PubMed Google Scholar

[88] Sanchez C E, Richards J E, Almli C R. Age-Specific MRI Templates for Pediatric Neuroimaging. Dev Neuropsychology, 2012, 37: 379-399 CrossRef PubMed Google Scholar

[89] Sanchez C E, Richards J E, Almli C R. Neurodevelopmental MRI brain templates for children from 2 weeks to 4 years of age. Dev Psychobiol, 2012, 54: 77-91 CrossRef PubMed Google Scholar

[90] Zilles K, Kawashima R, Dabringhaus A, et al. Hemispheric Shape of European and Japanese Brains: 3-D MRI Analysis of Intersubject Variability, Ethnical, and Gender Differences. NeuroImage, 2001, 13: 262-271 CrossRef PubMed Google Scholar

[91] Tang Y, Hojatkashani C, Dinov I D, et al. The construction of a Chinese MRI brain atlas: A morphometric comparison study between Chinese and Caucasian cohorts. NeuroImage, 2010, 51: 33-41 CrossRef PubMed Google Scholar

[92] Xing W, Nan C, ZhenTao Z, et al. Probabilistic MRI Brain Anatomical Atlases Based on 1,000 Chinese Subjects. PLoS ONE, 2013, 8: e50939 CrossRef PubMed ADS Google Scholar

[93] Liang P, Shi L, Chen N, et al. Construction of brain atlases based on a multi-center MRI dataset of 2020 Chinese adults. Sci Rep, 2015, 5: 18216. Google Scholar

[94] Luo Y, Shi L, Weng J, et al. Intensity and sulci landmark combined brain atlas construction for Chinese pediatric population. Hum Brain Mapp, 2014, 35: 3880-3892 CrossRef PubMed Google Scholar

[95] Xie W, Richards J E, Lei D, et al. The construction of MRI brain/head templates for Chinese children from 7 to 16 years of age. Dev Cognitive Neuroscience, 2015, 15: 94-105 CrossRef PubMed Google Scholar

[96] Biswal B B, Mennes M, Zuo X N, et al. Toward discovery science of human brain function. Proc Natl Acad Sci USA, 2010, 107: 4734-4739 CrossRef PubMed ADS Google Scholar

[97] Mennes M, Biswal B B, Castellanos F X, et al. Making data sharing work: The FCP/INDI experience. NeuroImage, 2013, 82: 683-691 CrossRef PubMed Google Scholar

[98] Van Essen D C, Ugurbil K, Auerbach E, et al. The Human Connectome Project: A data acquisition perspective. NeuroImage, 2012, 62: 2222-2231 CrossRef PubMed Google Scholar

[99] Van Essen D C, Smith S M, Barch D M, et al. The WU-Minn Human Connectome Project: An overview. NeuroImage, 2013, 80: 62-79 CrossRef PubMed Google Scholar

[100] The ADHD-200 Consortium. The ADHD-200 Consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience. Front Syst Neurosci, 2012, 6: 62. Google Scholar

  • Figure 1

    Sampling strategy. Three waves were included: baseline (purple), follow-up 1 (blue), follow-up 2 (green), with a 15-month interval each, ranging from 6 to 18 years old (12 cohorts) on baseline

  • Figure 2

    Growth curve of brain network surface area and individual application

  • Figure 3

    Absolute brain volume and tissues’ relative volumes illustrated as Spaghetti plots

  • Table 1   Psychological behavior questionnaire

    量表名

    适用年龄(岁)

    施测方式

    采集次数

    条目数

    维度

    信度

    效度

    儿童行为量表[44,45]

    4~16

    他评

    3

    120

    2

    重测信度: 0.77~0.79

    因子分析得到2个因子, 解释的变异量为: 4~11岁男, 63.0%; 4~11岁女, 60.2%; 12~16岁男, 73.4%; 12~16岁女, 67.4%

    知觉压力量表[46,47]

    >10

    自评

    3

    14

    内部一致性信度: 0.78

    因子分析得到2个因子, 各个条目的因子载荷介于0.50~0.78

    青少年生活事件量表[48]

    13~20

    自评

    3

    27

    6

    重测信度: 0.69; 分半信度: 0.88; 内部一致性信度: 0.85

    因子分析得到6个因子, 共解释全量表44%的变异

    儿童自我意识量表[49]

    6~17

    自评

    1

    80

    6

    重测信度: 0.70~0.94; 分半信度: 0.82; 内部一致性信度: 0.86

    以ICD-10诊断标准作效标, 以PHCSS总分第30百分位作划界分时对异常儿童的诊断, 其灵敏度为70%, 特异度为72%, 诊断一致性为0.63

    儿童社会焦虑量表[50]

    7~16

    自评

    3

    10

    2

    重测信度: 0.54~0.84; 分半信度: 0.81; 内部一致性信度: 0.79

    因子分析得到2个因子, 共解释全量表49.21%的变异

    儿童多维度焦虑量表[51]

    8~19

    自评

    3

    39

    4

    重测信度: 0.84; 内部一致性信度: 0.91

    因子分析得到4个因子, 各项拟合指标都在0.94以上

    状态-特质焦虑量表[52~54]

    自评

    3

    40

    2

    重测信度: 0.68

    因子分析得到4个因子, 共解释全量表47.1%的变异

    儿童抑郁量表[55]

    7~17

    自评

    3

    27

    5

    重测信度0.81; 内部一致性信度: 0.88

    因子分析得到5个因子, 各项拟合指标都在0.87以上

    儿童孤独量表[56]

    6~12

    自评

    3

    24

    内部一致性信度: 0.88

    验证性因子分析, 各项拟合指标都在0.80以上

    积极消极情感量表[57,58]

    自评

    3

    18

    2

    内部一致性信度: >0.77

    因子分析得到2个因子, 各个条目的因子载荷介于0.45~0.80, 各项拟合指标都在0.90以上

    巴昂情绪智力量

    [59]

    7~18

    自评

    3

    60

    7

    重测信度: 0.83; 内部一致性信度: 0.90

    因子分析得到4个因子, 共解释全量表41.14%的变异

    艾森克人格问卷(青少年版)[60]

    7~15

    自评

    3

    88

    4

    小学生重测信度: 0.58~0.67; 中学生重测信度: 0.61~0.86

    艾森克人格问卷(成人版)[61]

    ≥16

    自评

    3

    88

    4

    分量表分半信度: 0.51~0.77; 内部一致性信度: 0.54~0.78

    托兰斯创造性测试[62~65]

    自评

    1

    10

    3

    威廉姆斯创造性倾向测试[66]

    自评

    3

    50

    4

    重测信度: 0.49~0.81; 内部一致性信度: 0.40~0.87; 分半信度: 0.41~0.92

    识字测验[67]

    5~12

    他评

    3

    150

    分半信度: 0.89

    视频游戏调查(自编)

    自评

    1

    13

  • Table 2   Psychological experiment tasks

    任务名称

    施测方式

    采集次数

    任务简介

    注意网络测试(attention network test)[68]

    电脑

    3

    要求被试正确且迅速判断靶子的朝向: 中间的箭头的方向是朝左或朝右, 并按相应键反应

    任务转换(task-switch)[69]

    电脑

    3

    要求被试在两种不同类型的数字归类任务(1. 判断数字大于/小于5; 2. 判断数字的奇偶)之间转换

    工作记忆刷新任务(working memory updating)[70]

    电脑

    3

    实验采用n-back范式, 共有1-back和2-back两水平, 呈现刺激为1~9共9个整数, 要求被试判断当前呈现的刺激与之前第n个刺激是否一致

  • Table 3   Age distribution of sample size

    年龄段(岁)

    6~7

    7~8

    8~9

    9~10

    10~11

    11~12

    12~13

    13~14

    14~15

    15~16

    16~17

    17~18

    满18

    总计

    第一轮(人)

    7

    20

    19

    19

    22

    25

    11

    19

    10

    11

    19

    10

    0

    192

    第二轮(人)

    0

    2

    16

    20

    24

    18

    26

    7

    14

    8

    7

    11

    5

    158

    第三轮(人)

    0

    0

    0

    8

    27

    19

    7

    18

    7

    7

    6

    2

    6

    107

  • Table 4   Completion of phenotypic assessments

    轮次

    MRI

    生理

    韦氏智力

    行为量表

    实验测查

    感受

    利手

    SASC

    EPQ

    识字

    ANT

    TS

    WM

    1

    191*

    192

    172

    183

    189

    189

    190

    192

    183

    78

    79

    2

    157**

    158

    131

    157

    157

    158

    158

    158

    155

    57

    57

    3

    101***

    107

    100

    101

    105

    101

    105

    107

    107

    53

    53

    *: 191人(1人身体不适); **: 157人(1人戴牙套); ***: 101人(6人戴牙套

qqqq

Contact and support