logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 9 : 1276-1287(2016) https://doi.org/10.1360/N112016-00045

Decomposition-based Pareto optimization for subset selection

More info
  • ReceivedMar 3, 2016
  • AcceptedApr 22, 2016
  • PublishedSep 2, 2016

Abstract


Funded by

国家自然科学基金(61333014)

国家自然科学基金(61321491)


References

[1] Gu M, Eisenstat S C. Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J Sci Comput, 1996, 17: 848-869 CrossRef Google Scholar

[2] Zhou Z-H. Ensemble Methods: Foundations and Algorithms. Boca Raton: Chapman and Hall/CRC, 2012. Google Scholar

[3] Xie B, Liu Y, Zhang H, et al. Efficient image representation for object recognition via pivots selection. Front Comput Sci, 2015, 9: 383-391 CrossRef Google Scholar

[4] Zhang Y Q, Xiao J S, Li S H, et al. Learning block-structured incoherent dictionaries for sparse representation. Sci China Inf Sci, 2015, 58: 102302. Google Scholar

[5] Davis G, Mallat S, Avellaneda M. Adaptive greedy approximations. Constr Approx, 1997, 13: 57-98 CrossRef Google Scholar

[6] Gilbert A C, Muthukrishnan S, Strauss M J. Approximation of functions over redundant dictionaries using coherence. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, 2003. 243-252. Google Scholar

[7] Tropp J A. Greed is good: algorithmic results for sparse approximation. IEEE Trans Inf Theory, 2004, 50: 2231-2242 CrossRef Google Scholar

[8] Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc: Ser B (Methodological), 1996, 58: 267-288. Google Scholar

[9] Zou H, Hastie T. Regularization and variable selection via the elastic net. J Royal Stat Soc: Ser B (Methodological), 2005, 67: 301-320 CrossRef Google Scholar

[10] Yu Y, Yao X, Zhou Z-H. On the approximation ability of evolutionary optimization with application to minimum set cover. Artif Intell, 2012, 180-181: 20-33 CrossRef Google Scholar

[11] Qian C, Yu Y, Zhou Z-H. Pareto ensemble pruning. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, 2015. 2935-2941. Google Scholar

[12] Qian C, Yu Y, Zhou Z-H. On constrained Boolean Pareto optimization. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, 2015. 389-395. Google Scholar

[13] Qian C, Yu Y, Zhou Z-H. Subset selection by Pareto optimization. In: Proceedings of Advances in Neural Information Processing Systems 28, Montreal, 2015. 1765-1773. Google Scholar

[14] Miller A. Subset Selection in Regression. 2nd ed. London: Chapman and Hall/CRC, 2002. Google Scholar

[15] Das A, Kempe D. Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection. In: Proceedings of the 28th International Conference on Machine Learning, Bellevue, 2011. 1057-1064. Google Scholar

[16] Das A, Kempe D. Algorithms for subset selection in linear regression. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, 2008. 45-54. Google Scholar

[17] Qian C, Shi J-C, Yu Y, et al. Parallel Pareto optimization for subset selection. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, 2016. 1-7. Google Scholar

[18] Natarajan B K. Sparse approximate solutions to linear systems. SIAM J Sci Comput, 1995, 24: 227-234 CrossRef Google Scholar

[19] Diekhoff G. Statistics for the Social and Behavioral Sciences: Univariate, Bivariate, Multivariate. New York: William C Brown Pub, 1992. Google Scholar

[20] Johnson R A, Wichern D W. Applied Multivariate Statistical Analysis. 6th ed. New York: Pearson, 2007. Google Scholar

[21] Tropp J A, Gilbert A C, Muthukrishnan S, et al. Improved sparse approximation over quasiincoherent dictionaries. In: Proceedings of the 11th International Conference on Image Processing, Barcelona, 2003. 37-40. Google Scholar

[22] Shalev-Shwartz S, Srebro N, Zhang T. Trading accuracy for sparsity in optimization problems with sparsity constraints. SIAM J Optimiz, 2010, 20: 2807-2832 CrossRef Google Scholar

[23] Yuan X-T, Yan S. Forward basis selection for pursuing sparse representations over a dictionary. IEEE Trans Pattern Anal Mach Intell, 2013, 35: 3025-3036 CrossRef Google Scholar

[24] Nemhauser G L, Wolsey L A, Fisher M L. An analysis of approximations for maximizing submodular set functions - I. Math Prog, 1978, 14: 265-294 CrossRef Google Scholar