logo

SCIENTIA SINICA Terrae, Volume 51 , Issue 6 : 927-940(2021) https://doi.org/10.1360/N072020-0056

南海造礁珊瑚Favia palauensis营养方式的空间差异及其对环境适应性的影响

More info
  • ReceivedMar 3, 2020
  • AcceptedApr 23, 2021
  • PublishedMay 18, 2021

Abstract


Funded by

国家自然科学基金项目(42090041,42030502,41663001)

青岛海洋科学与技术国家实验室创新团队建设项目(MGQNLM-TD201806)

广西科技项目(AD17129063,AA17204074,2020GXNSFAA297026)


References

[1] 窦勇, 高金伟, 时晓婷, 陈瑞楠, 周文礼. 2015. 2000~2013年中国南部近海赤潮发生规律及影响因素研究. 水生态学杂志, 36: 31–37. Google Scholar

[2] 王文欢, 余克服, 王英辉. 2016. 北部湾涠洲岛珊瑚礁的研究历史、现状与特色. 热带地理, 36: 72–79. Google Scholar

[3] 余克服. 2012. 南海珊瑚礁及其对全新世环境变化的记录与响应. 中国科学: 地球科学, 42: 1160–1172. Google Scholar

[4] 赵美霞, 余克服, 张乔民, 施祺. 2008. 三亚鹿回头石珊瑚物种多样性的空间分布. 生态学报, 1419–1428. Google Scholar

[5] Alamaru A, Loya Y, Brokovich E, Yam R, Shemesh A. Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: Insights from stable isotope analysis of total organic material and lipids. Geochim Cosmochim Acta, 2009, 73: 5333-5342 CrossRef ADS Google Scholar

[6] Allison N, Tudhope A W, Fallick A E. Factors influencing the stable carbon and oxygen isotopic composition ofPorites lutea coral skeletons from Phuket, South Thailand. Coral Reefs, 1996, 15: 43-57 CrossRef ADS Google Scholar

[7] Anthony K R N, Fabricius K E. Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol, 2000, 252: 221-253 CrossRef Google Scholar

[8] Anthony K R N. Enhanced particle-feeding capacity of corals on turbid reefs (Great Barrier Reef, Australia). Coral Reefs, 2000, 19: 59-67 CrossRef Google Scholar

[9] Bachar A, Achituv Y, Pasternak Z, Dubinsky Z. Autotrophy versus heterotrophy: The origin of carbon determines its fate in a symbiotic sea anemone. J Exp Mar Biol Ecol, 2007, 349: 295-298 CrossRef Google Scholar

[10] Bhagooli R, Hidaka M. Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses. Comp Biochem Physiol Part A-Mol Integrative Physiol, 2004, 137: 547-555 CrossRef PubMed Google Scholar

[11] Cohen A L, Hart S R. The effect of colony topography on climate signals in coral skeleton. Geochim Cosmochim Acta, 1997, 61: 3905-3912 CrossRef Google Scholar

[12] Deng W F, Wei G J, Xie L H, Yu K F. Environmental controls on coral skeletal δ13C in the northern South China Sea. J Geophys Res Biogeosci, 2013, 118: 1359-1368 CrossRef ADS Google Scholar

[13] DeNiro M J, Epstein S. Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta, 1978, 42: 495-506 CrossRef Google Scholar

[14] Fabricius K E, Benayahu Y, Genin A. Herbivory in asymbiotic soft corals. Science, 1995, 268: 90-92 CrossRef PubMed ADS Google Scholar

[15] Fagoonee I, Wilson H B, Hassell M P, Turner J R. The dynamics of zooxanthellae populations: A long-term study in the field. Science, 1999, 283: 843-845 CrossRef PubMed ADS Google Scholar

[16] Falkowski P G, Dubinsky Z, Muscatine L, Porter J W. Light and the bioenergetics of a symbiotic coral. BioScience, 1984, 34: 705-709 CrossRef Google Scholar

[17] Ferrier-Pagès C, Hoogenboom M O, Houlbrèque F. 2011. The role of plankton in coral trophodynamics. In: Dubinsky Z, Stambler N, eds. Coral Reefs: An Ecosystem in Transition. Springer Netherlands, 215–229. Google Scholar

[18] Ferrier-Pagès C, Leal M C. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol Evol, 2019, 9: 723-740 CrossRef PubMed Google Scholar

[19] Ferrier-Pagès C, Sauzéat L, Balter V. Coral bleaching is linked to the capacity of the animal host to supply essential metals to the symbionts. Glob Change Biol, 2018, 24: 3145-3157 CrossRef PubMed ADS Google Scholar

[20] Fitt W K, McFarland F K, Warner M E, Chilcoat G C. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr, 2000, 45: 677-685 CrossRef ADS Google Scholar

[21] Fox M D, Williams G J, Johnson M D, Radice V Z, Zgliczynski B J, Kelly E L A, Rohwer F L, Sandin S A, Smith J E. Gradients in primary production predict trophic strategies of mixotrophic corals across spatial scales. Curr Biol, 2018, 28: 3355-3363 CrossRef PubMed Google Scholar

[22] Fujise L, Yamashita H, Suzuki G, Sasaki K, Liao L M, Koike K. Moderate thermal stress causes active and immediate expulsion of photosynthetically damaged zooxanthellae (symbiodinium) from corals. PLoS ONE, 2014, 9: e114321 CrossRef PubMed ADS Google Scholar

[23] Furla P, Galgani I, Durand I, Allemand D. Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol, 2000, 203: 3445-3457 CrossRef Google Scholar

[24] Gattuso J P, Allemand D, Frankignoulle M. Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review on interactions and control by carbonate chemistry. Am Zool, 1999, 39: 160-183 CrossRef Google Scholar

[25] Godinot C, Houlbrèque F, Grover R, Ferrier-Pagès C. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE, 2011, 6: e25024 CrossRef PubMed ADS Google Scholar

[26] Goreau T F, Goreau N I, Yonge C M. Reef corals: Autotrophs or heterotrophs?. Biol Bull, 1971, 141: 247-260 CrossRef Google Scholar

[27] Grottoli A G, Rodrigues L J, Juarez C. Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar Biol, 2004, 145: 621-631 CrossRef Google Scholar

[28] Grottoli A G, Rodrigues L J, Palardy J E. Heterotrophic plasticity and resilience in bleached corals. Nature, 2006, 440: 1186-1189 CrossRef PubMed ADS Google Scholar

[29] Grottoli A G, Wellington G M. Effect of light and zooplankton on skeletal δ13C values in the eastern Pacific corals Pavona clavus and Pavona gigantea. Coral Reefs, 1999, 18: 29-41 CrossRef Google Scholar

[30] Gustafsson M S M, Baird M E, Ralph P J. Modeling photoinhibition-driven bleaching in Scleractinian coral as a function of light, temperature, and heterotrophy. Limnol Oceanogr, 2014, 59: 603-622 CrossRef ADS Google Scholar

[31] Hallock P, Schlager W. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios, 1986, 1: 389-398 CrossRef ADS Google Scholar

[32] Heikoop J M, Dunn J J, Risk M J, Schwarcz H P, McConnaughey T A, Sandeman I M. Separation of kinetic and metabolic isotope effects in carbon-13 records preserved in reef coral skeletons. Geochim Cosmochim Acta, 2000, 64: 975-987 CrossRef Google Scholar

[33] Hoegh-Guldberg O, Smith G J. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J Exp Mar Biol Ecol, 1989, 129: 279-303 CrossRef Google Scholar

[34] Hoegh-Guldberg O. 1994. Population dynamics of symbiotic zooxanthellae in the coral Pocillopora damicornis exposed to elevated ammonium [(NH4)2SO4] concentrations. Pac Sci, 48: 263–272. Google Scholar

[35] Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwater Res, 1999, 50: 839-866 CrossRef Google Scholar

[36] Hoogenboom M O, Anthony K R N, Connolly S R. Energetic cost of photoinhibition in corals. Mar Ecol Prog Ser, 2006, 313: 1-12 CrossRef ADS Google Scholar

[37] Hoogenboom M Q, Rodolfo-Metalpa R, Ferrier-Pagès C. Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. J Exp Biol, 2010, 213: 2399-2409 CrossRef PubMed Google Scholar

[38] Houlbrèque F, Ferrier-Pagès C. Heterotrophy in tropical scleractinian corals. Biol Rev, 2009, 84: 1-17 CrossRef PubMed Google Scholar

[39] Houlbrèque F, Tambutté E, Ferrier-Pagès C. Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol, 2003, 296: 145-166 CrossRef Google Scholar

[40] Hughes A D, Grottoli A G. Heterotrophic compensation: A possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress?. PLoS ONE, 2013, 8: e81172 CrossRef PubMed ADS Google Scholar

[41] Hughes T P, Baird A H, Bellwood D R, Card M, Connolly S R, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson J B C, Kleypas J, Lough J M, Marshall P, Nyström M, Palumbi S R, Pandolfi J M, Rosen B, Roughgarden J. Climate change, human impacts, and the resilience of coral reefs. Science, 2003, 301: 929-933 CrossRef PubMed ADS Google Scholar

[42] Johannes R E, Wiebe W J. Method for determination of coral tissue biomass and composition1. Limnol Oceanogr, 1970, 15: 822-824 CrossRef ADS Google Scholar

[43] Ke Z X, Tan Y H, Huang L M, Liu H J, Liu J X, Jiang X, Wang J X. Spatial distribution patterns of phytoplankton biomass and primary productivity in six coral atolls in the central South China Sea. Coral Reefs, 2018, 37: 919-927 CrossRef ADS Google Scholar

[44] Krueger T, Bodin J, Horwitz N, Loussert-Fonta C, Sakr A, Escrig S, Fine M, Meibom A. Temperature and feeding induce tissue level changes in autotrophic and heterotrophic nutrient allocation in the coral symbiosis—A NanoSIMS study. Sci Rep, 2018, 8: 12710 CrossRef PubMed ADS Google Scholar

[45] Ladrière O, Penin L, Van Lierde E, Vidal-Dupiol J, Kayal M, Roberty S, Poulicek M, Adjeroud M. Natural spatial variability of algal endosymbiont density in the coral Acropora globiceps : A small-scale approach along environmental gradients around Moorea (French Polynesia). J Mar Biol Ass, 2014, 94: 65-74 CrossRef Google Scholar

[46] Land L S, Lang J C, Smith B N. Preliminary observations on the carbon isotopic composition of some reef coral tissues and symbiotic zooxanthellae1. Limnol Oceanogr, 1975, 20: 283-287 CrossRef ADS Google Scholar

[47] Lesser M P. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in ymbiotic dinoflagellates. Limnol Oceanogr, 1996, 41: 271-283 CrossRef ADS Google Scholar

[48] Lesser M P. Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs, 1997, 16: 187-192 CrossRef ADS Google Scholar

[49] Levas S J, Grottoli A G, Hughes A, Osburn C L, Matsui Y. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: Implications for resilience in mounding corals. PLoS ONE, 2013, 8: e63267 CrossRef PubMed ADS Google Scholar

[50] Li S, Yu K F, Shi Q, Chen T R, Zhao M X, Zhao J X. Interspecies and spatial diversity in the symbiotic zooxanthellae density in corals from northern South China Sea and its relationship to coral reef bleaching. Chin Sci Bull, 2008, 53: 295-303 CrossRef ADS Google Scholar

[51] Linsley B K, Dunbar R B, Dassié E P, Tangri N, Wu H C, Brenner L D, Wellington G M. Coral carbon isotope sensitivity to growth rate and water depth with paleo-sea level implications. Nat Commun, 2019, 10: 2056 CrossRef PubMed ADS Google Scholar

[52] Maier C, Weinbauer M G, Pätzold J. Stable isotopes reveal limitations in C and N assimilation in the Caribbean reef corals Madracis auretenra, M. carmabi and M. formosa. Mar Ecol Prog Ser, 2010, 412: 103-112 CrossRef ADS Google Scholar

[53] Marubini F, Davies P S. Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar Biol, 1996, 127: 319-328 CrossRef Google Scholar

[54] McConnaughey T. 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim Cosmochim Acta, 1989a, 53: 163-171 CrossRef Google Scholar

[55] McConnaughey T. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim Cosmochim Acta, 1989b, 53: 151-162 CrossRef Google Scholar

[56] Mills M M, Lipschultz F, Sebens K P. Particulate matter ingestion and associated nitrogen uptake by four species of scleractinian corals. Coral Reefs, 2004, 23: 311-323 CrossRef Google Scholar

[57] Muller-Parker G, D’Elia C F, Cook C B. 2015. Interactions between corals and their symbiotic algae. In: Birkeland C, ed. Coral Reefs in the Anthropocene. Dordrecht: Springer Netherlands, 99–116. Google Scholar

[58] Muscatine L, Porter J W, Kaplan I R. Resource partitioning by reef corals as determined from stable isotope composition. Mar Biol, 1989, 100: 185-193 CrossRef Google Scholar

[59] Muscatine L. 1980. Productivity of zooxanthellae. In: Falkowski, eds. Primary Productivity in the Sea. New York: Plenum Press. 381–402. Google Scholar

[60] Nahon S, Richoux N B, Kolasinski J, Desmalades M, Ferrier Pages C, Lecellier G, Planes S, Berteaux Lecellier V. Spatial and temporal variations in stable carbon (δ13C) and nitrogen (δ15N) isotopic composition of symbiotic scleractinian corals. PLoS ONE, 2013, 8: e81247 CrossRef PubMed ADS Google Scholar

[61] Palardy J E, Rodrigues L J, Grottoli A G. The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J Exp Mar Biol Ecol, 2008, 367: 180-188 CrossRef Google Scholar

[62] Papina M, Meziane T, van Woesik R. Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids. Comp Biochem Phys B, 2003, 135: 533-537 CrossRef Google Scholar

[63] Plass-Johnson J G, McQuaid C D, Hill J M. Morphologically similar, coexisting hard corals (Porites lobata and P. solida) display similar trophic isotopic ratios across reefs and depths. Mar Freshwater Res, 2015, 67: 671-676 CrossRef Google Scholar

[64] Porter J W, Fitt W K, Spero H J, Rogers C S, White M W. Bleaching in reef corals: Physiological and stable isotopic responses. Proc Natl Acad Sci USA, 1989, 86: 9342-9346 CrossRef PubMed ADS Google Scholar

[65] Qin Z J, Yu K F, Wang Y H, Xu L J, Huang X Y, Chen B, Li Y, Wang W H, Pan Z L. Spatial and intergeneric variation in physiological indicators of corals in the South China Sea: Insights into their current state and their adaptability to environmental stress. J Geophys Res-Oceans, 2019, 124: 3317-3332 CrossRef ADS Google Scholar

[66] Rau G H, Teyssie J L, Rassoulzadegan F, Fowler S W. 13C/12C and 15N/14N variations among size-fractionated marine particles: Implications for their origin and trophic relationships. Mar Ecol Prog Ser, 1990, 59: 33-38 CrossRef ADS Google Scholar

[67] Reynaud S, Ferrier-Pagès C, Sambrotto R, Juillet-Leclerc A, Jaubert J, Gattuso J P. Effect of feeding on the carbon and oxygen isotopic composition in the tissues and skeleton of the zooxanthellate coral Stylophora pistillata. Mar Ecol Prog Ser, 2002, 238: 81-89 CrossRef ADS Google Scholar

[68] Reynaud-Vaganay S, Juillet-Leclerc A, Jaubert J, Gattuso J P. Effect of light on skeletal δ13C and δ18O, and interaction with photosynthesis, respiration and calcification in two zooxanthellate scleractinian corals. Palaeogeogr Palaeoclimatol Palaeoecol, 2001, 175: 393-404 CrossRef Google Scholar

[69] Risk M J, Sammarco P W, Schwarcz H P. Cross-continental shelf trends in δ13C in coral on the Great Barrier Reef. Mar Ecol Prog Ser, 1994, 106: 121-130 CrossRef ADS Google Scholar

[70] Rodrigues L J, Grottoli A G. Calcification rate and the stable carbon, oxygen, and nitrogen isotopes in the skeleton, host tissue, and zooxanthellae of bleached and recovering Hawaiian corals. Geochim Cosmochim Acta, 2006, 70: 2781-2789 CrossRef ADS Google Scholar

[71] Sawall Y, Al-Sofyani A, Banguera-Hinestroza E, Voolstra C R. Spatio-temporal analyses of Symbiodinium physiology of the coral Pocillopora verrucosa along large-scale nutrient and temperature gradients in the Red Sea. PLoS ONE, 2014, 9: e103179 CrossRef PubMed ADS Google Scholar

[72] Sawall Y, Teichberg M C, Seemann J, Litaay M, Jompa J, Richter C. Nutritional status and metabolism of the coral Stylophora subseriata along a eutrophication gradient in Spermonde Archipelago (Indonesia). Coral Reefs, 2011, 30: 841-853 CrossRef ADS Google Scholar

[73] Schoepf V, Grottoli A G, Warner M E, Cai W J, Melman T F, Hoadley K D, Pettay D T, Hu X P, Li Q, Xu H, Wang Y C, Matsui Y, Baumann J H. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS ONE, 2013, 8: e75049 CrossRef PubMed ADS Google Scholar

[74] Schoepf V, Levas S J, Rodrigues L J, McBride M O, Aschaffenburg M D, Matsui Y, Warner M E, Hughes A D, Grottoli A G. Kinetic and metabolic isotope effects in coral skeletal carbon isotopes: A re-evaluation using experimental coral bleaching as a case study. Geochim Cosmochim Acta, 2014, 146: 164-178 CrossRef ADS Google Scholar

[75] Schoepf V, Stat M, Falter J L, McCulloch M T. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci Rep, 2015, 5: 17639 CrossRef PubMed ADS Google Scholar

[76] Seemann J. The use of 13C and 15N isotope labeling techniques to assess heterotrophy of corals. J Exp Mar Biol Ecol, 2013, 442: 88-95 CrossRef Google Scholar

[77] Shimokawa S, Murakami T, Ukai A, Kohno H, Mizutani A, Nakase K. Relationship between coral distributions and physical variables in Amitori Bay, Iriomote Island, Japan. J Geophys Res-Oceans, 2014, 119: 8336-8356 CrossRef ADS Google Scholar

[78] Sunagawa S, Cortés J, Jiménez C, Lara R. Variation in cell densities and pigment concentrations of symbiotic dinoflagellates in the coral Pavona clavus in the Eastern Pacific (Costa Rica). Cienc Mar, 2008, 34: 113-123 CrossRef Google Scholar

[79] Swart P K, Saied A, Lamb K. Temporal and spatial variation in the δ15N and δ13C of coral tissue and zooxanthellae in Montastraea faveolata collected from the Florida reef tract. Limnol Oceanogr, 2005a, 50: 1049-1058 CrossRef ADS Google Scholar

[80] Swart P K, Szmant A, Porter J W, Dodge R E, Tougas J I, Southam J R. The isotopic composition of respired carbon dioxide in scleractinian corals: Implications for cycling of organic carbon in corals. Geochim Cosmochim Acta, 2005b, 69: 1495-1509 CrossRef ADS Google Scholar

[81] Tchernov D, Gorbunov M Y, de Vargas C, Yadav S N, Milligan A J, Häggblom M, Falkowski P G. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA, 2004, 101: 13531-13535 CrossRef PubMed ADS Google Scholar

[82] Titlyanov E A, Tsukahara J, Titlyanova T V, Leletkin V A, Van Woesik R, Yamazato K. 2000. Zooxanthellae population density and physiological state of the coral Stylophora pistillata during starvation and osmotic shock. Symbiosis, 28: 303–322. Google Scholar

[83] Treignier C, Grover R, Ferrier-Pagés C, Tolosa I. Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis. Limnol Oceanogr, 2008, 53: 2702-2710 CrossRef ADS Google Scholar

[84] Tremblay P, Gori A, Maguer J F, Hoogenboom M O, Ferrier-Pagès C. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress. Sci Rep, 2016, 6: 38112 CrossRef PubMed ADS Google Scholar

[85] Tremblay P, Grover R, Maguer J F, Hoogenboom M O, Ferrier-Pagès C. Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata. Coral Reefs, 2014, 33: 1-13 CrossRef ADS Google Scholar

[86] Tremblay P, Grover R, Maguer J F, Legendre L, Ferrier-Pagès C. Autotrophic carbon budget in coral tissue: A new 13C-based model of photosynthate translocation. J Exp Biol, 2012, 215: 1384-1393 CrossRef PubMed Google Scholar

[87] Tremblay P, Maguer J F, Grover R, Ferrier-Pagès C. Trophic dynamics of scleractinian corals: Stable isotope evidence. J Exp Biol, 2015, 218: 1223-1234 CrossRef PubMed Google Scholar

[88] Venn A A, Loram J E, Douglas A E. Photosynthetic symbioses in animals. J Exp Bot, 2008, 59: 1069-1080 CrossRef PubMed Google Scholar

[89] Wang D R, Wu Z J, Li Y C, Chen J R, Chen M. Analysis on variation trend of coral reef in Xisha. Acta Ecologica Sin, 2011, 31: 254-258 CrossRef Google Scholar

[90] Williams G J, Sandin S A, Zgliczynski B J, Fox M D, Gove J M, Rogers J S, Furby K A, Hartmann A C, Caldwell Z R, Price N N, Smith J E. Biophysical drivers of coral trophic depth zonation. Mar Biol, 2018, 165: 60 CrossRef Google Scholar

[91] Wooldridge S A. Breakdown of the coral-algae symbiosis: Towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences, 2013, 10: 1647-1658 CrossRef ADS Google Scholar

[92] Xu L J, Yu K F, Li S, Liu G H, Tao S C, Shi Q, Chen T R, Zhang H L. Interseasonal and interspecies diversities of Symbiodinium density and effective photochemical efficiency in five dominant reef coral species from Luhuitou fringing reef, northern South China Sea. Coral Reefs, 2017, 36: 477-487 CrossRef ADS Google Scholar

[93] Xu S D, Yu K F, Wang Y H, Liu T, Jiang W, Wang S P, Chu M H. Oil spill recorded by skeletal δ13C of Porites corals in Weizhou Island, Beibu Gulf, Northern South China Sea. Estuar Coast Shelf Sci, 2018, 207: 338-344 CrossRef ADS Google Scholar

[94] Xu S D, Yu K F, Zhang Z N, Chen B, Qin Z J, Huang X Y, Jiang W, Wang Y X, Wang Y H. Intergeneric differences in trophic status of scleractinian corals from Weizhou Island, Northern South China Sea: Implication for their different environmental stress tolerance. J Geophys Res Biogeosci, 2020, 125: e05451 CrossRef ADS Google Scholar

[95] Yentsch C S, Yentsch C M, Cullen J J, Lapointe B, Phinney D A, Yentsch S W. Sunlight and water transparency: Cornerstones in coral research. J Exp Mar Biol Ecol, 2002, 268: 171-183 CrossRef Google Scholar

[96] Yin X J, Li Y Q, Lei Q, Wang A J, Xu Y H, Chen J. 2014. Source and spatial distributions of particulate organic carbon and its isotope in surface waters of Prydz Bay, Antarctica, during summer. Adv Polar Sci, 25: 175–182. Google Scholar

[97] Zhao M X, Yu K F, Shi Q, Chen T R, Zhang H L, Chen T G. Coral communities of the remote atoll reefs in the Nansha Islands, southern South China Sea. Environ Monit Assess, 2013, 185: 7381-7392 CrossRef PubMed Google Scholar

[98] Zhao M X, Yu K F, Zhang Q, Shi Q, Price G J. 2012. Long-term decline of a fringing coral reef in the northern South China Sea. J Coast Res, 28: 1088–1099. Google Scholar

[99] Zhu H T, Jiang X W, Meng X L, Feng Q, Cui S X, Liang C. A quantitative approach to monitoring new sand cay migration in Nansha Islands. Acta Oceanol Sin, 2016, 35: 102-107 CrossRef Google Scholar

  • 图 1

    南海研究区域和具体采样点

    中国地图底图来自自然资源部标准地图服务系统, 网址: http://bzdt.ch.mnr.gov.cn/. (a) 三亚鹿回头采样点; (b) 西沙群岛采样点; (c) 南沙群岛采样点(三亚鹿回头、西沙和南沙群岛地图底图来自国家地理信息公共服务平台, 网址: https://www.tianditu.gov.cn/)

  • 图 2

    南海不同礁区的ZD

    a~c表示三个礁区珊瑚虫黄藻密度的事后多重比较

  • 图 3

    三亚鹿回头、西沙群岛和南沙群岛珊瑚δ13Czδ13Ch和Δh−z 13C

    (a) 珊瑚δ13Cz平均值; (b) 珊瑚δ13Ch平均值; (c) 珊瑚Δh−z 13C平均值. a和b表示三个礁区珊瑚组织碳同位素值的事后多重比较

  • 图 4

    三亚鹿回头西沙群岛和南沙群岛礁区单个珊瑚样本虫黄藻密度与δ13Cz值的相关性

  • 图 5

    虫黄藻密度以及组织生物量和Δh−z 13C值的相关性

    (a)南海三亚鹿回头、西沙群岛和南沙群岛单个珊瑚样本虫黄藻密度和Δh−z13C值的相关性和(b)三亚鹿回头单个珊瑚样本组织生物量和Δh−z 13C值的相关性

  • 图 6

    三亚鹿回头单个珊瑚样本组织生物量与δ13Cs值的相关性

  • 表 1   采样点空间差异对南海不同纬度礁区珊瑚共生虫黄藻密度和组织碳同位素组成影响的单因素方差分析

    采样区域单因素方差分析

    数值结果

    ZD

    F

    26.5

    p

    <0.001

    δ13Cz

    F

    3.6

    p

    <0.05

    δ13Ch

    F

    32.8

    p

    <0.001

    Δh−z 13C

    F

    8.9

    p

    <0.001

  • 表 2   南海三亚鹿回头、西沙群岛和南沙群岛的环境参数

    参数

    三亚鹿回头

    西沙群岛

    南沙群岛

    年平均SST(℃)

    26.38±0.36

    27.56±0.33

    28.62±0.30

    5~8月平均SST(℃)

    28.99±0.39

    29.30±0.34

    29.45±0.37

    年平均盐度(‰)

    33.60±0.15

    33.64±0.20

    33.28±0.22

    5~8月平均盐度(‰)

    33.52±0.15

    33.65±0.23

    33.38±0.23

    POC(mg m−3)

    135.6±27

    <45.4±1.18

    <51.7±2.02

    Chl a(mg m−3)

    0.5±0.11

    0.1±0.07

    0.13±0.09

    浑浊度(NTU)

    1.0~1.2

    0.2~0.38

    0.1~0.23

    透明度(m)

    4.6

    17.7

    24.4

    SST(℃)

    28.8

    29.8

    30.6

    pH

    8.18

    8.24

    8.21

    DIN(μmol L−1)

    2.94

    1.31

    1.37

    SRP(μmol L−1)

    0.49

    0.08

    0.05

  • 表 3   南海三亚鹿回头、西沙群岛和南沙群岛所有样本ZD和环境参数的相关性a)

    参数

    Pearson相关性

    显著性(双侧)

    N

    年平均SST(℃)

    −0.655**

    0

    70

    5~8月平均SST(℃)

    −0.655**

    0

    70

    年平均盐度(‰)

    0.456**

    0

    70

    5~8月平均盐度(‰)

    0.227

    0.059

    70

    pH

    −0.399**

    0.001

    70

    DIN(μmol L−1)

    0.592**

    0

    70

    SRP(μmol L−1)

    0.616**

    0

    70

    Chl a(mg m−3)

    0.582**

    0

    70

    浑浊度(NTU)

    0.629**

    0

    70

    透明度(m)

    −0.656**

    0

    70

    **在0.01水平(双侧)上显著相关

  • 表 4   南海三亚鹿回头、西沙群岛和南沙群岛所有珊瑚样本δ13Cz值和环境参数的相关性a)

    参数

    Pearson相关性

    显著性(双侧)

    N

    浑浊度(NTU)

    0.312**

    0.008

    70

    透明度(m)

    −0.309**

    0.009

    70

    DIN(μmol L−1)

    0.306*

    0.01

    70

    SRP(μmol L−1)

    0.311**

    0.009

    70

    **在0.01水平(双侧)上显著相关, *在0.05水平(双侧)上显著相关

  • 表 5   南海三亚鹿回头、西沙和南沙群岛所有珊瑚样本δ13Ch、Δh−z13C和环境参数的相关性a)

    参数

    δ13Ch

    Δh−z 13C

    Pearson相关性

    显著性(双侧)

    N

    Pearson相关性

    显著性(双侧)

    N

    Chl a(mg m−3)

    0.692**

    0

    70

    0.455**

    0

    70

    POC(mg m−3)

    0.693**

    0

    70

    0.455**

    0

    70

    浑浊度(NTU)

    0.703**

    0

    70

    0.458**

    0

    70

    DIN(μmol L−1)

    0.696**

    0

    70

    0.457**

    0

    70

    SRP(μmol L−1)

    0.702**

    0

    70

    0.459**

    0

    70

    透明度(m)

    −0.683**

    0

    70

    −0.440**

    0

    70

    年平均SST(℃)

    −0.648**

    0

    70

    −0.413**

    0

    70

    5~8月平均SST(℃)

    −0.686**

    0

    70

    −0.442**

    0

    70

    **在0.01水平(双侧)上显著相关

qqqq

Contact and support