References
[1]
Kish
L B.
End of Moore's law: thermal (noise) death of integration in micro and nano electronics.
Phys Lett A,
2002, 305: 144-149
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=End of Moore's law: thermal (noise) death of integration in micro and nano electronics&author=Kish L B&publication_year=2002&journal=Phys Lett A&volume=305&pages=144-149
[2]
Desai
S B,
Madhvapathy
S R,
Sachid
A B.
MoS$_{2}$ transistors with 1-nanometer gate lengths.
Science,
2016, 354: 99-102
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=MoS$_{2}$ transistors with 1-nanometer gate lengths&author=Desai S B&author=Madhvapathy S R&author=Sachid A B&publication_year=2016&journal=Science&volume=354&pages=99-102
[3]
Yahiro W, Hagiya M, Implementation of Turing machine using DNA strand displacement. In: Proceedings of International Conference on Theory and Practice of Natural Computing, 2016. 161--172.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yahiro W, Hagiya M, Implementation of Turing machine using DNA strand displacement. In: Proceedings of International Conference on Theory and Practice of Natural Computing, 2016. 161--172&
[4]
Wikipedia. Combinational logic. 2018. https://en.wikipedia.org/wiki/Combinational_logic.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wikipedia. Combinational logic. 2018. https://en.wikipedia.org/wiki/Combinational_logic&
[5]
Khalil
A S,
Collins
J J.
Synthetic biology: applications come of age..
Nat Rev Genet,
2010, 11: 367-379
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synthetic biology: applications come of age.&author=Khalil A S&author=Collins J J&publication_year=2010&journal=Nat Rev Genet&volume=11&pages=367-379
[6]
Siuti
P,
Yazbek
J,
Lu
T K.
Synthetic circuits integrating logic and memory in living cells..
Nat Biotechnol,
2013, 31: 448-452
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synthetic circuits integrating logic and memory in living cells.&author=Siuti P&author=Yazbek J&author=Lu T K&publication_year=2013&journal=Nat Biotechnol&volume=31&pages=448-452
[7]
Andrianantoandro
E,
Basu
S,
Karig
D K.
Synthetic biology: new engineering rules for an emerging discipline..
Mol Syst Biol,
2006, 2
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synthetic biology: new engineering rules for an emerging discipline.&author=Andrianantoandro E&author=Basu S&author=Karig D K&publication_year=2006&journal=Mol Syst Biol&volume=2&
[8]
Green
A A,
Kim
J,
Ma
D.
Complex cellular logic computation using ribocomputing devices.
Nature,
2017, 548: 117-121
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Complex cellular logic computation using ribocomputing devices&author=Green A A&author=Kim J&author=Ma D&publication_year=2017&journal=Nature&volume=548&pages=117-121
[9]
Feynman R P. There's plenty of room at the bottom. Eng Sci, 1960, 23: 22--36.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Feynman R P. There's plenty of room at the bottom. Eng Sci, 1960, 23: 22--36&
[10]
Adleman
L.
Molecular Computation of Solutions to Combinatorial Problems.
Science,
1994, 266: 1021-1024
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Molecular Computation of Solutions to Combinatorial Problems&author=Adleman L&publication_year=1994&journal=Science&volume=266&pages=1021-1024
[11]
Paun G, Rozenberg G, Salomaa A. DNA Computing: New Computing Paradigms. Berlin: Springer, 2005.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Paun G, Rozenberg G, Salomaa A. DNA Computing: New Computing Paradigms. Berlin: Springer, 2005&
[12]
Amos M. Theoretical and experimental DNA computation. Bull European Assoc Theor Comput Sci, 1999, 67: 125--138.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Amos M. Theoretical and experimental DNA computation. Bull European Assoc Theor Comput Sci, 1999, 67: 125--138&
[13]
von Neumann
J.
First draft of a report on the EDVAC.
IEEE Ann Hist Comput,
1993, 15: 27-75
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=First draft of a report on the EDVAC&author=von Neumann J&publication_year=1993&journal=IEEE Ann Hist Comput&volume=15&pages=27-75
[14]
Backus
J.
Can programming be liberated from the von Neumann style?: a functional style and its algebra of programs.
Commun ACM,
1978, 21: 613-641
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Can programming be liberated from the von Neumann style?: a functional style and its algebra of programs&author=Backus J&publication_year=1978&journal=Commun ACM&volume=21&pages=613-641
[15]
Deaton R, Murphy R C, Rose J A, et al. A DNA based implementation of an evolutionary search for good encodings for DNA computation. In: Proceedings of IEEE International Conference on Evolutionary Computation, 1997. 267--271.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deaton R, Murphy R C, Rose J A, et al. A DNA based implementation of an evolutionary search for good encodings for DNA computation. In: Proceedings of IEEE International Conference on Evolutionary Computation, 1997. 267--271&
[16]
Tagore S, Bhattacharya S, Islam M, et al. DNA computation: application and perspectives. J Proteomics Bioinform, 2010, 3: 234--343.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tagore S, Bhattacharya S, Islam M, et al. DNA computation: application and perspectives. J Proteomics Bioinform, 2010, 3: 234--343&
[17]
Extance
A.
How DNA could store all the world's data..
Nature,
2016, 537: 22-24
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=How DNA could store all the world's data.&author=Extance A&publication_year=2016&journal=Nature&volume=537&pages=22-24
[18]
Hameed K. DNA computation based approach for enhanced computing power. Int J Emerging Sci, 2011, 1: 23--30.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hameed K. DNA computation based approach for enhanced computing power. Int J Emerging Sci, 2011, 1: 23--30&
[19]
Saxena S. Introduction to DNA computing. Int Acadmey Eng Medical Res, 2016, 1: 1--3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Saxena S. Introduction to DNA computing. Int Acadmey Eng Medical Res, 2016, 1: 1--3&
[20]
Kumar S N. A proper approach on DNA based computer. Am J Nanomater, 2015, 3: 1--14.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kumar S N. A proper approach on DNA based computer. Am J Nanomater, 2015, 3: 1--14&
[21]
Ma
S,
Tang
N,
Tian
J.
DNA synthesis, assembly and applications in synthetic biology..
Curr Opin Chem Biol,
2012, 16: 260-267
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=DNA synthesis, assembly and applications in synthetic biology.&author=Ma S&author=Tang N&author=Tian J&publication_year=2012&journal=Curr Opin Chem Biol&volume=16&pages=260-267
[22]
Bornholt
J,
Lopez
R,
Carmean
D M.
A DNA-Based Archival Storage System.
SIGOPS Oper Syst Rev,
2016, 50: 637-649
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A DNA-Based Archival Storage System&author=Bornholt J&author=Lopez R&author=Carmean D M&publication_year=2016&journal=SIGOPS Oper Syst Rev&volume=50&pages=637-649
[23]
Hughes
R A,
Ellington
A D.
Synthetic DNA Synthesis and Assembly: Putting the Synthetic in Synthetic Biology..
Cold Spring Harb Perspect Biol,
2017, 9: a023812
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synthetic DNA Synthesis and Assembly: Putting the Synthetic in Synthetic Biology.&author=Hughes R A&author=Ellington A D&publication_year=2017&journal=Cold Spring Harb Perspect Biol&volume=9&pages=a023812
[24]
Benenson
Y,
Gil
B,
Ben-Dor
U.
An autonomous molecular computer for logical control of gene expression.
Nature,
2004, 429: 423-429
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=An autonomous molecular computer for logical control of gene expression&author=Benenson Y&author=Gil B&author=Ben-Dor U&publication_year=2004&journal=Nature&volume=429&pages=423-429
[25]
Landweber L F, Lipton R J, Rabin M O. DNA(^mbox2)DNA computations: a potential “killer app?". In: Proceedings of a DIMACS Workshop on DNA Based Computers, Philadelphia, 1997. 161--172.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Landweber L F, Lipton R J, Rabin M O. DNA(^mbox2)DNA computations: a potential “killer app?". In: Proceedings of a DIMACS Workshop on DNA Based Computers, Philadelphia, 1997. 161--172&
[26]
Watada J, bintiabu Bakar R. DNA computing and its applications. In: Proceedings of the 8th International Conference on Intelligent Systems Design and Applications, 2008. 288--294.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Watada J, bintiabu Bakar R. DNA computing and its applications. In: Proceedings of the 8th International Conference on Intelligent Systems Design and Applications, 2008. 288--294&
[27]
Gehani A, LaBean T, Reif J. DNA-based cryptography. Lecture Notes Comput Sci, 2003, 2950: 167--188.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gehani A, LaBean T, Reif J. DNA-based cryptography. Lecture Notes Comput Sci, 2003, 2950: 167--188&
[28]
Miyamoto T, Razavi S, DeRose R, et al. Synthesizing biomolecule-based Boolean logic gates. ACS Synth Biol, 2012, 2: 72--82.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Miyamoto T, Razavi S, DeRose R, et al. Synthesizing biomolecule-based Boolean logic gates. ACS Synth Biol, 2012, 2: 72--82&
[29]
Jiang H, Riedel M D, Parhi K K. Digital logic with molecular reactions. In: Proceedings of International Conference on Computer-Aided Design (ICCAD), 2013. 721--727.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jiang H, Riedel M D, Parhi K K. Digital logic with molecular reactions. In: Proceedings of International Conference on Computer-Aided Design (ICCAD), 2013. 721--727&
[30]
Zhang C, Ge L, Zhong Z, et al. Karnaugh map-aided combinational logic design approach with bistable molecular reactions. In: Proceedings of IEEE International Conference on Digital Signal Processing (DSP), 2015. 1288--1292.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang C, Ge L, Zhong Z, et al. Karnaugh map-aided combinational logic design approach with bistable molecular reactions. In: Proceedings of IEEE International Conference on Digital Signal Processing (DSP), 2015. 1288--1292&
[31]
Ge
L,
Zhong
Z,
Wen
D.
A Formal Combinational Logic Synthesis With Chemical Reaction Networks.
IEEE Trans Mol Biol Multi-Scale Commun,
2017, 3: 33-47
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Formal Combinational Logic Synthesis With Chemical Reaction Networks&author=Ge L&author=Zhong Z&author=Wen D&publication_year=2017&journal=IEEE Trans Mol Biol Multi-Scale Commun&volume=3&pages=33-47
[32]
Wen D, Ge L, Lu Y, et al. A DNA strand displacement reaction implementation-friendly clock design. In: Proceedings of IEEE International Conference on Communications (ICC), 2017. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wen D, Ge L, Lu Y, et al. A DNA strand displacement reaction implementation-friendly clock design. In: Proceedings of IEEE International Conference on Communications (ICC), 2017. 1--6&
[33]
Zhang X, Ge L, You X, et al. Synthesizing LDPC belief propagation decoding with molecular reactions. In: Proceedings of IEEE International Conference on Communications (ICC), 2018. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang X, Ge L, You X, et al. Synthesizing LDPC belief propagation decoding with molecular reactions. In: Proceedings of IEEE International Conference on Communications (ICC), 2018. 1--6&
[34]
Zhong Z, Li Z, Ge L, et al. Implementation of Mealy machine with molecular reactions. In: Proceedings of IEEE International Conference on Communications (ICC), 2018. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhong Z, Li Z, Ge L, et al. Implementation of Mealy machine with molecular reactions. In: Proceedings of IEEE International Conference on Communications (ICC), 2018. 1--6&
[35]
Lu X, Ge L, You X, et al. Implementation of sinusoids and pulse width modulation with chemical reactions. In: Proceedings of IEEE International Conference on Communications (ICC), 2018. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lu X, Ge L, You X, et al. Implementation of sinusoids and pulse width modulation with chemical reactions. In: Proceedings of IEEE International Conference on Communications (ICC), 2018. 1--6&
[36]
Li M, Ge L, You X, et al. Basic arithmetics based on analog signal with molecular reactions. In: Proceedings of IEEE International Conference on Communications (ICC), 2018. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li M, Ge L, You X, et al. Basic arithmetics based on analog signal with molecular reactions. In: Proceedings of IEEE International Conference on Communications (ICC), 2018. 1--6&
[37]
Salehi S A, Riedel M D, Parhi K K. Molecular computation of complex Markov chains with self-loop state transitions. In: Proceedings of IEEE international conference on digital signal processing (DSP), 2015. 689--693.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Salehi S A, Riedel M D, Parhi K K. Molecular computation of complex Markov chains with self-loop state transitions. In: Proceedings of IEEE international conference on digital signal processing (DSP), 2015. 689--693&
[38]
Salehi S A, Riedel M D, Parhi K K. Molecular computation of complex Markov chains with self-loop state transitions. In: Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers, 2017. 478--483.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Salehi S A, Riedel M D, Parhi K K. Molecular computation of complex Markov chains with self-loop state transitions. In: Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers, 2017. 478--483&
[39]
Shen
Z,
Ge
L,
Wei
W.
Molecular Synthesis for Probability Theory and Stochastic Process.
J Sign Process Syst,
2018, 90: 1479-1494
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Molecular Synthesis for Probability Theory and Stochastic Process&author=Shen Z&author=Ge L&author=Wei W&publication_year=2018&journal=J Sign Process Syst&volume=90&pages=1479-1494
[40]
Fang C, Shen Z, Zhang Z, et al. Synthesizing a neuron using chemical reactions. In: Proceedings of IEEE International Workshop on Signal Processing Systems (SiPS), 2018. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fang C, Shen Z, Zhang Z, et al. Synthesizing a neuron using chemical reactions. In: Proceedings of IEEE International Workshop on Signal Processing Systems (SiPS), 2018. 1--6&
[41]
Salehi S A, Liu X, Riedel M D, Parhi K K. Computing mathematical functions using DNA via fractional coding. 2018, 1: 8321.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Salehi S A, Liu X, Riedel M D, Parhi K K. Computing mathematical functions using DNA via fractional coding. 2018, 1: 8321&
[42]
Zhuang Y, Zhang Z, You X, et al. Arithmetic computations based on chemical reaction networks. In: Proceedings of IEEE International Workshop on Signal Processing Systems (SiPS), 2018. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhuang Y, Zhang Z, You X, et al. Arithmetic computations based on chemical reaction networks. In: Proceedings of IEEE International Workshop on Signal Processing Systems (SiPS), 2018. 1--6&
[43]
Zhong Z, Ge L, Shen Z, et al. CRN-based design methodology for synchronous sequential logic. In: Proceedings of IEEE International Workshop on Signal Processing Systems (SiPS), 2017. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhong Z, Ge L, Shen Z, et al. CRN-based design methodology for synchronous sequential logic. In: Proceedings of IEEE International Workshop on Signal Processing Systems (SiPS), 2017. 1--6&
[44]
Shen Z, Ge L, Wei W, et al. Synthesizing Markov chain with reversible unimolecular reactions. In: Proceedings of International Conference on Wireless Communications and Signal Processing (WCSP), 2017. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shen Z, Ge L, Wei W, et al. Synthesizing Markov chain with reversible unimolecular reactions. In: Proceedings of International Conference on Wireless Communications and Signal Processing (WCSP), 2017. 1--6&
[45]
Zhuang Y, Ge L, Shen Z, et al. A synthesis flow for fast convolution unit based on molecular reactions. In: Proceedings of International Conference on Wireless Communications and Signal Processing (WCSP), 2017. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhuang Y, Ge L, Shen Z, et al. A synthesis flow for fast convolution unit based on molecular reactions. In: Proceedings of International Conference on Wireless Communications and Signal Processing (WCSP), 2017. 1--6&
[46]
Shen Z, Zhang C, Ge L, et al. Synthesis of probability theory based on molecular computation. In: Proceedings of IEEE International Workshop on Signal Processing Systems (SiPS), 2016. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shen Z, Zhang C, Ge L, et al. Synthesis of probability theory based on molecular computation. In: Proceedings of IEEE International Workshop on Signal Processing Systems (SiPS), 2016. 1--6&
[47]
Ge L, Zhang C, Zhong Z, et al. A formal design methodology for synthesizing a clock signal with an arbitrary duty cycle of M/N. In: Proceedings of IEEE International Workshop on Signal Processing Systems (SiPS), 2015. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ge L, Zhang C, Zhong Z, et al. A formal design methodology for synthesizing a clock signal with an arbitrary duty cycle of M/N. In: Proceedings of IEEE International Workshop on Signal Processing Systems (SiPS), 2015. 1--6&
[48]
Jiang H, Riedel M D, Parhi K K. Synchronous sequential computation with molecular reactions. In: Proceedings of the 48th Design Automation Conference (DAC), 2011. 836--841.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jiang H, Riedel M D, Parhi K K. Synchronous sequential computation with molecular reactions. In: Proceedings of the 48th Design Automation Conference (DAC), 2011. 836--841&
[49]
Salehi S A, Riedel M D, Parhi K K. Asynchronous discrete-time signal processing with molecular reactions. In: Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers, 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Salehi S A, Riedel M D, Parhi K K. Asynchronous discrete-time signal processing with molecular reactions. In: Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers, 2014&
[50]
Senum P, Riedel M D. Rate-independent constructs for chemical computation. PLoS ONE, 2011, 6: e21414.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Senum P, Riedel M D. Rate-independent constructs for chemical computation. PLoS ONE, 2011, 6: e21414&
[51]
Érdi P, Tóth J. Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models. Manchester: Manchester University Press, 1989.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Érdi P, Tóth J. Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models. Manchester: Manchester University Press, 1989&
[52]
Horn
F,
Jackson
R.
General mass action kinetics.
Arch Rational Mech Anal,
1972, 47: 81-116
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=General mass action kinetics&author=Horn F&author=Jackson R&publication_year=1972&journal=Arch Rational Mech Anal&volume=47&pages=81-116
[53]
Howard P. Analysis of ODE models. 2009. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.441.4759&rep=rep1&type=pdf.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Howard P. Analysis of ODE models. 2009. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.441.4759&rep=rep1&type=pdf&
[54]
Strogatz S H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Boulder: Westview Press, 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Strogatz S H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Boulder: Westview Press, 2014&
[55]
Zauderer E. Partial Differential Equations of Applied Mathematics. Hoboken: John Wiley & Sons, 2011.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zauderer E. Partial Differential Equations of Applied Mathematics. Hoboken: John Wiley & Sons, 2011&
[56]
Hale J K, Lunel S M V. Introduction to Functional Differential Equations. Berlin: Springer, 2013.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hale J K, Lunel S M V. Introduction to Functional Differential Equations. Berlin: Springer, 2013&
[57]
Crick
F.
Central Dogma of Molecular Biology.
Nature,
1970, 227: 561-563
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Central Dogma of Molecular Biology&author=Crick F&publication_year=1970&journal=Nature&volume=227&pages=561-563
[58]
Soloveichik
D,
Seelig
G,
Winfree
E.
DNA as a universal substrate for chemical kinetics.
Proc Natl Acad Sci USA,
2010, 107: 5393-5398
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=DNA as a universal substrate for chemical kinetics&author=Soloveichik D&author=Seelig G&author=Winfree E&publication_year=2010&journal=Proc Natl Acad Sci USA&volume=107&pages=5393-5398
[59]
Zhang
D Y,
Seelig
G.
Dynamic DNA nanotechnology using strand-displacement reactions.
Nat Chem,
2011, 3: 103-113
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dynamic DNA nanotechnology using strand-displacement reactions&author=Zhang D Y&author=Seelig G&publication_year=2011&journal=Nat Chem&volume=3&pages=103-113
[60]
Zhang D Y, Winfree E. Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc, 2009, 131: 303--314.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang D Y, Winfree E. Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc, 2009, 131: 303--314&
[61]
Phillips A, Cardelli L. A programming language for composable DNA circuits. J Royal Soc Inter, 2009, 6: S419--S436.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Phillips A, Cardelli L. A programming language for composable DNA circuits. J Royal Soc Inter, 2009, 6: S419--S436&
[62]
SantaLucia Jr.
J,
Hicks
D.
The Thermodynamics of DNA Structural Motifs.
Annu Rev Biophys Biomol Struct,
2004, 33: 415-440
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Thermodynamics of DNA Structural Motifs&author=SantaLucia Jr. J&author=Hicks D&publication_year=2004&journal=Annu Rev Biophys Biomol Struct&volume=33&pages=415-440
[63]
Shapiro
E,
Ran
T.
DNA computing: Molecules reach consensus.
Nat Nanotech,
2013, 8: 703-705
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=DNA computing: Molecules reach consensus&author=Shapiro E&author=Ran T&publication_year=2013&journal=Nat Nanotech&volume=8&pages=703-705
[64]
Zhang D Y. Dynamic DNA strand displacement circuits. Dissertation for Ph.D. Degree. Los Angeles: California Institute of Technology, 2010.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang D Y. Dynamic DNA strand displacement circuits. Dissertation for Ph.D. Degree. Los Angeles: California Institute of Technology, 2010&
[65]
Leavitt S. Deciphering the genetic code: marshall Nirenberg. Office of NIH History, 2004.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Leavitt S. Deciphering the genetic code: marshall Nirenberg. Office of NIH History, 2004&
[66]
Sarpeshkar
R.
Analog Versus Digital: Extrapolating from Electronics to Neurobiology.
Neural Computation,
1998, 10: 1601-1638
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analog Versus Digital: Extrapolating from Electronics to Neurobiology&author=Sarpeshkar R&publication_year=1998&journal=Neural Computation&volume=10&pages=1601-1638
[67]
Sauro
H M,
Kim
K.
Synthetic biology: It's an analog world.
Nature,
2013, 497: 572-573
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synthetic biology: It's an analog world&author=Sauro H M&author=Kim K&publication_year=2013&journal=Nature&volume=497&pages=572-573
[68]
Song
T,
Garg
S,
Mokhtar
R.
Analog Computation by DNA Strand Displacement Circuits..
ACS Synth Biol,
2016, 5: 898-912
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analog Computation by DNA Strand Displacement Circuits.&author=Song T&author=Garg S&author=Mokhtar R&publication_year=2016&journal=ACS Synth Biol&volume=5&pages=898-912
[69]
Yordanov
B,
Kim
J,
Petersen
R L.
Computational design of nucleic acid feedback control circuits..
ACS Synth Biol,
2014, 3: 600-616
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Computational design of nucleic acid feedback control circuits.&author=Yordanov B&author=Kim J&author=Petersen R L&publication_year=2014&journal=ACS Synth Biol&volume=3&pages=600-616
[70]
Chen
Y J,
Dalchau
N,
Srinivas
N.
Programmable chemical controllers made from DNA.
Nat Nanotech,
2013, 8: 755-762
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Programmable chemical controllers made from DNA&author=Chen Y J&author=Dalchau N&author=Srinivas N&publication_year=2013&journal=Nat Nanotech&volume=8&pages=755-762
[71]
Sarpeshkar
R.
Analog synthetic biology.
Philos Trans R Soc A-Math Phys Eng Sci,
2014, 372: 20130110-20130110
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analog synthetic biology&author=Sarpeshkar R&publication_year=2014&journal=Philos Trans R Soc A-Math Phys Eng Sci&volume=372&pages=20130110-20130110
[72]
Daniel
R,
Rubens
J R,
Sarpeshkar
R.
Synthetic analog computation in living cells.
Nature,
2013, 497: 619-623
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synthetic analog computation in living cells&author=Daniel R&author=Rubens J R&author=Sarpeshkar R&publication_year=2013&journal=Nature&volume=497&pages=619-623
[73]
Salehi
S A,
Jiang
H,
Riedel
M D.
Molecular Sensing and Computing Systems.
IEEE Trans Mol Biol Multi-Scale Commun,
2015, 1: 249-264
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Molecular Sensing and Computing Systems&author=Salehi S A&author=Jiang H&author=Riedel M D&publication_year=2015&journal=IEEE Trans Mol Biol Multi-Scale Commun&volume=1&pages=249-264
[74]
Frezza B M, Cockroft S L, Ghadiri M R. Modular multi-level circuits from immobilized DNA-based logic gates. J Am Chem Soc, 2007, 129: 875--879.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Frezza B M, Cockroft S L, Ghadiri M R. Modular multi-level circuits from immobilized DNA-based logic gates. J Am Chem Soc, 2007, 129: 875--879&
[75]
Chiniforooshan E, Doty D, Kari L, et al. Scalable, time-responsive, digital, energy-efficient molecular circuits using DNA strand displacement. DNA, 2010, 16: 25--36.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chiniforooshan E, Doty D, Kari L, et al. Scalable, time-responsive, digital, energy-efficient molecular circuits using DNA strand displacement. DNA, 2010, 16: 25--36&
[76]
Qian
L,
Winfree
E.
Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades.
Science,
2011, 332: 1196-1201
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades&author=Qian L&author=Winfree E&publication_year=2011&journal=Science&volume=332&pages=1196-1201
[77]
Nielsen
A A K,
Der
B S,
Shin
J.
Genetic circuit design automation..
Science,
2016, 352: aac7341-aac7341
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Genetic circuit design automation.&author=Nielsen A A K&author=Der B S&author=Shin J&publication_year=2016&journal=Science&volume=352&pages=aac7341-aac7341
[78]
Roquet
N,
Lu
T K.
Digital and analog gene circuits for biotechnology..
Biotech J,
2014, 9: 597-608
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Digital and analog gene circuits for biotechnology.&author=Roquet N&author=Lu T K&publication_year=2014&journal=Biotech J&volume=9&pages=597-608
[79]
Weiss
R,
Basu
S,
Hooshangi
S.
Genetic circuit building blocks for cellular computation, communications, and signal processing.
Nat Computing,
2003, 2: 47-84
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Genetic circuit building blocks for cellular computation, communications, and signal processing&author=Weiss R&author=Basu S&author=Hooshangi S&publication_year=2003&journal=Nat Computing&volume=2&pages=47-84
[80]
Zadegan
R M,
Jepsen
M D E,
Hildebrandt
L L.
Construction of a fuzzy and Boolean logic gates based on DNA..
Small,
2015, 11: 1811-1817
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Construction of a fuzzy and Boolean logic gates based on DNA.&author=Zadegan R M&author=Jepsen M D E&author=Hildebrandt L L&publication_year=2015&journal=Small&volume=11&pages=1811-1817
[81]
Zhang
Y,
Wirkert
S J,
Iszatt
J.
Tissue classification for laparoscopic image understanding based on multispectral texture analysis..
J Med Imag,
2017, 4: 015001
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tissue classification for laparoscopic image understanding based on multispectral texture analysis.&author=Zhang Y&author=Wirkert S J&author=Iszatt J&publication_year=2017&journal=J Med Imag&volume=4&pages=015001
[82]
Lu
C H,
Willner
B,
Willner
I.
DNA nanotechnology: from sensing and DNA machines to drug-delivery systems..
ACS Nano,
2013, 7: 8320-8332
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=DNA nanotechnology: from sensing and DNA machines to drug-delivery systems.&author=Lu C H&author=Willner B&author=Willner I&publication_year=2013&journal=ACS Nano&volume=7&pages=8320-8332
[83]
Li
J,
Pei
H,
Zhu
B.
Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides..
ACS Nano,
2011, 5: 8783-8789
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides.&author=Li J&author=Pei H&author=Zhu B&publication_year=2011&journal=ACS Nano&volume=5&pages=8783-8789
[84]
Qian
L,
Winfree
E,
Bruck
J.
Neural network computation with DNA strand displacement cascades..
Nature,
2011, 475: 368-372
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Neural network computation with DNA strand displacement cascades.&author=Qian L&author=Winfree E&author=Bruck J&publication_year=2011&journal=Nature&volume=475&pages=368-372
[85]
Schneider
G,
Wrede
P.
Artificial neural networks for computer-based molecular design.
Prog Biophys Mol Biol,
1998, 70: 175-222
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Artificial neural networks for computer-based molecular design&author=Schneider G&author=Wrede P&publication_year=1998&journal=Prog Biophys Mol Biol&volume=70&pages=175-222
[86]
Noordewier M O, Towell G G, Shavlik J W. Training knowledge-based neural networks to recognize genes in DNA sequences. In: Proceedings of the 1990 Conference on Advances in Neural Information Processing Systems, 1990. 530--536.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Noordewier M O, Towell G G, Shavlik J W. Training knowledge-based neural networks to recognize genes in DNA sequences. In: Proceedings of the 1990 Conference on Advances in Neural Information Processing Systems, 1990. 530--536&
[87]
Zuber
J,
Sun
H,
Zhang
X.
A sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction..
Nucleic Acids Res,
2017, 45: 6168-6176
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction.&author=Zuber J&author=Sun H&author=Zhang X&publication_year=2017&journal=Nucleic Acids Res&volume=45&pages=6168-6176
[88]
Brady
M.
Artificial intelligence and robotics.
Artificial Intelligence,
1985, 26: 79-121
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Artificial intelligence and robotics&author=Brady M&publication_year=1985&journal=Artificial Intelligence&volume=26&pages=79-121
[89]
Ray
K S,
Mondal
M.
Similarity-based fuzzy reasoning by DNA computing.
IJBIC,
2011, 3: 112-122
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Similarity-based fuzzy reasoning by DNA computing&author=Ray K S&author=Mondal M&publication_year=2011&journal=IJBIC&volume=3&pages=112-122
[90]
Jeng D J, Watada J, Wu B, et al. Fuzzy forecasting with DNA computing. In: Proceedings of International Workshop on DNA-Based Computers. Berlin: Springer, 2006. 324--336.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jeng D J, Watada J, Wu B, et al. Fuzzy forecasting with DNA computing. In: Proceedings of International Workshop on DNA-Based Computers. Berlin: Springer, 2006. 324--336&