SCIENTIA SINICA Vitae, Volume 45 , Issue 2 : 165-174(2015) https://doi.org/10.1360/N052014-00302

Aberrant Activation of MicroRNA-215 Promotes Hepatocellular Carcinoma Cell Migration and Transformation through Directly Inhibiting Dicer1

More info
  • ReceivedAug 17, 2014
  • AcceptedSep 21, 2014
  • PublishedFeb 28, 2015



[1] Forner A, Llovet J M, Bruix J. Hepatocellular carcinoma. Lancet, 2012, 379: 1245-1255. Google Scholar

[2] Thorgeirsson S S, Grisham J W. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet, 2002, 31: 339-346. Google Scholar

[3] Farazi P A, DePinho R A. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer, 2006, 6: 674-687. Google Scholar

[4] He L, Hannon G J. MicroRNA: small RNAs with a big role in gene regulation. Nat Rev Genet, 2004, 5: 522-531. Google Scholar

[5] Bartel D P. MicroRNA: genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281-297. Google Scholar

[6] Iorio M V, Croce C M. MicroRNA in cancer: small molecules with a huge impact. J Clin Oncol, 2009, 27: 5848-5856. Google Scholar

[7] Mendell J T, Olson E N. MicroRNA in stress signaling and human disease. Cell, 2012, 148: 1172-1187. Google Scholar

[8] Calin G A, Croce C M. MicroRNA signatures in human cancers. Nat Rev Cancer, 2006, 6: 857-866. Google Scholar

[9] Esquela-Kerscher A, Slack F J. Oncomirs—microRNA with a role in cancer. Nat Rev Cancer, 2006, 6: 259-269. Google Scholar

[10] Hammond S M. MicroRNA as tumor suppressors. Nat Genet, 2007, 39: 582-583.. Google Scholar

[11] He L, Thomson J M, Hemann M T, et al. A microRNA polycistron as a potential human oncogene. Nature, 2005, 435: 828-833. Google Scholar

[12] Kota J, Chivukula R R, O'Donnell K A, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 2009, 137: 1005-1017. Google Scholar

[13] Trang P, Wiggins J F, Daige C L, et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther, 2011, 19: 1116-1122. Google Scholar

[14] Wong K Y, Yim R L, So C C, et al. Epigeneticin activation of the microRNA34B/C in multiple myeloma. Blood, 2011, 118: 5901-5904. Google Scholar

[15] Suzuki H, Gabrielson E, Chen W, et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet, 2002, 31: 141-149. Google Scholar

[16] Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev, 2012, 22: 50-55. Google Scholar

[17] Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet, 2007, 8: 286-298. Google Scholar

[18] Jones P A, Baylin S B. The epigenomics of cancer. Cell, 2007, 128: 683-692. Google Scholar

[19] Lujambio A, Esteller M. CpG island hypermethylation of tumor suppressor microRNA in human cancer. Cell Cycle, 2007, 6: 1455-1459. Google Scholar

[20] Calin G A, Cimmino A, Fabbri M, et al. MicroRNA-15a and microRNA-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA, 2008, 105: 5166-5171. Google Scholar

[21] Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell, 2006, 9: 435-443. Google Scholar

[22] Lopez-Serra P, Esteller M. DNA methylation-associated silencing of tumor-suppressor microRNA in cancer. Oncogene, 2012, 31: 1609-1622. Google Scholar

[23] Han H, Sun D, Li WJ, et al. A c-Myc-microRNA functional feedback loop affects hepatocarcinogenesis. Hepatology, 2013, 57: 2378-2389. Google Scholar

[24] Li Y, Lu J, Cohen D, et al. Transformation, genomic instability and senescence mediated by platelet/megakaryocyte glycoprotein Iba. Oncogene, 2008, 27: 1599-1609. Google Scholar

[25] Martello G, Rosato A, Ferrari F, et al. A microRNA targeting dicer for metastasis control. Cell, 2010, 141: 1195-1207. Google Scholar

[26] Li Y, Rogulski K, Zhou Q S, et al. The negative c-Myc target onzin affects proliferation and apoptosis via its obligate interaction with phospholipids scramblase I. Mol Cell Biol, 2006, 26: 3401-3413. Google Scholar

[27] Li Y J, Xu F F, Lu J, et al. Widespread genomic instability mediated by a pathway involving glycoprotein Iba and aurora B kinase. J Biol Chem, 2010, 285: 13183-13192. Google Scholar

[28] Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation. Cell, 2011, 144: 646-674. Google Scholar

[29] Au S L, Wong C C, Lee J M, et al. Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNA to promote liver cancer metastasis. Hepatology, 2012, 56: 622-631. Google Scholar

[30] Wang Y, Toh H C, Chow P, et al. MicroRNA-224 is up-regulated in hepatocellular carcinoma through epigenetic mechanisms. FASEB J, 2012, 26: 3032-3041. Google Scholar

[31] Datta J, Kutay H, Nasser M W, et al. Methylation mediated silencing of microRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res, 2008, 68: 5049-5058. Google Scholar

[32] He Y, Cui Y, Wang W, et al. Hypomethylation of the hsa-microRNA-191 locus causes high expression of hsa-microRNA-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia, 2011, 13: 841-853. Google Scholar

[33] Lujambio A, Calin G A, Villanueva A, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA, 2008, 105: 13556-13561. Google Scholar

[34] Baer C, Claus R, Frenzel L P, et al. Extensive promoter hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res, 2012, 72: 3775-3785. Google Scholar

[35] Yuan J H, Yang F, Chen B F, et al. The histone deacetylase 4/SP1/microRNA-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology, 2011, 54: 2025-2035. Google Scholar

[36] Lujambio A, Portela A, Liz J, et al. CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene, 2010, 29: 6390-6401. Google Scholar

[37] Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res, 2007, 67: 1424-1429. Google Scholar

[38] Yamagishi M, Nakano K, Miyake A, et al. Polycomb-mediated loss of microRNA-31 activates NIK-dependent NF-kB pathway in adult T cell leukemia and other cancers. Cancer Cell, 2012, 21: 121-135. Google Scholar

[39] Jin Z, Selaru F M, Cheng Y, et al. MicroRNA-192 and -215 are upregulated in human gastric cancer in vivo and suppress ALCAM expression in vitro. Oncogene, 2011, 30: 1577-1585. Google Scholar

[40] Kumar M S, Lu J, Mercer K L, et al. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet, 2007, 39: 673-677. Google Scholar

[41] Xu X, Fan Z, Kang L, et al. Hepatitis B virus X protein represses microRNA-148a to enhance tumorigenesis. J Clin Invest, 2013, 123: 630-645. Google Scholar

[42] Xu C, Liu S, Fu H, et al. MicroRNA-193b regulates proliferation, migration and invasion in human hepatocellular carcinoma cells. Eur J Cancer, 2010, 46: 2828-2836. Google Scholar

[43] Heravi-Moussavi A, Anglesio M S, Cheng S W, et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. New Engl J Med, 2012, 366: 234-242. Google Scholar

[44] Rio Frio T, Bahubeshi A, Kanellopoulou C, et al. DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors. JAMA, 2011, 305: 68-77. Google Scholar

[45] Sekine S, Ogawa R, Ito R, et al. Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology, 2009, 136: 2304-2315. Google Scholar

[46] Ravi A, Gurtan A M, Kumar M S, et al. Proliferation and tumorigenesis of a murine sarcoma cell line in the absence of DICER1. Cancer Cell, 2012, 21: 848-855. Google Scholar

[47] Kumar M S, Pester R E, Chen C Y, et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev, 2009, 23: 2700-2704. Google Scholar


Contact and support